The present invention pertains generally to mixing devices and mixing methods, and more particularly pertains to mixing devices and methods that utilize a driven impeller shaft that extends into a mixing vessel to mix material therein.
Mixing devices and assemblies are in wide use in industry, for example, in the food processing, pharmaceutical, biotechnology, chemical, consumer product manufacturing, and other industries. In these industries, it is often desirable to contain a material to be mixed or agitated such as, for example, a liquid, a slurry, or any other material in a vessel and to impart mixing or agitating energy to the material via a shaft that is driven to rotate and has axially extending impellers that impart force to the material. The impellers often take the form of flat or curved blades.
One recently developed type of such mixer, which is sometimes especially suitable for industries requiring very high sanitary or cleanliness or cleanability conditions, is a so-called magnetically driven mixer arrangement.
In one type of a magnetically driven mixer arrangement, the material to be mixed or agitated is sealed inside a vessel and a bearing housing which supports the impeller shaft is provided adjacent an opening of the vessel. The end of the impeller shaft housing is closed with a domed-shape canister. Inside the canister, the end of the impeller shaft has an inner magnetic rotor, which is typically a rotor or a shaft stub having magnets disposed thereon.
External to the canister, a drive system is provided which has a hollowed out outer magnetic rotor which fits around and over the canister, and also has magnets disposed thereon. The outer magnetic rotor is driven by a motor and gear box with an associated shaft, all external to the canister and to the mixing vessel. Typically, the inner rotor magnets face outwardly towards the canister. Also, typically the outer rotor magnets face inwardly towards the canister. Rotation of the outer magnetic rotor creates a rotating magnetic field that tends to rotate the inner magnetic rotor, thus driving the impeller shaft.
In many magnetically driven mixer systems, it has been a prior practice to semi-permanently affix the drive system to the bearing housing by utilizing radially extending flanges having holes in the flanges combined with bolts through the holes of the associated flanges.
This type of arrangement uses radial flanges and axial bolts and provides good alignment and durability. However, this arrangement also has the disadvantage that it is relatively cumbersome and time consuming to undo all of the bolts in order to remove the motor and drive assembly from the bearing housing. This is especially true since a relatively large number of bolts can be involved. Of course reinstalling the drive system to a vessel also requires a cumbersome and time consuming operation of a fairly large number of bolts.
In the case of most known prior art systems, this has not posed a significant disadvantage, because the only removal of the motor and drive system that occurs would occur during some kind of cleaning or servicing of the bearing housing which does not occur particularly frequently. Also, since the bearing housing is detachable from the opening in the vessel, it has been a suitable practice to detach the bearing housing and motor drive assembly as one single unit.
However, in some instances it would be desirable to have a more readily detachable and re-attachable drive system. Accordingly, there is a need in the art for a mixing impeller drive system and method that provides a convenient, economical and rapid installation and removal of the drive system from the remainder of the mixer assembly.
The foregoing needs are met, to a great extent, by the present invention, wherein in one aspect an apparatus is provided that in some embodiments provides an improved drive system mounting assembly and method for a mixing device, including in some embodiments a bayonet type mount.
In accordance with one embodiment of the present invention, a mixer drive apparatus having a bearing housing that rotationally supports an impeller shaft; an outer cylindrical surface defined by the bearing housing having a first engaging feature thereon; a removable drive system, having a cylindrical lower shell sized to fit over a portion of the bearing housing; and a second engaging feature on the lower shell that releasably fastens the lower shell to the bearing housing by engaging the first engaging feature.
In accordance with another embodiment of the present invention, a mixer drive apparatus having a bearing housing that rotationally supports an impeller shaft; an outer cylindrical surface defined by the bearing housing having a first engaging means therein; a removable driving means for driving the impeller shaft having a cylindrical lower shell sized to fit over a portion of the bearing housing; and a second engaging means on the lower shell for fastening lower shell to the bearing housing.
In accordance with yet another embodiment of the present invention, a method for mixing material in a vessel having an impeller shaft, the method includes rotationally supporting an impeller shaft with a bearing housing; engaging an outer cylindrical surface defined by the bearing housing having a first engaging feature thereon with a removable drive system, having a cylindrical lower shell sized to fit over a portion of the bearing housing and a second engaging feature on the lower shell that releasably fastens the lower shell to the bearing housing by engaging the first engaging feature by engaging the first and second engaging features with each other.
There has thus been outlined, rather broadly, certain embodiments of the invention in order that the detailed description thereof herein may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional embodiments of the invention that will be described below and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of embodiments in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
Some embodiments of the present invention provide a mixing impeller drive system and method that provides a convenient, economical and rapid installation and removal of the drive system from the remainder of the mixer assembly. In one example embodiment, a bayonet type mounting arrangement is provided. Preferred embodiments will now be described with reference to the drawing figures, in which like reference numerals refer to like parts throughout.
The lower end 20 of the lower shell portion 14 extends downwardly as shown. The inner diameter surface of the lower shell portion 14 has an inner diameter sized to fit over a diameter of a cylindrical side surface 22 of the bearing housing 24. The bearing housing 24 supports an impeller shaft 26 as shown. The bearing housing 24 also has a lower end 28 that is sized to be mounted to an opening of a mixing vessel (not shown) in
The horizontal portion of the L-shaped slot 34 may be slightly angled or tapered so that it tends to cam against the threaded surface of the wing screw 36, forcing the lower shell portion 14 downward and further contributing to the bottom end 20 bottoming out on the shoulder 38. Once the lower end 20 is fully bottomed out on the shoulder 38, the wing screw 36 is tightened, thereby securing the entire assembly in place.
In the preferred embodiment illustrated, two opposed wing screws 36 are provided, but any other number may be used. Typically to or more wing screws 36 will be provided, but, for example, if close alignment is not required, or if other alignment features are used, some embodiments may have solely one wing screw.
Also, although a wing screw is illustrated, it will be appreciated that any other type of tightenable fastener, such as, for example, an allen head screw, Philips head screw, a machine head screw, or other like fasteners can be used to engage the L-shaped slot 34 and also to tighten against it. Also, in some embodiments, instead of a removable screw, a fixed radially protruding post may be provided which interacts with the L-shaped slot 34. Further, although an L-shaped slot is depicted having a generally vertical axial leg portion meeting at substantially right angles with a generally horizontal portion (which might be slightly tapered or tilted to provide a tightening effect) it will be appreciated that other shapes of keyways can be utilized in place of the L-shaped slot 34, and in particular, may be shaped and designed to operatively correspond with the fixed post or removable fastener 36 being used.
Also a combination of one or more screws or posts may be used. Also, the slots and screws/posts can be reversed so the slots are on the surface 22 and the screws/posts extend inward from the lower shell portion 14. Besides slots and screws/posts, any other interlocking mechanical connection can be employed, including threads or mating keyways. Generally, all of these mechanical attachments include various bayonet mounts.
Some embodiments according to the present invention can be utilized wherever it is desirable to have a quick release drive system for a mixer including, for example, magnetically driven mixers. They may also be usable in other applications other than magnetic mixers, for example, where instead of a magnetic canister and inner and outer magnetic rotors, a simple splined or other axial end-to-end shaft connection may be implemented.
However, one particularly advantageous use of the above-described embodiment is in the context of sanitary and/or clean-in-place magnetically driven mixers. In some embodiments, sanitary and/or clean-in-place magnetically driven mixers may be completely sealed and may even be disposable. Such mixers may be completely sealed at the time of manufacture, and once filled and used for a mixing cycle and then emptied, some sealed magnetic mixers vessels may be disposable.
In these systems, a particularly advantageous manufacturing process can be implemented wherein a manufacturing facility may utilize one or a limited number of drive systems which is less than a number of vessels that are used in the manufacturing facility. That is, the drive systems can be quickly changed from one vessel to another.
Also, in the case of disposable vessels, or vessels that are taken off site for cleaning or refurbishment, a useful arrangement can be obtained where (1) the vessels are delivered without a drive system, (2) a drive system which is already at the facility is quickly mounted onto the vessel, (3) the mixing cycle is performed, and then (4) the drive system can be quickly removed. In another embodiment of the invention, standard sizes of canisters and bearing housing can be developed over a range of different standard sizes, and corresponding standard size lower shells 14 can also be designed, so that a system is provided having a number of different user selectable corresponding standard sizes.
In the illustrated embodiment, the lower end 20 of the lower shell portion 14 provides a positive bottoming out stop facing against the shoulder 38. This provides an advantage of these embodiments, wherein a positive axial placement as well as axial alignment is provided by the interface of these two surfaces. This facilitates alignment of the inner and outer magnetic rotors and proper drive operation. However, in other embodiments, other alignment contact surfaces may be provided and besides being a flat bottom end 20.
The many features and advantages of the invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2209287 | Simpson | Jul 1940 | A |
2480366 | Hewitt | Aug 1949 | A |
3299924 | Hanschitz | Jan 1967 | A |
4738542 | Hung | Apr 1988 | A |
4884245 | McIntosh et al. | Nov 1989 | A |
5094542 | Engels et al. | Mar 1992 | A |
5368390 | Gambrill et al. | Nov 1994 | A |
5478149 | Quigg | Dec 1995 | A |
7172334 | Chiappetta | Feb 2007 | B2 |
20050276158 | Thomas | Dec 2005 | A1 |
20060245298 | Jagle | Nov 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070286018 A1 | Dec 2007 | US |