Exemplary embodiments relate to a mounting device for mounting at least one active electronic module to a structure.
Mounting devices may be used to mount one or more modules to a structure.
Exemplary embodiments relate to a mounting device for mounting at least one active electronic module to a structure, wherein said mounting device comprises a non-planar mounting surface to which said electronic module can be mounted, and at least one heatsink configured to transfer thermal energy from said mounting device to a surrounding medium. This advantageously enables to control a temperature of said at least one active electronic module, particular enabling an efficient cooling of said at least one active electronic module.
According to further exemplary embodiments, said active electronic module does not comprise an own heatsink. Rather, a substantial amount of thermal energy dissipated by said active electronic module may be transferred to the mounting device according to the embodiments by means of said mounting surface of the mounting device. In these embodiments, the electronic module may comprise a particularly lightweight design as no heatsink is required to be provided at the module itself.
According to further exemplary embodiments, said active electronic module may comprise an own heatsink. In these cases, too, a substantial amount of thermal energy dissipated by said active electronic module may be transferred to the mounting device according to the embodiments via said mounting surface.
According to further exemplary embodiments, said active electronic module comprises at least one active electronic element which at least in some operational states may dissipate heat when being supplied with electrical energy, and which may e.g. comprise at least one of: a radio device, e.g., an active antenna (AA) module, a active-passive antenna (APA) module, an amplifier, particularly for radio frequency, RF, signals, (massive) MIMO (multi-input multi-output) antenna panel.
According to further exemplary embodiments, said mounting surface of the mounting device enables a transfer of thermal energy from said electronic module to said mounting device.
According to further exemplary embodiments, said mounting surface comprises corrugations, which advantageously increases an effective surface for enabling a transfer of heat energy from the electronic module to said mounting device.
According to further exemplary embodiments, at least some of said corrugations have a cross-section which is at least partly polygonal, particularly trapezoidal, or sinusoidal. According to further exemplary embodiments, the electronic module may comprise a contact surface that comprises a shape which is complementary to the mounting surface, e.g. the corrugations, to optimize a transfer of heat energy.
According to further exemplary embodiments, said mounting surface is configured to form at least one of: a) a dovetail joint, and/or b) a mortise and tenon joint with a contact surface of said electronic module. According to further exemplary embodiments, other low mechanical tolerance fixture designs are also possible.
According to further exemplary embodiments, an actual surface of said mounting surface is larger than a projection of said mounting surface to any arbitrary virtual plane.
According to further exemplary embodiments, said mounting device comprises a main body and at least one mounting element that comprises said mounting surface.
According to further exemplary embodiments, said at least one mounting element is movably attached to said main body, which may facilitate installation of an electronic module to said mounting element.
According to further exemplary embodiments, more than one mounting element may be provided, and one or more of said mounting elements may be movably attached to said main body.
According to further exemplary embodiments, said mounting device comprises at least one sliding rail that connects said at least one mounting element to said main body.
According to further exemplary embodiments, at least a part of said mounting surface has a surface roughness of 6.3 μm (micrometer) or less, e.g. about 0.8 μm.
According to further exemplary embodiments, said mounting surface has a thermal conductance of about 200 to about 300 W/m*K (watts per meter kelvin).
Further exemplary embodiments relate to a system comprising a mounting device according to the embodiments and at least one active electronic module, wherein said active electronic module has a contact surface for attachment to said non-planar mounting surface of said mounting device, wherein said contact surface comprises a shape which is complementary to said non-planar mounting surface.
Further exemplary embodiments relate to a use of at least one mounting device according to the embodiments for a) mounting at least one active electronic module to a structure and/or for b) cooling said at least one active electronic module, wherein preferably the mounting element advantageously enables simultaneous mounting and cooling of said at least one active electronic module.
Further exemplary embodiments relate to an active electronic module for use with a mounting device according to the embodiments, wherein said electronic module comprises a non-planar contact surface configured to make thermally conductive contact with said non-planar mounting surface of said mounting device.
Some exemplary embodiments will now be described with reference to the accompanying drawings.
According to exemplary embodiments, said mounting device 100 is used for mounting at least one active electronic module 200 to a structure 300, such as a building or an antenna mast or the like. Said mounting device 100 comprises a non-planar mounting surface 110 to which said electronic module 200 can be mounted, and at least one heatsink 120 configured to transfer thermal energy TE from said mounting device 100 to a surrounding medium M, e.g. air. This advantageously enables to control a temperature of said at least one active electronic module 200, particular enabling an efficient cooling of said at least one active electronic module 200.
An exemplary flow of thermal energy from said electronic module 200 to said mounting device 100 according to further exemplary embodiments is symbolized by block arrow A1 of
According to further exemplary embodiments, said mounting device 100 comprises a at least one fixing device 101 for securing said mounting device 100 (together with the attached electronic module 200, cf.
According to further exemplary embodiments, due to the non-planar mounting surface 110, a particularly efficient transfer of heat energy from said electronic module 200 to said mounting device 100 is enabled via a non-planar contact surface 210 (
According to further exemplary embodiments, said active electronic module 200 does not comprise an own heatsink. Rather, a substantial amount of thermal energy dissipated by said active electronic module 200 may be transferred to the mounting device 100 according to the embodiments by means of said mounting surface 110 of the mounting device 100. In these embodiments, the electronic module 200 may comprise a particularly lightweight design as no heatsink is required to be provided at the module 200 itself, which facilitates mounting of said module 200 to the structure 300.
According to further exemplary embodiments, said active electronic module 200 may comprise an own heatsink (not shown). In these cases, too, a substantial amount of thermal energy dissipated by said active electronic module 200 may be transferred to the mounting device 100 according to the embodiments via said mounting surface 110.
According to further exemplary embodiments, said active electronic module 200 comprises at least one active electronic element (not shown) which at least in some operational states may dissipate heat when being supplied with electrical energy, and which may e.g. comprise at least one of: a radio device, e.g., an active antenna (AA) module, a active-passive antenna (APA) module, an amplifier, particularly for radio frequency, RF, signals, (massive) MIMO (multi-input multi-output) antenna panel.
According to further exemplary embodiments, said mounting surface 110 comprises corrugations 111, cf. the schematic bottom view of
According to further exemplary embodiments, at least some of said corrugations 111 have a cross-section which is sinusoidal or at least basically sinusoidal or similar to a sinusoidal shape.
According to further exemplary embodiments 100a, cf. the bottom view of
According to further exemplary embodiments, the electronic module 200 may comprise a contact surface 210 (
According to further exemplary embodiments, an actual surface of said mounting surface 110 is larger than a projection of said mounting surface to any arbitrary virtual plane, which virtual plane may comprise an arbitrary spatial orientation with respect to said mounting surface. E.g., when considering a front view (not shown) of the mounting surface 110, which may exemplarily have a basically rectangular contour with a width W and a height H, a projection of said mounting surface 110 in the sense of said front view would correspond in size to an area A of A=W*H, whereas due to said non-planar shape, e.g. the corrugations 111, an actual surface that may actively be used for heat transfer between elements 200, 100 may, according to further exemplary embodiments, be considerably greater than said area A.
According to further exemplary embodiments, cf. the side view of
According to further exemplary embodiments, said at least one mounting element 104 is movably attached to said main body 102, which may facilitate installation of an electronic module to said mounting element.
In this respect,
Presently, said mounting device 100c comprises at least one sliding rail 106 (two sliding rails 106 are exemplarily depicted by
Presently, one further (active) module 200b is also attached to the mounting device 100c. According to further exemplary embodiments, the module 200a may be an active passive antenna (APA) module, and the module 200b may be a fully passive antenna module.
According to further exemplary embodiments, said further module 200b may be similarly attached to the main body 102, i.e. using a mounting element with sliding rail(s) 106 (not shown). According to further exemplary embodiments, said further module 200b may be directly attached to the main body 102 and/or to a further mounting element (not shown) with a non-planar mounting surface 110 (
According to further exemplary embodiments at least one of said modules 200a, 200b may comprise respective connectors 200a′, 200b′, e.g. electrical (and/or electro-optical or other types of hybrid) connectors (e.g., blind mate connectors, especially blind mate RF connectors) in opposing axial end sections of said modules 200a, 200b such that they may be mated by the sliding action of mounting element 104 as explained above with reference to
According to further exemplary embodiments, more than one mounting element 104 (
According to further exemplary embodiments, cf. the perspective view of the mounting device 100d of
According to further exemplary embodiments, a mortise and tenon joint (not shown) may also be provided for said heat transfer surfaces 110, 210. According to further exemplary embodiments, other low mechanical tolerance fixture designs are also possible for providing said heat transfer surfaces 110, 210.
According to further exemplary embodiments, at least a part of said mounting surface 110 (
According to further exemplary embodiments, said mounting surface 110 has a thermal conductance of about 200 to about 300 W/m*K (watts per meter kelvin).
Further exemplary embodiments relate to a system 1000 (
Further exemplary embodiments relate to a use of at least one mounting device 100, 100a, 100b, 100c, 100d according to the embodiments for a) mounting at least one active electronic module 200, 200a, 200b to a structure 300 and/or for b) cooling said at least one active electronic module 200, 200a, 200b, wherein preferably the mounting element advantageously enables simultaneous mounting and cooling of said at least one active electronic module.
Further exemplary embodiments relate to an active electronic module 200 (
In the following, further exemplary embodiments, effects and advantages are disclosed.
According to further exemplary embodiments, a heat dissipation capability of active antenna modules 200 may be improved using the mounting device according to the embodiments.
According to further exemplary embodiments, a weight of active antenna modules 200 may be reduced, as they do not require own heatsink(s) or substantially smaller heatsink(s) when being attached to the mounting device according to the embodiments, whereby an installation in the field is simplified, as the overall weight—compared to conventional systems—of the system 1000 (
According to further exemplary embodiments, the modules 200 may comprise or represent active antennas (AA) and/or active-passive antennas (APA), e.g. related to sub 6 GHz 5G massive MIMO technologies.
According to further exemplary embodiments, for AA integrating for instance massive MIMO antenna panels having 8×12 dual-polarized “3.5 GHz” radiating elements, the antenna panel dimensions may be in the range of about 45 cm (width)×75 cm (length)×5 cm (depth). According to further exemplary embodiments, at the back of such radiating panels may be placed different layers of active, i.e. electronic/electric devices, that may lead to a thickness of about 5 cm to 10 cm. At the back of these electronic/electric layers a heatsink may be placed, but, according to further exemplary embodiments, said heatsink may also be replaced by a contact surface 210 for transfer of heat energy to a mounting module 100 (
According to further exemplary embodiments, the module 200 may also comprise or represent a remote radio head, RRH, and/or other active elements that represent sources of thermal energy.
The principle according to the embodiments facilitates installation of active modules in the field, e.g. comprising transporting such modules on site (for example to carry them up to a roof via a stairway to reach the antenna mast 300 (
According to further exemplary embodiments, e.g. during an installation phase of the module 200 at the mounting device 100, heat transfer between those elements 200, 100 may be further improved by the use of “thermal paste” (e.g., a highly thermally conductive substance) placed within the module 200 and the mounting surface 110. E.g., in some embodiments, thermal paste may be applied to at least one of said surfaces 110, 210.
Number | Date | Country | Kind |
---|---|---|---|
19157715.4 | Feb 2019 | EP | regional |