Priority is claimed to German Patent Application No. DE 10 2018 114 499.7, filed on Jun. 18, 2018, the entire disclosure of which is hereby incorporated by reference herein.
The present invention relates to a vehicle front part having a heat exchanger, and an upper air path and a lower air path which both lead to the heat exchanger.
A vehicle front part known, for example, from JP 201492140A, has a cooling air arrangement for controlling the air feed to the heat exchanger. The cooling air arrangement has an upper air inlet opening which opens substantially toward the front, and an upper flap arrangement which is assigned to the latter and is actuated by motor. Furthermore, the vehicle front part has a lower air inlet opening which opens substantially toward the bottom, and a lower flap arrangement which is assigned to the latter and is actuated by motor. The two air inlet openings are arranged upstream of the heat exchanger. The cooling air flows further toward the rear within the vehicle body downstream of the heat exchanger, as a result of which the cooling air flow is braked, as a result of which in turn the vehicle air resistance is increased.
An embodiment of the present invention includes a motor vehicle front part that includes: a heat exchanger; a motorized fan, which is assigned to the heat exchanger; and a two-path cooling air arrangement for controlling the air feed to the heat exchanger. The cooling air arrangement includes: an upper air inlet opening, which opens substantially toward the front; an upper flap arrangement, which corresponds to the upper air inlet opening and is actuated by motor; a lower air inlet opening, which opens substantially toward the bottom; and a lower flap arrangement, which corresponds to the lower air inlet opening and is actuated by motor. The upper air inlet opening and the lower air inlet opening are arranged upstream of the heat exchanger. A lower air outlet is downstream of the heat exchanger in an undertray of the vehicle.
The present invention will be described in even greater detail below based on the exemplary figures. The invention is not limited to the exemplary embodiments. All features described and/or illustrated herein can be used alone or combined in different combinations in embodiments of the invention. The features and advantages of various embodiments of the present invention will become apparent by reading the following detailed description with reference to the attached drawings which illustrate the following:
Embodiments of the present invention provide a vehicle front part with a cooling air arrangement with a low aerodynamic resistance. Furthermore, embodiments of the present invention provide a method for cooling air control for a vehicle front part having a lower and an upper air inlet opening, which brings about a low aerodynamic vehicle air resistance.
The vehicle front part according to an embodiment of the present invention has a heat exchanger which is part of a cooling fluid circuit and is cooled by the cooling air which flows through it. The heat exchanger is fluidically assigned a fan which can be switched on as required by a cooling controller if the passive cooling air incident flow of the heat exchanger is not sufficient for the requested cooling capacity. A two-path cooling air arrangement for controlling the cooling air feed to the heat exchanger is provided. The cooling air arrangement has an upper air inlet opening which opens substantially toward the front, with an upper flap arrangement which is assigned to the latter and is actuated by motor, and a lower air inlet opening which opens substantially toward the bottom, with a lower flap arrangement which is assigned to the latter and is actuated by motor. The two flap arrangements can consist in each case of a single flap, but can also consist in each case of a plurality of individual flaps. The two flap arrangements can preferably be configured so as to bring about a complete fluidic closure, that is to say can completely close the associated air inlet opening as required. The two flap arrangements are preferably actuated by electric motor.
A lower air outlet is provided downstream of the heat exchanger in the undertray of the vehicle. The air outlet can be arranged at a small distance from the heat exchanger, with the result that the flow resistance of the cooling air in the cooling air path between the heat exchanger and the air outlet can be kept low. In the present case, this is of great significance, in so far as relatively great cooling air flow quantities can be fed to the heat exchanger by way of the provision of two air inlets which can optionally both be in operation at the same time, that is to say can be opened. A backup of the cooling air downstream of the heat exchanger is avoided by way of the provision of a streamlined lower air outlet in the undertray in the immediate vicinity of the heat exchanger.
The heat exchanger is preferably arranged such that it is inclined toward the rear at an angle A of at least 10° with respect to the vertical. The preferably rectangular heat exchanger is therefore arranged with its base plane in an inclined manner such that the lower edge of the heat exchanger lies further toward the front than the upper edge of the heat exchanger. The perpendicular on the heat exchanger base plane therefore points obliquely downward behind the heat exchanger and approximately in the direction of the air outlet in the undertray of the vehicle. The cooling air flow between the heat exchanger and the air outlet can therefore run approximately rectilinearly from the heat exchanger to the air outlet. In this way, the overall fluid resistance of the flow passage between the heat exchanger and the air outlet is very low.
In accordance with one preferred refinement, the lower flap arrangement is configured as a louver flap arrangement with a plurality of flap louvers. In their open position, the flap louvers do not protrude out of the vehicle floor toward the bottom to a great extent, with the result that they do not influence the aerodynamics in a negative manner.
In their fully open position, the flap louvers are preferably inclined toward the front in such a way that the cooling air flow which flows in through the cooling air opening is directed forward or toward the front. A cooling air flow which is directed forward is understood to mean a flow direction which is oriented counter to the driving direction. The upper edges of the flap louvers therefore lie in each case further toward the front than the corresponding lower edges.
A motor vehicle having a vehicle front part preferably has a vehicle speed sensor and a cooling controller for controlling the fan and the two flap arrangements in a manner which is dependent on the requested cooling capacity and the vehicle speed V.
In accordance with a method according to an embodiment of the present invention, the following method steps are provided: transmitting of the vehicle speed from the speed sensor to the cooling controller; if the vehicle speed V lies below a rapid driving limit speed VG of more than 100 km/h: complete closing of the upper flap arrangement and opening of the lower flap arrangement; if the vehicle speed V lies above the rapid driving limit speed VG: complete closing of the lower flap arrangement and complete opening of the upper flap arrangement.
The flow resistance of the vehicle front part is relatively high in the case of a partially or completely open upper flap arrangement, since a relatively high stagnation point pressure is generated upstream of the partially or completely open upper flap arrangement, in particular when the fan is active. Below a rapid driving limit speed VG, the upper flap arrangement is kept closed as far as possible, in order to keep the stagnation point pressure as low as possible here. The upper flap arrangement is opened and the lower flap arrangement is closed only at very high vehicle speeds above the rapid driving limit speed of more than 100 km/h, in so far as the requested cooling capacity allows this.
In the following, an exemplary embodiment of the invention will be described in greater detail with reference to the drawings.
The cooling air arrangement has an upper air inlet opening 30 which opens substantially toward the front and in the opening plane of which an upper flap arrangement 32 which can be set by way of an electric actuating motor 34 is arranged. The upper air inlet opening 30 has an upright but not necessarily perpendicular opening plane, and is flush in height terms approximately and at least partially with the heat exchanger 20.
Furthermore, the cooling air arrangement has a lower air inlet opening 40 in the vehicle undertray 13, which lower air inlet opening 40 opens substantially toward the bottom and is arranged below the upper air inlet opening 30. The base plane of the lower air inlet opening 40 lies approximately in a horizontal plane. A lower flap arrangement 42 which can be set by way of an electric actuating motor 44 is arranged in the lower air inlet opening 40. The two flap arrangements 32, 42 are configured in each case as louver flap arrangements with a plurality of flap louvers. The flap louvers 43 of the lower flap arrangement 42 do not protrude substantially out of the silhouette of the undertray 13 of the vehicle front part 10, either in the closed state or in the open state.
The heat exchanger 20 is arranged such that it is inclined toward the rear at an angle A of approximately 30° with respect to the vertical. The cooling air duct is widened greatly toward the top in this region. A lower air outlet 50 is provided in the undertray 13 behind the heat exchanger 20 as viewed in the driving direction and downstream of the heat exchanger 20, the opening plane of which lower air outlet 50 is arranged approximately in a horizontal plane and approximately in the horizontal base plane of the undertray 13. The central perpendicular of the base plane of the heat exchanger 20 is directed approximately toward the lower air outlet 50.
A traction battery 14 is arranged above the heat exchanger 20 in the region of the vehicle front part 10, the temperature of which traction battery 14 is determined by way of a battery temperature sensor 70. Furthermore, a speed sensor 72 which determines the vehicle speed V is arranged in the region of the front wheel. Finally, an electronic cooling controller 16 is provided which receives the sensor signals from the battery temperature sensor 70 and the speed sensor 72, and actuates the electric motor fan 22 and the two actuating motors 34, 44 of the two flap arrangements 32, 42.
In
In
In
By way of the differentiated cooling air strategy which is shown in
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive. It will be understood that changes and modifications may be made by those of ordinary skill within the scope of the following claims. In particular, the present invention covers further embodiments with any combination of features from different embodiments described above and below. Additionally, statements made herein characterizing the invention refer to an embodiment of the invention and not necessarily all embodiments.
The terms used in the claims should be construed to have the broadest reasonable interpretation consistent with the foregoing description. For example, the use of the article “a” or “the” in introducing an element should not be interpreted as being exclusive of a plurality of elements. Likewise, the recitation of “or” should be interpreted as being inclusive, such that the recitation of “A or B” is not exclusive of “A and B,” unless it is clear from the context or the foregoing description that only one of A and B is intended. Further, the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise. Moreover, the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.
Number | Date | Country | Kind |
---|---|---|---|
10 2018 114 499.7 | Jun 2018 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2913065 | Lyon, Jr. | Nov 1959 | A |
3205964 | Henry-Biabaud | Sep 1965 | A |
3933136 | Burst | Jan 1976 | A |
4362208 | Hauser | Dec 1982 | A |
4457558 | Ishikawa | Jul 1984 | A |
4566407 | Peter | Jan 1986 | A |
4706615 | Scadding | Nov 1987 | A |
5205484 | Susa | Apr 1993 | A |
5476138 | Iwasaki | Dec 1995 | A |
5490572 | Tajiri | Feb 1996 | A |
5816350 | Akira | Oct 1998 | A |
6390217 | O'Brien | May 2002 | B1 |
6854544 | Vide | Feb 2005 | B2 |
7290630 | Maeda | Nov 2007 | B2 |
7296645 | Kerner | Nov 2007 | B1 |
7484584 | Kerner | Feb 2009 | B1 |
7665554 | Walsh | Feb 2010 | B1 |
8091516 | Preiss | Jan 2012 | B2 |
8091668 | Amano | Jan 2012 | B2 |
8292014 | Sugiyama | Oct 2012 | B2 |
8316974 | Coel | Nov 2012 | B2 |
8479853 | Verbrugge | Jul 2013 | B2 |
8517130 | Sakai | Aug 2013 | B2 |
8544583 | Ajisaka | Oct 2013 | B2 |
8561738 | Charnesky | Oct 2013 | B2 |
8667931 | Kerns | Mar 2014 | B2 |
8689925 | Ajisaka | Apr 2014 | B2 |
8739744 | Charnesky | Jun 2014 | B2 |
8752660 | Ajisaka | Jun 2014 | B2 |
8892314 | Charnesky | Nov 2014 | B2 |
9096278 | Lee | Aug 2015 | B2 |
9188052 | Tajima | Nov 2015 | B2 |
9469187 | Ho | Oct 2016 | B1 |
9670824 | Sowards | Jun 2017 | B2 |
9744848 | Ho | Aug 2017 | B2 |
9878609 | Dudar | Jan 2018 | B2 |
9950612 | Miller | Apr 2018 | B2 |
10106211 | Parry-Williams | Oct 2018 | B2 |
10173496 | Ho | Jan 2019 | B2 |
10344854 | Ogawa | Jul 2019 | B2 |
10563564 | Schwartz | Feb 2020 | B2 |
10647194 | Burtch | May 2020 | B1 |
10752303 | Parry-Williams | Aug 2020 | B2 |
20030029581 | Vide | Feb 2003 | A1 |
20050023057 | Maeda | Feb 2005 | A1 |
20080017138 | Rogg | Jan 2008 | A1 |
20090317692 | Matsumoto | Dec 2009 | A1 |
20110284298 | Ajisaka | Nov 2011 | A1 |
20110297468 | Coel | Dec 2011 | A1 |
20120024611 | Ajisaka | Feb 2012 | A1 |
20120060776 | Charnesky | Mar 2012 | A1 |
20120090906 | Charnesky | Apr 2012 | A1 |
20120323448 | Charnesky | Dec 2012 | A1 |
20130036991 | Kerns | Feb 2013 | A1 |
20130059519 | Tajima | Mar 2013 | A1 |
20130081888 | Charnesky | Apr 2013 | A1 |
20130133963 | Ajisaka | May 2013 | A1 |
20130180789 | Maurer | Jul 2013 | A1 |
20130200655 | Missig | Aug 2013 | A1 |
20130240284 | Ajisaka | Sep 2013 | A1 |
20140138077 | Ajisaka | May 2014 | A1 |
20140251241 | Tajima | Sep 2014 | A1 |
20140299396 | Tajima | Oct 2014 | A1 |
20160368366 | Miller | Dec 2016 | A1 |
20180163863 | Ogawa | Jun 2018 | A1 |
20180209324 | Schwartz | Jul 2018 | A1 |
20190329645 | Wolf | Oct 2019 | A1 |
20200149461 | Shidara | May 2020 | A1 |
Number | Date | Country |
---|---|---|
10228422 | Jan 2003 | DE |
102004035741 | Mar 2005 | DE |
102011115493 | Apr 2012 | DE |
102011111265 | May 2012 | DE |
102012102445 | Sep 2013 | DE |
2014092140 | May 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20190383204 A1 | Dec 2019 | US |