Motion detectors are security system components that can trigger an alarm in the event of a burglary, fire or other critical conditions. Motion detectors are also energy conservation components, which can shut-off lights or disable other power consuming devices when there is no perceivable activity. Motion detectors utilize a variety of technologies, such as video cameras, ultrasonic emitter and detector combinations and infrared sensors in order determine if movement is occurring within a target area.
One drawback to conventional motion detectors is the necessity of custom installation. A motion detector typically requires physical and electrical connection to an existing or newly installed junction box. Although motion detectors are available that plug into conventional outlets, the choice of location and function is limited, and protrusion from the outlet is undesirable.
A modular motion detector is configured to be removably mounted to a wiring module. The wiring module can be either wired for a single throw or a three-way switch. As such, any of a switch function, a dimmer switch function or a motion detector function can be advantageously implemented without rewiring and without requiring professional installation. Wiring modules and functional modules that implement switch or dimmer switch functions are described in U.S. Pat. No. 6,884,111 entitled Safety Module Electrical Distribution System, assigned to ProtectConnect, Irvine, Calif. and incorporated by reference herein.
One aspect of a motion detector is a housing having a front side and a back side. Conductors are disposed on the back side so as to electrically connect to a wiring module installed within an electrical box. An infrared (IR) sensor is mounted within the housing and configured to receive IR radiation focused from a lens disposed on the front side. The IR sensor generates a sensor signal in response to motion across the field-of-view of the lens. A controller is responsive to the sensor signal so as to generate a switch signal. A relay is responsive to the switch signal so as to switch an electrical power source connecting to an electrical power load via the conductors and the wiring module.
Another aspect of a motion detector is an electrical box configured to accept electrical conductors in communications with a power source and a power load. A wiring module having a wiring side and a functional side is mounted within the electrical box. A motion detector module having a front side and a back side is removably plugged into the wiring module. The wiring module wiring side terminates the electrical conductors, and the functional side has wiring module contacts electrically connected to the terminations. The motion detector module front side has a lens for receiving IR radiation, and the back side has motion detector module contacts that are removably and electrically connected to the wiring module contacts. The motion detector module is responsive to motion within the field-of-view of the lens so as to connect the power source with the power load via the motion detector module contacts. In one embodiment, the motion detector may further include a relay disposed within the motion detector module. The relay has a switch movable between a closed position connecting the power source to the power load and an open position disconnecting the power source from the power load. The switch moves between open and closed positions only upon the zero-crossing of the AC power source, i.e. when the power source voltage or current changes polarity.
A further aspect of a motion detector routes an electrical power source and an electrical power load to an electrical box. A wiring module is mounted within the electrical box, and the power source and load are terminated at the wiring module. A motion detector module is plugged into the wiring module so as to allow the motion detector module to communicate with the power source and load via the wiring module. The power source is switched to the load in response to motion in the field-of-view of the motion detector module. In one embodiment, a switch module for manually switching the power source to the load is unplugged from the wiring module and interchanged with the motion detector module.
FIGS. 1A-B are front perspective views of a motion detector module unplugged from and plugged into a wiring module, respectively;
FIGS. 2A-C are front, back and exploded perspective views, respectively, of a motion detector module;
FIGS. 3A-B are front and back perspective views, respectively, of a front shell;
FIGS. 4A-B are front and back perspective views, respectively, of a back shell;
FIGS. 5A-B are front and back perspective views, respectively, of a cover assembly;
FIGS. 6A-C are front, back and exploded perspective views, respectively, of a printed circuit board (PCB) assembly;
FIGS. 1A-B illustrate a motion detector module 200 unplugged from and plugged into a wiring module 100. The wiring module 100 installs within a conventional electrical box (not shown) using box mounts 110 that attach to an electrical box with fasteners 112. The wiring module 100 physically mounts and electrically connects a variety of functional modules, including a motion detector module 200, to a power source and a power load routed to an electrical box. The motion detector module 200 advantageously plugs into and out of the wiring module 100 without professional installation and without exposure or access to electrical system wiring. Attachment ears 310 attach the motion detector module 200 to module mounts 120 with corresponding fasteners 122.
As shown in FIGS. 1A-B, the motion detector module 200 functions with the wiring module 100 as an electrical power switch responsive to motion within the field-of-view of a sensor lens or to a manually operated actuator, both mounted on the front of the motion detector module 200. The motion detector module 200 mounts generally flush with a wall surface, with only an aesthetically pleasing curved cover assembly 500 protruding from the wall. A motion detector module 200 may be configured to be wall-mounted or ceiling-mounted. Further, the motion detector module 200 can be adapted for electrical power distribution applications within buildings, automobiles or boats, to name just a few.
FIGS. 2A-C illustrate a motion detector module 200 having a housing 205 with a cover assembly 500 on a front side 201, shielded plugs 210 and a ground bar 620 on a back side 202 and attachment ears 310 on diagonally opposing comers. The cover assembly 500 has a sensor lens 510, an indicator lens 520 and an actuator 530. The shielded plugs 210 and the ground bar 620 are configured to physically and electrically connect the motion detector module 200 to a wiring module 100 (FIGS. 1A-B). In particular, the motion detector module 200 switches electrical power across the shielded plugs 210, functioning, for example, as a SPST switch or as a three-way switch in response to motion within its field-of-view. The ground bar 620 provides a ground connection and functions as a key to orient the motion detector module 200 when plugging into the wiring module 100 (FIGS. 1A-B). The attachment ears 310 accept fasteners 122 that secure the motion detector module 200 to the wiring module 100 (FIGS. 1A-B).
As shown in
FIGS. 3A-B illustrate a front shell 300 having an outside face 301, an inside face 302, attachment ears 310, a lens cavity 320, a sensor window 330, adjustment apertures 340, flexors 350, a post aperture 360 and fastener holes 370. The attachment ears 310 are located at diagonally opposite comers for mounting the motion detector module 200 (FIGS. 1A-B) to a wiring module 100 (FIGS. 1A-B), as described above. The lens cavity 320 physically supports and optically accommodates the sensor lens 510 (FIGS. 5A-B). The sensor window 330 is located proximate to and transfers light to a PIR sensor 710 (
FIGS. 4A-B illustrate a back shell 400 having an inside face 402, an outside face 401, plug shields 410, a ground bar aperture 420 and fastener holes 430. The plug shields 410 provide a nonconductive shield portion of the shielded plugs 210 (
FIGS. 5A-B illustrate a cover assembly 500 having a sensor lens 510, an LED lens 520 and an actuator 530. The sensor lens 510 is adapted to receive and focus optical radiation for the PIR sensor 710 (
FIGS. 6A-C illustrate a printed circuit board (PCB) assembly 600 having a control PCB 601 and a power PCB 602. The control PCB 601 has a pyroelectric infrared (PIR) sensor 710, a manual control jumper 725, adjustment pots 730, an LED 735 and a mini-switch 740, which are all functionally described with respect to
As shown in
Also shown in
As shown in
Also shown in
A motion detector module has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in art will appreciate many variations and modifications.
This application claims priority to U.S. patent application Ser. No. 11/287,884, entitled Motion Detector Module, filed Nov. 26, 2005, which claims priority to the following provisional patent applications: U.S. Provisional Application No. 60/631,100 entitled Modular Motion Detector, filed Nov. 26, 2004; U.S. Provisional Application No. 60/654,321 entitled Modular Motion Detector, filed Feb. 19, 2005; and U.S. Provisional Application No. 60/715,456 entitled Motion Detector Module, filed Sep. 10, 2005. All of the aforementioned prior applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60631100 | Nov 2004 | US | |
60715456 | Sep 2005 | US | |
60654321 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11287884 | Nov 2005 | US |
Child | 11961965 | Dec 2007 | US |