Motherboard and daughterboard multi-swap system with communication module for a GPRS system

Information

  • Patent Grant
  • 7324835
  • Patent Number
    7,324,835
  • Date Filed
    Saturday, August 7, 2004
    20 years ago
  • Date Issued
    Tuesday, January 29, 2008
    16 years ago
Abstract
A multi-swap communication module includes a motherboard and a daughterboard. The motherboard is provided with a plurality of necessary components for maintaining the operation of a wireless communication card and the daughterboard is connectable with the motherboard. The daughterboard is a modular add-on card swappable according to different requests, while the motherboard reads control data selectively either in the motherboard or in the daughterboard by means of a swapping action of the daughterboard.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to a communication module, and particularly to a multi-swap communication module that enables a conventional elementary wireless communication unit to swap the functions thereof.


2. The Prior Arts


To follow the development and progress of science, the transmission mode of information has been changed from a wire-mode to a wireless-mode of which the data portability and the convenience of transmission are significantly enlarged. It also makes the distance between people shorter and shorter such that data transmission and data receipt are no longer restricted at some predetermined positions. Instead, people can do the same in almost everywhere even under a moving state to make an instant remote communication and data exchange possible.


The wireless communication system more often applied nowadays includes the Global System for Mobile Communications (GSM), the General Packet Radio Service (GPRS), Bluetooth, and Wireless LAN.


The existing wireless communication card for wireless transmission is commonly applied in a portable computer or a Personal Digital Assistant (PDA) to serve as an expansion facility for wireless transmission to allow the connection with the INTERNET through a mobile phone system. In a conventional portable wireless communication card, the necessary device such as a wireless communication module (GSM, GPRS, Wireless network card or Bluetooth wireless card) is usually disposed on a motherboard module and connected with some other systems via a specified connection interface (Compact Flash interface, for example). Unfortunately, due to different interfaces of the wireless communication module, the wireless communication card occasionally fails to connect with other systems or a connection could be done only under the assistance of a personal computer (PC) or PDA that increases the cost but provides no convenient service.


SUMMARY OF THE INVENTION

The primary object of the present invention is to provide a multi-swap communication module capable of increasing the function of a conventional wireless communication card by means of a modular daughterboard having different functions.


Another object of the present invention is to save the cost of wireless communication by means of modular components.


In order to realize above objects, a multi-swap communication module of the present invention comprises a motherboard having basic components and a daughterboard to be connected with the motherboard, in which the daughterboard is a modular appended card swappable according to different requests, and the motherboard is supposed to read the control data either in the components thereof or in the components of the daughterboard by means of a swapping action of the daughterboard.


In accordance with the multi-swap communication module of the present invention, a multi-function controller is disposed on the motherboard for control of reading data on the daughterboard. This controller is employed to control reading of control data either on the motherboard or on the daughterboard selectively, and increase the functions of a wireless communication card of the motherboard by the modular daughterboard having various functions.


For more detailed information regarding advantages or features of the present invention, at least an example of preferred embodiment will be described below with reference to the annexed drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The related drawings in connection with the detailed description of the present invention to be made later are described briefly as follows, in which:



FIG. 1 is a schematic view of a GPRS (General Packet Radio Service) multi-swap communication module according to the present invention;



FIG. 2 is a schematic view of another embodiment of the GPRS multi-swap communication module according to the present invention;



FIG. 3 is a schematic view of yet another embodiment of the GPRS multi-swap communication module according to the present invention; and



FIG. 4 is a schematic view of yet another embodiment of the GPRS multi-swap communication module according to the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

With reference to FIG. 1, which shows a GPRS (General Packet Radio Service) multi-swap communication module according to the present invention, the multi-swap communication module of the present invention comprises a motherboard 1 and a daughterboard 2. A plurality of components is disposed on the motherboard 1, including at least a multi-function controller 11, an Electrically Erasable Programmable Read Only Memory (E2PROM) 12, a Solid State Disk device bridge chip (SSD) 13, a wireless communication module 14, and a first connector 15. The multi-function controller 11 comprises first and second flat cables 111 and 112. The wireless communication module 14 comprises a replaceable module comprising preferably at least a wireless network, GSM, GPRS, or a Bluetooth wireless module. A plurality of components is disposed on the daughterboard 2, including at least an E2PROM 24 and a second connector (25). Upon requests, a battery pack 21 (see FIG. 2), and/or a memory card adapter 22 (see FIG. 3), and/or a wireless communication module 23 (see FIG. 4) may be further provided to form a modular daughterboard 2 in various combinations.


The foregoing memory card adapter 22 can be, but not necessarily be, applied for a Multi Media card (MMC), a Safe Digital card (SD), or a Memory Stick Card (MS). The wireless communication module 23 preferably comprises a wireless network card or a Bluetooth wireless card. Or alternatively, the wireless communication modular 23 is replaced by a Global Positioning System (GPS) chip.


The possible combinations of the components on the daughterboard 2 can be, but not necessarily be, any of: (a) a battery pack only; (b) a memory card adapter only; (c) a wireless network card only; (d) a memory card adapter plus a battery pack; (e) a battery pack plus a Bluetooth wireless card; (f) a battery pack plus a wireless network card; or, (g) a battery pack plus a GPS card.


Therefore, a multi-swap communication module is formed by coupling a motherboard having a communication module with a modular daughterboard. The combination example of the motherboard and the daughterboard may include: (a) wireless network for motherboard; memory card (SD, MMC, or MS) adapter for daughterboard; (b) GSM or GPRS for motherboard; wireless network for daughterboard; (c) Bluetooth wireless card for motherboard; memory card (SD, MMC, or MS) adapter plus battery pack for daughterboard; (d) GSM or GPRS for motherboard; GPS plus battery pack for daughterboard; (e) wireless network for motherboard; memory card (SD, MMC, or MS) for daughterboard. Before the connection of the motherboard and the daughterboard is made, the motherboard (1) itself is staffed to read the data stored in advance in the E2PROM 12 through the multi-function controller 11. Then, after operation, an instruction is transmitted through the flat cable 112 to the wireless communication module 14 for the latter to proceed with the wireless transmission operation.


When the modular daughterboard 2 is joined together with the motherboard 1, the information thereof enters the motherboard 1 through a channel provided by the connectors 15 and 25. A chip-selection pin (CS pin, not shown) is then enabled or disabled to conduct ON/OFF operation of the E2PROM 12 on the motherboard 1 by taking advantage of the swapping action of the daughterboard 2 so that the prestored data either in the E2PROM 12 on the motherboard 1 or in the E2PROM 24 on the daughterboard 2 will be read selectively via the multi-function controller 11.


The mentioned multi-function controller 11 may support various working modes as indicated in Table 1, in which modes 1-3 are all multiplex modes while modes 4-6 are all simplex modes. The multiplex modes 11 make use themselves on swap of the modules.


The data fetched from the daughterboard 2, that is, from the E2PROM 24 or the memory card adapter 22 or the wireless communication module 23, could be transmitted through the first connector 15, and then the flat cable 111 to reach the multi-function controller 11 for the controller to operate a wireless communication card. This can be done via any of two paths, in which the fetched data may go through the first connector 15 and then a bus 162, the Solid State Disk device bridge chip 13, and another bus 161 to reach the multi-function controller 11 along one path, or the data may go through the first connector 15 and then a bus 163 to reach the multi-function controller 11 along the other path without passing through the Solid State Disk device bridge chip 13. The path for transmitting data from the daughterboard 2 to the motherboard 1 is to be chosen by a switching chip 17.


The Solid State Disk device bridge chip 13 is employed generally to transmit the data of the swappable daughterboard 2, namely the SD, MMC, MS, to the True Integrated Drive Electronics (True IDE), and it works just like a PCMCIA (Personal Computer Memory Card Interface Adapter).


Moreover, the E2PROM 12, 24 function to: (1) store the Card Information Structure (CIS) of PCMCIA and (2) store a setting value for configuring the multi-function controller 11 to determine the working mode thereof. For example, there are 256 bytes in an E2PROM 93C56, in which CIS is addressed in 00-EF to store the setting value of the E2PROM 93C56 as indicated in Table 2. When the electric power is applied, all the data of the E2PROM 93C56 is supposed to be inputted into the multi-function controller, in which 240 bytes of CIS data would reside in a RAM buffer and the rest 16 bytes are employed for setting the multi-function controller, then the system host will effect a reset signal to determine the working mode of the multi-function controller and decide the function thereof when the CIS of PCMCIA works in an operating system. In other words, the function of the CIS of PCMCIA is determined first by the data of those 16 bytes and the reset signal of the system host, then the operating system will define the function thereof in Win98/2K/CE.


In the above described, at least one preferred embodiment has been described in detail with reference to the drawings annexed, and it is apparent that numerous changes or modifications may be made without departing from the true spirit and scope thereof, as set forth in the claims below.

Claims
  • 1. A multi-swap system with communication module for General Packet Radio Service (GPRS) comprising: a motherboard having a multi-function controller, a first bus connected to said multi-function controller, a second bus, a solid state disk bridge chip connected to said first and second buses, a switching chip connected to said second bus, a third bus connecting said switching chip to said first bus, a wireless communication module, and a memory for storing control data, said motherboard operating as a wireless communication card; anda daughterboard swappably connected to said motherboard, said daughterboard having a memory for storing control data;wherein said multi-function controller selectively reads control data from the memory on said daughterboard or the memory on said motherboard depending on whether said daughterboard is connected to said motherboard, and the control data includes a setting value for configuring said multi-function controller for different working modes including multiplex and simplex modes; and wherein said switching chip controls if the control data on said daughterboard pass through said solid state disk bridge chip or said third bus to said multi-function controller when said daughterboard is connected to said motherboard.
  • 2. The multi-swap system according to claim 1, wherein said memory in said motherboard is an Electrically Erasable programmable Read Only Memory (E2PROM).
  • 3. The multi-swap system according to claim 1, wherein the daughterboard is provided with at least an E2PROM and a connector, and further, at least one of four components including a battery pack, a memory slot, a Global Positioning System (GPS) module, or a wireless communication module.
  • 4. The multi-swap system according to claim 1, wherein said switching chip controls said multi-function controller to selectively read control data from the memory on said daughterboard or the memory on said motherboard.
  • 5. The multi-swap system according to claim 1, wherein the operation of the switching chip depends on a swapping action of the daughterboard that performs an ON/OFF operation of a pin in the switching chip.
  • 6. The multi-swap system according to claim 1, wherein said switching chip passes data stored in a multi media card, a safe digital card, or a memory stick on said daughterboard through said solid state disk bridge chip to said multi-function controller when said daughterboard is connected to said motherboard.
US Referenced Citations (35)
Number Name Date Kind
4455703 Fromme et al. Jun 1984 A
4662021 Hagen et al. May 1987 A
4718136 Fisher et al. Jan 1988 A
5497411 Pellerin Mar 1996 A
5604871 Pecone Feb 1997 A
5703759 Trimberger Dec 1997 A
5711013 Collett et al. Jan 1998 A
5734872 Kelly Mar 1998 A
5854981 Wallstedt et al. Dec 1998 A
5974318 Satarasinghe Oct 1999 A
6289440 Casselman Sep 2001 B1
6714647 Cowan et al. Mar 2004 B1
6742068 Gallagher et al. May 2004 B2
6973693 Mayer et al. Dec 2005 B1
20010011314 Gallagher et al. Aug 2001 A1
20010035866 Finger et al. Nov 2001 A1
20020034966 Saito et al. Mar 2002 A1
20020082047 Souissi et al. Jun 2002 A1
20020098830 Lauper et al. Jul 2002 A1
20020137505 Eiche et al. Sep 2002 A1
20020156797 Lee et al. Oct 2002 A1
20020166062 Helbig, Sr. Nov 2002 A1
20020183009 Cruz-Albrecht et al. Dec 2002 A1
20020198022 Huber Dec 2002 A1
20030008680 Huh et al. Jan 2003 A1
20030097350 ShamRao May 2003 A1
20030125073 Tsai et al. Jul 2003 A1
20030126356 Gustavson et al. Jul 2003 A1
20030195014 Mori et al. Oct 2003 A1
20030220101 Castrogiovanni et al. Nov 2003 A1
20040005912 Hubbe et al. Jan 2004 A1
20040043790 Ben-David et al. Mar 2004 A1
20040127256 Goldthwaite et al. Jul 2004 A1
20050101350 Wang May 2005 A1
20060208066 Finn et al. Sep 2006 A1
Related Publications (1)
Number Date Country
20060029094 A1 Feb 2006 US