The present invention relates to motion detection systems and methods generally which are useful for example in intrusion detection, access control, and energy management.
Detection and imaging of millimeter wave electromagnetic radiation, e.g. radiation having a wavelength between approximately 0.05 mm and 10 mm, is known.
The following patents are believed to represent the current state of the art:
U.S. Pat. Nos. 5,815,113; 5,555,036; 5,530,247; 5,202,692; 5,182,564 and 4,510,622.
The present invention seeks to provide an improved system and method for motion detection which are useful for example in intrusion detection, access control, and energy management.
There is thus provided in accordance with a preferred embodiment of the present invention a motion detection apparatus including an incoherent detector, including at least one sensing element, operative to detect receipt of radiation having a wavelength between 0.05 mm and 10 mm from multiple fields of view, and a motion detector receiving an output of the incoherent detector and providing a motion detection output indicating receipt of radiation from an object moving between the multiple fields of view.
There is also provided in accordance with another preferred embodiment of the present invention an intrusion detection system including an incoherent detector operative to detect receipt of radiation having a wavelength between 0.05 mm and 10 mm and an intrusion detector receiving an output of the incoherent detector and providing an intrusion detection output indicating receipt of radiation from an object whose intrusion is sought to be detected.
There is further provided in accordance with yet another preferred embodiment of the present invention an access control system including an incoherent detector operative to detect receipt of radiation having a wavelength between 0.05 mm and 10 mm and an access control detector receiving an output of the incoherent detector and providing an access control Output indicating receipt of radiation from an object.
There is also provided in accordance with still another preferred embodiment of the present invention an energy management system including an incoherent detector operative to detect receipt of radiation having a wavelength between 0.05 mm and 10 mm and an energy management detector receiving an output of the incoherent detector and providing an energy management output indicating receipt of radiation from an object.
There is further provided in accordance with another preferred embodiment of the present invention a method for motion detection including detecting receipt of radiation having a wavelength between 0.05 mm and 10 mm from multiple fields of view, utilizing an incoherent detector, including at least one sensing element, receiving an output of the incoherent detector and providing a motion detection output indicating receipt of radiation from an object moving between the multiple fields of view.
There is yet further provided in accordance with yet another preferred embodiment of the present invention a method for intrusion detection including detecting receipt of radiation having a wavelength between 0.05 mm and 10 mm, utilizing an incoherent detector, receiving an output of the incoherent detector and providing an intrusion detection output indicating receipt of radiation from an object whose intrusion is sought to be detected.
There is also provided in accordance with still another preferred embodiment of the present invention a method for access control including detecting receipt of radiation having a wavelength between 0.05 mm and 10 mm, utilizing an incoherent detector, receiving an output of the incoherent detector and providing an access control output indicating receipt of radiation from an object.
There is further provided in accordance with another preferred embodiment of the present invention a method for energy management including detecting receipt of radiation having a wavelength between 0.05 mm and 10 mm, utilizing an incoherent detector, receiving an output of the incoherent detector and providing an energy management output indicating receipt of radiation from an object.
Preferably, the motion detector provides the motion detection output indicating receipt of radiation from the object at at least two different times having at least a predetermined time relationship therebetween.
In accordance with a preferred embodiment, the incoherent detector is operative to detect radiation emitted by a human. Additionally, the motion detector is operative to sense differences between radiation received from humans and from other objects and to provide the motion detection output at least partially based on the differences. Alternatively, the motion detector is operative to sense differences between radiation received from humans and from pets and to provide the motion detection output at least partially based on the differences.
Preferably, the motion detector is operative to sense differences between radiation received from humans and from other objects by comparing the amplitude of received radiation. Alternatively, the motion detector is operative to sense differences between radiation received from humans and from other objects by comparing characteristics of received radiation. Additionally or alternatively, the motion detector is operative to sense differences between radiation received from humans and from other objects by comparing patterns of received radiation. Alternatively, the motion detector is operative to sense differences between radiation received from humans and from other objects by comparing shapes of received radiation. Additionally, the motion detector is operative to sense differences between radiation received from humans and from other objects by comparing the amplitude of received radiation at multiple wavelengths over time.
In accordance with another preferred embodiment, the apparatus also includes at least one optical element upstream of the incoherent detector. Preferably, the at least one optical element includes at least one lens. Alternatively, the at least one optical element includes at least one reflector. Additionally or alternatively, the at least one optical element includes at least one waveguide. In accordance with another preferred embodiment, the at least one optical element includes a plurality of optical elements, each operative at a different wavelength range.
In accordance with yet another preferred embodiment, the apparatus also includes intrusion detection circuitry receiving an input from an output from the motion detector and providing an intrusion detection output based at least partially thereon. Alternatively, the apparatus includes access control circuitry receiving an input from an output from the motion detector and providing an access control circuit output based at least partially thereon. Additionally or alternatively, the apparatus also includes energy management circuitry receiving an input from an output from the motion detector and providing an energy management output based at least partially thereon.
In accordance with yet another preferred embodiment, the apparatus also includes an illuminator providing radiation having a wavelength between 0.05 mm and 10 mm into a protected region which is viewed by the incoherent detector. Alternatively, the apparatus also includes an active detector operative to detect receipt of radiation having a wavelength between 0.05 mm and 10 mm.
The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
Reference is now made to
As will be described hereinbelow, a suitable incoherent detector 100 is a PY55 CM Series Detector, commercially available from Goodrich Corporation, 100 Wooster Heights Rd, Danbury, Conn. 06810 U.S.A. This incoherent detector 100 is preferably located within a housing 10 incorporating radiation input optics, such as a lens array 112, which defines the multiple spaced fields of view 102–108. The lens array 112 may be formed of polyethylene, TEFLON R, or POLY IR R materials, commercially available from Fresnel Technologies, Inc. of 101 West Morningside Drive, Fort Worth, Tex. 76110 U.S.A.
The incoherent detector 100 preferably outputs to motion detector circuitry 114, which typically includes a microprocessor and provides a motion detection output 116, which may be provided to an alarm indicator 118. The motion detection output 116 preferably indicates receipt of radiation from an object whose motion is sought to be detected, preferably a human 120. The radiation is received preferably at at least two different times having at least a predetermined time relationship therebetween. Preferably the detection of radiation at at least two different times is produced by motion of the human through multiple spaced fields of view, as shown.
It is appreciated that the system and methodology illustrated in
It is noted that a particular feature of the present invention is that the detected radiation in the wavelength range of between 0.05 mm and 10 mm is capable of passing through many objects. Accordingly, the detector 100, its housing 110 and the detector circuitry 114 may be hidden from ordinary view, as by being located behind a picture 124 or other object.
Reference is now made to
Reference is now made to
In the embodiment of
Detectors 200 and 220 are preferably located within a housing 230 incorporating radiation input optics, such as a lens array 232, which defines the multiple spaced fields of view 202–206 and 222–226. As a further alternative, a single detector may be employed with plural parallel arranged input radiation filters.
The incoherent detectors 200 and 220 preferably output to motion detector circuitry 234, which typically includes a microprocessor and provides a motion detection output 236, which may be provided to an alarm indicator 238. The motion detection output 236 preferably indicates receipt of radiation from an object whose motion is sought to be detected, preferably a human 240, at at least two different times having at least a predetermined time relationship therebetween and at two different wavelength ranges. Preferably the detection of radiation at at least two different times is produced by motion of the human through multiple spaced fields of view.
It is appreciated that the system and methodology illustrated in
Reference is now made to
In the embodiment of
Detectors 250 and 260 are preferably located within a housing 270 incorporating an antenna 272 for coherently transmitting and receiving radiation as well as radiation input optics, such as a lens array 274, which defines the multiple spaced fields of view 252–256.
The detectors 250 and 260 preferably output to motion detector circuitry 276, which typically includes a microprocessor and provides a motion detection output 278, which may be provided to an alarm indicator 280. The motion detection output 278 preferably indicates receipt of radiation from an object whose motion is sought to be detected, preferably a human 282, at at least two different times having at least a predetermined time relationship therebetween and at two different wavelength ranges. Preferably the detection of radiation at at least two different times is produced by motion of the human through multiple spaced fields of view.
It is appreciated that the system and methodology illustrated in
Reference is now made to
As in the embodiment of
As will be described hereinbelow, a suitable incoherent detector 400 is a PY55 CM Series Detector, commercially available from Goodrich Corporation, 100 Wooster Heights Rd, Danbury, Conn. 06810 U.S.A. This incoherent detector 400 is preferably located within a housing 410 incorporating radiation input optics, such as a lens array 412, which defines the multiple spaced fields of view 402–408.
The incoherent detector 400 preferably outputs to motion detector circuitry 414, which typically includes a microprocessor and provides a motion detection output 416, which may be provided to an alarm indicator 418.
The output of incoherent detector 400 includes a signal whose amplitude, shape and pattern are characteristic of the radiation detected thereby at any given time. Thus, as shown in
At time B, the output signal includes additional signal portions, which are characteristic of motion of the thief and are labeled accordingly.
It is a particular feature of the present invention, that the signal portions which are characteristic of motion of a human may be distinguished from those characteristic of a pet by at least one and preferably more than one of the following signal characteristics: amplitude, shape and pattern.
It is seen that amplitude thresholding alone might not be able to distinguish a signal portion 450, characteristic of a jumping pet, from signal portions 452 and 454, characteristic of human motion. Shape analysis, does however distinguish signal portion 450, which is narrow, from signal portions 452 and 454, which are significantly wider.
Similarly, pattern analysis, which measures elapsed time between signal portions, identifies signal portions 452 and 454 as indicating human motion, since their time relationship corresponds to the usual speed of human motion across at least partially spatially separated fields of view.
It is appreciated that the system and methodology illustrated in
Reference is now made to
As shown in
Reference is now made to
As shown in
The outputs of incoherent detectors 600 and 620 are preferably output via respective amplifiers 692 and 693 and respective analog-to-digital converter 696 and 697 to a microprocessor 698, which are all part of motion detector circuitry 234 of
Reference is now made to
The outputs of incoherent detectors 700 and 720 are preferably output via respective amplifiers 792 and 793 and respective analog-to-digital converters 796 and 797 to a microprocessor 798, which are all part of motion detector circuitry 234 (
Reference is now made to
The outputs of incoherent detector array 800 are supplied to a signal multiplexer 860 and thence via an amplifier 862 and an analog-to-digital converter 864 to a microprocessor 866, which are all part of motion detector circuitry 234 of
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
As shown in
Reference is now made to
It is seen that the object 1300 moves into and out of one of the fields of view, here designated zone 1, into a region lying outside the fields of view and thence into another of the fields of view, here designated zone 2 and thence onward. The output of the incoherent detector 1304 is shown and labeled for correspondence with the presence of the object in the various fields of view.
More particularly, it is seen that when the object is located at location A, entirely outside of zone 1, the output signal of incoherent detector 1304 lies generally between upper and lower amplitude thresholds. When the object moves across location B, partially entering zone 1, the output signal of incoherent detector 1304 reaches a positive peak and exceeds the upper threshold. When the object moves across location C, entirely within zone 1, the output signal of incoherent detector 1304 lies generally between upper and lower amplitude thresholds. When the object moves across location D, partially leaving zone 1, the output signal of incoherent detector 1304 reaches a negative peak and exceeds the lower threshold. When the object is located at location E, the output signal of incoherent detector 1304 lies between the upper and lower amplitude thresholds.
The foregoing pattern is repeated for each crossing of a field of view.
It is appreciated that the motion detector circuitry, such as circuitry 114 (
The foregoing parameters are some of the parameters employed in accordance with the present invention for distinguishing sensed motion of humans from other sensed motion and other environmental phenomena.
Reference is now made to
It is seen that the object 1400 moves into and out of the field of view seen by a sensing element 1406, here designated zone 1, into a region lying outside the fields of view and thence into the field of view seen by a sensing element 1408, here designated zone 2 and thence onward. The outputs of the sensing elements 1406, 1408 and 1410 are shown and labeled for correspondence with the presence of the object in the various fields of view.
More particularly, it is seen that when the object is located at location A, entirely outside of zone 1, the output signal of sensing element 1406 lies generally between upper and lower amplitude thresholds. When the object moves across location B, partially entering zone 1, the output signal of sensing element 1406 reaches a positive peak and exceeds the upper threshold. When the object moves across location C, entirely within zone 1, the output signal of sensing element 1406 lies generally between upper and lower amplitude thresholds. When the object moves across location D, partially leaving zone 1, the output signal of sensing element 1406 reaches a negative peak and exceeds the lower threshold. When the object is located at location E, the output signal of incoherent detector array 1404 lies between the upper and lower amplitude thresholds.
The foregoing pattern is repeated for each crossing of a field of view of a sensing element.
It is appreciated that the motion detector circuitry, such as circuitry 114 (
The foregoing parameters are some of the parameters employed in accordance with the present invention for distinguishing sensed motion of humans from other sensed motion and other environmental phenomena.
Reference is now made to
Turning to
Turning to
Reference is now made to
An inquiry is made every unit time, typically once per 20 milliseconds, as to whether the output of the incoherent detector currently exceeds either of thresholds 1504 and 1512.
If the output of the incoherent detector does not currently exceed either of thresholds 1504 and 1512, a negative threshold exceedance output is provided.
If the output of the incoherent detector currently exceeds either of thresholds 1504 and 1512, an inquiry is then made as to whether the duration over which either of the thresholds 1504 and 1512 has been continuously exceeded, lies within a predetermined range of durations corresponding to the width t (
If the output of the incoherent detector did cross either of thresholds 1504 and 1512 and has a width t which is within a predefined range of widths, an event counter is incremented. When the event counter reaches a predetermined count, an alarm output is provided. Until the event counter reaches the predetermined count, a negative event count exceedance output is provided.
Each time any one of the following outputs—negative threshold exceedance output, negative duration range output or negative event count exceedance output—is received, an inquiry is made as to whether at least a predetermined time, typically 5 times T (
Reference is now made to
An inquiry is made every unit time, typically once per 20 milliseconds, as to whether the output of each of the two incoherent detectors 600 and 620 (
If the output of either incoherent detector does not currently exceed either of its thresholds 1504 and 1512, a negative threshold exceedance output is provided by that incoherent detector.
If the output of either incoherent detector currently exceeds either of its thresholds 1504 and 1512, an inquiry is then made as to whether the duration, over which either of the thresholds 1504 and 1512 has been continuously exceeded, lies within a predetermined range of durations corresponding to the width t (
If the outputs of both incoherent detectors did cross either one of their respective thresholds 1504 and 1512 and have widths t which are within their respective predefined range of widths, an inquiry is made as to the extent of the overlap of their widths t in time. It is appreciated that the predetermined range of widths for each incoherent detector may be the same or different.
If exceedance of at least a predetermined measure of overlap in time of the widths t of the outputs of the incoherent detectors 600 and 620 is found to exist, an event counter is incremented. When the event counter reaches a predetermined count, an alarm output is provided. Until the event counter reaches the predetermined count, a negative event count exceedance output is provided. Unless and until such measure of overlap exists, a negative overlap exceedance output is provided.
Each time any one of the following outputs—negative threshold exceedance output, negative duration range output, negative overlap exceedance output or negative event count exceedance output—is received, an inquiry is made as to whether at least a predetermined time, typically 5 times T (
Reference is now made to
An inquiry is made every unit time, typically once per 20 milliseconds, as to whether the output of each of the two detectors 250 and 260 (
If the output of either detector does not currently exceed either of its thresholds 1504 and 1512, a negative threshold exceedance output is provided by that detector.
If the output of either detector currently exceeds either of its thresholds 1504 and 1512, an inquiry is then made as to whether the duration, over which either of the thresholds 1504 and 1512 has been continuously exceeded, lies within a predetermined range of durations corresponding to the width t (
If the outputs of both detectors did cross either one of their respective thresholds 1504 and 1512 and have widths t which are within their respective predefined range of widths, an inquiry is made as to the extent of the overlap of their widths t in time. It is appreciated that the predetermined range of widths for each detector may be the same or different.
If exceedance of at least a predetermined measure of overlap in time of the widths t of the outputs of the detectors 250 and 260 is found to exist, an event counter is incremented. When the event counter reaches a predetermined count, an alarm output is provided. Until the event counter reaches the predetermined count, a negative event count exceedance output is provided. Unless and until such measure of overlap exists, a negative overlap exceedance output is provided.
Each time any one of the following outputs—negative threshold exceedance output, negative duration range output, negative overlap exceedance output or negative event count exceedance output—is received, an inquiry is made as to whether at least a predetermined time, typically 5 times T (
Reference is now made to
The motion detection apparatus 1900 preferably comprises an incoherent detector operative to detect receipt of radiation having a wavelength between 0.05 mm and 10 mm. Access control circuitry 1902, typically embodied in a remote computer, receives an input from an output from the motion detector and provides an access control circuit output based at least partially thereon. The access control circuit output may be supplied to a door lock mechanism 1904 for selectably opening or locking a door or other access device.
Reference is now made to
The motion detection apparatus 2000 preferably comprises an incoherent detector operative to detect receipt of radiation having a wavelength between 0.05 mm and 10 mm. Energy management circuitry 2002, typically embodied in a remote computer, receives an input from an output from the motion detector and provides an energy management circuit output based at least partially thereon. The access control circuit output may be supplied to lights 2004 and air conditioning apparatus 2006 for selectable operation thereof.
It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove as well as variations and modifications which would occur to persons skilled in the art upon reading the specification and which are not in the prior art.
This application claims priority from U.S. Provisional Patent Application Ser. No. 60/281,209, filed Apr. 3, 2001 and entitled MILLIMETER WAVE HUMAN MOVEMENT DETECTOR, the disclosure of which is hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL02/00272 | 4/1/2002 | WO | 00 | 3/8/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/082004 | 10/17/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4510622 | Mori et al. | Apr 1985 | A |
4516115 | Frigon et al. | May 1985 | A |
4896039 | Fraden | Jan 1990 | A |
4971409 | Yeh et al. | Nov 1990 | A |
5182564 | Burkett et al. | Jan 1993 | A |
5202692 | Huguenin et al. | Apr 1993 | A |
5461231 | Sugimoto et al. | Oct 1995 | A |
5530247 | McIver et al. | Jun 1996 | A |
5555036 | Harnett et al. | Sep 1996 | A |
5693943 | Tchernihovski et al. | Dec 1997 | A |
5790025 | Amer et al. | Aug 1998 | A |
5815113 | Lo et al. | Sep 1998 | A |
5980123 | Heifler | Nov 1999 | A |
6163257 | Tracy | Dec 2000 | A |
6250601 | Kolar et al. | Jun 2001 | B1 |
6384414 | Fisher et al. | May 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040135688 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60281209 | Apr 2001 | US |