Moving microdroplets in a microfluidic device

Information

  • Patent Grant
  • 8703069
  • Patent Number
    8,703,069
  • Date Filed
    Friday, September 14, 2012
    12 years ago
  • Date Issued
    Tuesday, April 22, 2014
    11 years ago
Abstract
This disclosure provides systems, methods, and devices for processing samples on a microfluidic device. One method includes moving a sample from an upstream channel of a microfluidic device into a DNA manipulation module located downstream of the upstream channel. The DNA manipulation module includes a DNA manipulation zone configured to perform amplification of the sample, a first valve disposed upstream of the DNA manipulation zone, and a second valve disposed downstream of the DNA manipulation zone. The method also includes receiving the sample in the DNA manipulation zone; closing the first valve and the second valve such that as and liquid are prevented from flowing into or out of the DNA manipulation zone; and thermal cycling the sample in the DNA manipulation zone.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to methods and systems for processing samples using microfluidic systems. More particularly, the invention relates to moving fluid samples within a microfluidic system. Description of the Related Art


2. Background


Microfluidic devices are typically formed of substrates (made of silicon, glass, ceramic, plastic and/or quartz) which include a network of micro-channels through which fluid flows under the control of a propulsion mechanism. The micro channels typically have at least one dimension which is on the order of nanometers to hundreds of microns.


Microfluidic devices process minute amounts of fluid sample to determine the physical and chemical properties of the sample. Microfluidic devices offer several advantages over a traditional macro-scale instrumentation. For example, in general, they require substantially smaller fluid samples, use far less reagent, and process these fluids at substantially greater speeds than macro-scale equipment.


Electric fields are used as a propulsion mechanism for some microfluidic devices. In such devices, a high voltage, on the order of kilovolts, is applied across electrodes within the device to thereby generate an electric field in the micro channels. The field imposes a force on ions within the fluid, thereby propelling the ions through the micro channel. The fluid itself may also be propelled by the motion of ions moving within the fluid.


Gas pressure is also used to propel fluid through micro channels. In some devices, a source of pressurized gas, external to the microfluidic device, is connected to the microfluidic device to supply a gas pressure, which propels the fluid. Gas pressure may also be generated by a heated chamber within the microfluidic device itself to propagate fluid within a micro channel.


SUMMARY OF THE INVENTION

In general, the invention relates to a system and method for moving samples, such as fluids, within a microfluidic system. In one aspect, the invention relates to the use of a plurality of gas actuators for applying pressure at different locations within the microfluidic system to thereby supply force for moving samples. For example, in one embodiment, a first gas actuator provides a gas pressure sufficient to move a first sample from a first location to a second location of the microfluidic device. A second gas actuator provides a gas pressure to move another sample from a third location to a fourth location of the microfluidic device.


In another example, a plurality of gas actuators cooperate to move the same fluid sample. A first gas actuator provides a gas pressure sufficient to move the microdroplet between first and second processing zones of the microfluidic device, and a second gas actuator provides a gas pressure to move the microdroplet to a third processing zone.


In preferred embodiments, the plurality of actuators are integral with a microfluidic network through which the microfluidic samples flow. For example, a plurality of gas actuators can be fabricated in the same substrate which forms the microfluidic network. One such gas actuator is coupled to the network at a first location for providing gas pressure to move a microfluidic sample within the network. Another gas actuator is coupled to the network at a second location for providing gas pressure to further move at least a portion of the microfluidic sample within the network.


In other aspect, the invention relates to the use of valves with the plurality of actuators. For example, in one embodiment, a valve is coupled to a microfluidic network so that, when the valve is closed, it substantially isolates the second gas actuator from the first gas actuator. Such valves can control the direction of the propulsive force of the actuatators by preventing the expanding gas from traveling in certain directions, while permitting it to expand in the desired direction. They also extend the range over which an actuator can propel a microdroplet, by preventing the gas from dissipating in certain in areas upstream from the microdroplet.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described below in reference to the following drawings, in which:



FIG. 1 shows a microfluidic system according to the invention;



FIG. 2 shows an expanded view of a microfluidic device.



FIG. 3 shows a schematic of a microfluidic device of the microfluidic system of FIG.



FIG. 4 shows a top view of the microfluidic device of FIG. 3;



FIG. 5 shows a partial cross-sectional view of the microfluidic device of FIG. 4;



FIG. 6 shows a partial cross-sectional view of an upper substrate from the microfluidic device of FIG. 2;



FIG. 7 shows a second partial cross-sectional view of an upper substrate from the microfluidic device of FIG. 2;



FIG. 8
a shows a top view of a microdroplet preparation zone of the microfluidic device of FIG. 4 before preparation of a microdroplet;



FIG. 8
b shows cross sectional view of the microdroplet preparation zone of FIG. 8a;



FIG. 9
a shows a top view of a microdroplet preparation zone of the microfluidic device of FIG. 4 after preparation of a microdroplet;



FIG. 9
b shows a cross sectional side view of the microdroplet preparation zone of FIG. 9a;



FIGS. 10
a-10c show cross sectional side views of a capillary assisted fluid barrier of the present invention;



FIGS. 11
a-11c show top views of a fluid barrier comprising a vent;



FIGS. 12
a and 12b show top views of the lysing module of the microfluidic device of FIG. 4, before and after preparation of a lysed sample;



FIGS. 13
a and 13b show a second embodiment of a lysing module of the invention;



FIG. 14 shows a pulsing circuit associated with the lysing module of FIG. 4; and



FIGS. 15
a-15c show a second microdroplet preparation module of the invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention relates to microfluidic systems and methods for processing materials, such as samples and reagents. More specifically, the invention relates to microfluidic systems and methods for moving fluids within a microfluidic system. In the embodiment described below, the fluid includes particles which tend to move with the fluid. The fluid component of the particle-containing fluid is a gas or, preferably, a liquid. The particles of the particle-containing fluid are preferably whole cells, such as bacterial cells or cells of an animal, such as a human. However, they may include intracellular material from such cells. For example, a system of the invention may be used to process a sample of bacterial cells to determine whether the bacteria are pathogenic.


A. System Overview



FIG. 1 depicts a microfluidic system 100 that includes a microfluidic device 110 and corresponding cartridge 120, which receive one or more fluid samples and process the samples under the control of computer 127 and data acquisition and control board (DAQ) 126.


Computer 127 preferably performs high level functions, such as supplying a user interface that allows a user to select desired operations, notifying the DAQ 126 as to the selected operations, and displaying for the user the results of such operations. These operations include, for example, subjecting a sample to process steps within the various process zones of the microfluidic device. The computer 127 may be a portable computer to facilitate transport of the microfluidic system.


Computer 127 is connected to DAQ 126 via connection 128, which provides data I/O, power, ground, reset, and other functional connectivity. Alternatively, a wireless link 132 between the computer 127 and the DAQ 126 may be provided for data and control signal exchange via wireless elements 132(a) and 132(b). Where the data link is a wireless link, for example, the DAQ 126 may have separate power source, such as a battery.


In general, DAQ 126 controls the operation of microfluidic device 110 in accordance with the high level instructions received from computer 127. More specifically, to implement a desired operation requested by computer 127, DAQ 126 supplies the appropriate electrical control signals to cartridge 120 via contacts 125.


Cartridge 120 provides electrical and optical connections 121 for electrical and optical signals between the DAQ 126 and the microfluidic substrate 110, thereby allowing DAQ 126 to control the operation of the substrate.


The chip carrier cartridge 120 is shown being inserted into (or removed from) an interface hardware receptacle of the DAQ 126 having electrical and optical contacts 125 standardized to mate with a corresponding contacts 121 of the chip carrier cartridge 120. Most contacts are for electrical signals, while certain ones are for optical signals (IR, visible, UV, etc.) in the case of optically-monitored or optically-excited microfluidic processors. Alternatively (not shown), the entire DAQ 126 may be a single ASIC chip that is incorporated into the Chip Carrier Cartridge 120, wherein contacts 121,125 would become conductive pathways on a printed circuit board.


B. Microfluidic Device



FIG. 2 illustrates the general structure of a preferred type of microfluidic device. The device includes an upper substrate 130, which is bonded to a lower substrate 132 to form a fluid network.


The upper substrate 130 depicted in FIG. 2 is preferably formed of glass and has a microfluidic network 134 in its bottom surface 136. Those skilled in the art will recognize that substrates composed of silicon, glass, ceramic, plastic, and/or quartz are all acceptable in the context of the present invention.


The microfluidic network includes a plurality of zones. The number of zones, as well as the overall topology of the microfluidic network, will depend upon the particular application which the microfluidic device is designed to perform. The zones of the microfluidic device may have any cross-sectional shape, such as generally arcuate or generally polygonal. For example, a zone may include channels, chambers or other substantially enclosed spaces. By “substantially enclosed” it is meant that materials enter or exit the zones only through predetermined pathways. Examples of such pathways include channels, microchannels and the like, which interconnect the various zones. The zones preferably have at least one micro-scale dimension, such as less than about 250 μm or, more preferably, less than about 75 μm.


The channels and chambers of the microfluidic network are etched in the bottom surface 136 of the upper substrate 130 using known photolithographic techniques. More specifically, transparent templates or masks containing opaque designs are used to photo-define objects on the surface of the substrate. The patterns on the templates are generated with computer-aided-design programs and can delineate structures with line-widths of less than one micron. Once a template is generated, it can be used almost indefinitely to produce identical replicate structures. Consequently, even extremely complex microfluidic networks can be reproduced in mass quantities and at low incremental unit cost. Alternatively, if a plastic material is used, the upper substrate may be formed using injection molding techniques, wherein the micro-channels are formed during the molding process.


The lower substrate 132 may include a glass base 138 and an oxide layer 140. Within oxide layer 140, resistive heaters 142 and electric leads 144 are formed using photo-lithographic techniques. The leads 144 connect to terminals 146 which are exposed at the edge of the substrate to penult electrical connection to cartridge 120, thereby permitting DAQ 126 to control the heaters. More specifically, to activate a heater 142, DAQ 126 applies a voltage across a pair of terminals 146 (via cartridge 120) to supply current through leads 146 and heater 142, thereby heating the resistive heater element 142.


Metal heater elements 142 are positioned so that, when the upper and lower substrates are bonded together, the heaters reside directly beneath certain regions of the fluid network of the upper substrate so as to be able to heat the contents of these regions. The silicon oxide layer 140 prevents the heating elements 142 from directly contacting with material in the microfluidic network.


The oxide layer 140, heating elements 142, and resistive leads 144 are fabricated using well-known photolithographic techniques, such as those used to etch microfluidic network.



FIG. 3 illustrates a top-down view of microfluidic device 110. As shown, the substrate has a sample input module 150 and reagent input module 152 to allow sample and reagent materials, respectively, to be input to device 110. Preferably, input modules 150, 152 are disposed to allow automatic material input using a computer controlled laboratory robot 154.


The substrate also includes process modules 156, 158, 160, 166 and 162 for processing the sample and reagent materials. Within these process modules, a sample may be subjected to various physical and chemical process steps. For example, enrichment module 156 prepares a fluid sample having a relatively high concentration of cell particles, lysing module 160 releases intracellular material from the cell particles, and mixing module 166 mixes the resultant sample with certain reagents. As another example, an amplification process module 162 may be used to amplify and detect minute quantities of DNA within a sample.


Various modules of microfluidic device 110 are connected, such as by channels 164, to allow materials to be moved from one location to another within the device 110. Actuators 168, 170, 172 associated with the microfluidic device provide a motive force, such as a gas pressure, to move the sample and reagent material along the channels and zones. For example, a first actuator 168 moves material downstream from process module 156 to process module 158. Upon completion of processing within process module 158, a second actuator 170 moves material downstream to mixing process module 160. Subsequently, actuator 170 or an additional actuator moves the material to mixing module 166, where the material mixes with a reagent moved by actuator 172. Finally, actuator 172, or another actuator, moves the mixed material to module 162.


Because each actuator is preferably responsible for moving materials within only a subset of the modules of device 110, sample materials can be controlled more precisely than if a single actuator were responsible for moving material throughout the entire device. The various functional elements, of microfluidic device 110, including the actuators, are preferably under computer control to allow automatic sample processing and analysis.


C. Multiple Actuators


The various actuators of microfluidic device 110 cooperate to move material between different locations of microfluidic device 110. For example, actuator 168 moves material, such as an enriched sample, between an enrichment zone 931 and a microdroplet preparation module 158. Actuator 170 prepares a microdroplet from the enriched sample and, in so doing, moves the microdroplet to a lysing zone 950. Actuator 170 is used to move material from the lysing zone 950 to mixing module 166. It should be noted, however, that another actuator may be disposed intermediate between lysing zone 950 and microdroplet preparation zone to move the lysed sample downstream to the mixing module 166.


Actuators of device 110 may also cooperate in moving two amounts of material simultaneously. For example, as described above, actuator 172 and actuator 170 cooperate to mix reagent and lysed microdroplets. Such cooperative actuators can be controlled independently of one another to ensure proper mixing. For example, if one material is known to be more viscous, the motive force moving that material can be increased independently of the motive force moving the other material.


The multiple actuators and modules of microfluidic device 110 are preferably operatively connectable and isolatable by the valves of microfluidic device. For example, a closed state of either of valves 915, 216 operatively isolates microdroplet preparation module 170 from enrichment module 156. Thus, one or more actuators can be used to move materials between predetermined locations within microfluidic device 110, without perturbing or contacting material present in an operatively isolated module. The ability to operatively connect and isolate desired modules is advantageous in microfluidic devices having many process functions. Further, these valves also control the direction of the propulsive force of the actuatators by preventing the expanding gas from traveling in certain directions, while permitting it to expand in the desired direction. This also extends the range over which an actuator can propel a microdroplet, by preventing the gas from dissipating in certain in areas upstream from the microdroplet.


The following demonstrates the cooperative operation of such multiple actuators in an example embodiment having a plurality of processing modules, namely an enrichment zone 915, a microdroplet preparation module 158, a cell lysing module 160, a mixing module 166 and a DNA manipulation module 167.


1. Enrichment Module


a. Structure of Enrichment Module.


Referring to FIGS. 4 and 5, a microfluidic device 9.sctn.01 includes an enrichment module 156 for concentrating samples received therein. These samples include particle-containing fluids, such as bacterial cell-containing fluids. In general, enrichment module 156 receives a flow of particle-containing fluid from an input port 180 of input module 150, and allows the fluid to pass through the zone while accumulating particles within the zone. Thus, as more fluid flows through the zone, the particle concentration increases within the module. The resultant concentrated fluid sample is referred to herein as an enriched particle sample.


The enrichment module includes an enrichment zone 931 (FIG. 5), a flow through member 900, valves 915, 919, and sample introduction channel 929. Valve 919 is connected between the flow through member 900 and actuator 168 as shown, and valve 915 is connected between the flow through member and a down stream channel 937 which leads to process module 158. These valves may be of any type suitable for use in a microfluidic device, such as thermally actuated valves, as discussed in co-pending application Ser. No. 09/953,921, filed Sep. 9, 2001. The valves may be reversible between the open and closed states to allow reuse of enrichment module 931.


The flow through member is also connected to the sample input module 150 via the sample introduction channel 929 to allow fluid to flow into the enrichment zone. Valve 913 is connected to this sample introduction channel to control the in-flow and out-flow of fluid from the input port.



FIG. 5 is a cross-sectional view of the enrichment zone which shows the flow through member in greater detail. As shown, flow through member 900 has first and second surfaces 941, 943. First surface 941 is preferably adjacent enrichment chamber 931. Second surface 941 is preferably spaced apart from the enrichment chamber 931 by flow through member 900. Flow through member 900 is preferably formed of a material having pathways smaller than the diameter of the particles to be enriched, such as pores of less than about 2 microns in diameter, for example, about 0.45 microns. Suitable materials for constructing flow through member 900 include, for example, filter media such as paper or textiles, polymers having a network of pathways, and glassy materials, such as glass frits.



FIGS. 6 and 7 depict cross sectional views of upper substrate 130 that illustrate an enrichment zone 931. As shown, fluid exits enrichment zone 931 through surface 941, passes through member 900 and enters a space 400. Space 400 may include an absorbent material 402 to absorb the exiting fluid. Thus, space 400 preferably provides a substantially self-contained region in which fluid exiting the enrichment zone can collect without contacting exterior portions of the microfluidic system 100.


Space 400 is formed during the fabrication of upper substrate 130. As discussed above, microfluidic features, such as zones and channels, are fabricated at surface 136 of substrate 130. Space 400, however, is fabricated at a surface 137, which is preferably disposed on the other side of substrate 130, opposite surface 136. Thus, even when surface 136 is mated with lower substrate 132, fluid can exit enrichment zone 931 via flow through member 900.


Flow through member 900 and absorbent material 402 do not require adhesives or other fasteners for positioning within substrate 130. Rather flow through member 900 and absorbent material 402 may be formed of a shape and size that substantially corresponds to space 400. Friction then holds flow through member 900 and absorbent material 402 in place once they are positioned in space 400. Any residual gap at locations 404 between flow through member 900 and substrate 130 should be small enough to prevent particles from exiting enrichment zone 931 through the gap 404. Naturally, adhesive or other fastening means may be used to secure flow through member 900 or absorbent material 402.


In an alternative embodiment, a flow through member is formed integrally with a substrate by using microfabrication techniques, such as chemical etching, that introduce pores or other pathways into the substrate. The pores provide fluid passage between enrichment zone 931 and an outer portion of the substrate.


b. Operation of Enrichment Module


To enrich a sample, the device 901 operates as follows. Referring to FIG. 4, valves 915, 919 are initially closed, and valve 913 is open. A particle-containing fluid is introduced into input port 180. Since valve 913 is open, it allows the sample to pass along channel 929 into enrichment zone 931. Alternatively, enrichment zone 931 can be configured to receive samples directly, such as by injection. Since valves 915 and 919 are closed, fluid is substantially prevented from escaping into actuator 977 and downstream channel 937.


Thus, flow through member 900 provides the only path for fluid to exit the enrichment channel. Fluid passes through surface 941 and exits enrichment zone 931 via second surface 943, while particles accumulate within the zone. Enrichment zone 931 can therefore receive a volume of fluid that is larger than the volume of the enrichment chamber 931. Thus, as fluid flows through the chamber, the concentration of particles within the chamber increases relative to the concentration in the particle-containing fluid supplied at the sample input. Where the particles are cells, the concentration or number of cells in zone 931 preferably becomes great enough to perform a polymerase chain reaction (PCR) analysis of polynucleotides released from the cells in a downstream processing module.


Enrichment zone 931 thus prepares an enriched particle sample from particles of particle-containing fluids received therein. The enriched particle sample has a substantially higher ratio of particles per volume of fluid (PPVF) than the corresponding ratio of the particle-containing fluid received by the enrichment zone. The PPVF of the enriched particle sample is preferably at least about 25 times, preferably about 250 times, more preferably about 1,000 times greater than the PPVF of the particle-containing fluid.


After a sufficient volume of particle containing fluid has been received by enrichment zone 931, valve 913 is closed thereby blocking further flow of fluid into the enrichment zone, and preventing material in zone 931 from returning to the sample introduction port 180. Valves 915, 919 are then opened, preferably upon actuating heat sources associated therewith. When opened, valve 919 allows actuator 168 to push enriched sample, and valve 915 allows the enriched sample to move downstream.


Actuator 168 provides a motive force that moves the enriched particle sample from enrichment zone 931. Actuator 168 is preferably a gas actuator, which provides a gas pressure upon actuation of a heat source 975, which is in thermal communication with a volume of gas 977. Actuation of heat source 975 raises the temperature and, therefore the pressure, of gas 977. The flow through member and the fluid therein substantially prevents gas from escaping the enrichment zone. Thus, the resulting gas pressure moves the enriched particle sample downstream from the enrichment zone 931.


The gas actuator may include elements to facilitate alternative pressure generation techniques such as chemical pressure generation. In another embodiment, the actuator may decrease a volume of gas associated with an upstream portion of the enrichment zone to thereby create a pressure differential across the sample that moves the sample from the enrichment zone. An example of such an element is a mechanical actuator, such as a plunger or diagram.


Rather than generating a positive pressure upstream from the enrichment zone, the gas actuator may decrease a pressure downstream from the zone relative to a pressure upstream. For example, the gas actuator may include a cooling element in thermal contact with a volume of gas associated with a downstream portion of the zone. Contraction of the gas upon actuating the cooling element creates a gas pressure difference between the upstream and downstream portions of the enrichment zone to move the enriched particle sample from the enrichment zone. Alternatively, a mechanical actuator may be used increase a volume of gas associated with a downstream portion of the enrichment zone to thereby decrease the pressure of the gas and move the enriched particle sample from the enrichment zone.


The enriched particle sample is preferably moved downstream with essentially no dilution thereof, i.e., the concentration of the enriched particles is not substantially decreased upon movement from the enrichment zone 931. Thus, removal of particles from the enrichment channel of the present invention does not require diluting or otherwise contacting the particles with a fluid different from the fluid of the particle-containing fluid introduced to the enrichment channel. In contrast, in systems that concentrate substances by surface adsorption, removal of the adsorbed substances requires an elution fluid, which contacts and thereby dilutes the substances.


Upon removal from the enrichment zone of the present invention, the enriched particle sample is preferably received by downstream channel 937. Downstream channel 937 leads to other processing modules, which perform further processing of the enriched particle sample. In the embodiment of FIG. 3, the enriched particle sample is received by a microdroplet preparation module 158, which prepares a microdroplet sample comprising a portion of the enriched particle sample.


2. Microdroplet Preparation Module


a. Characteristics of a Microdroplet


A microdroplet 802 is a discrete sample having a predetermined volume between, for example, about 1.0 picoliter and about 0.5 microliters. Thus, microdroplets prepared by microdroplet preparation module provide a known amount of sample for further processing. The volume of the microdroplet prepared by the microdroplet preparation module is preferably essentially independent of the viscosity, electrical conductivity, and osmotic strength of the fluid of the microdroplet.


Microdroplet 802 is preferably defined by upstream and downstream boundaries each formed by a respective gas liquid interface 804, 806. The liquid of the interface is formed by a surface of a liquid forming the microdroplet. The gas of the interface is gas present in the channels microfluidic of microfluidic device 901.


b. Structure and Operation of the Microdroplet Preparation Module


Referring to FIGS. 8a-8b and 9a-9b, microdroplet preparation module 158 prepares a microdroplet 802 from a microfluidic sample received therein. This module includes a microdroplet preparation zone 800, a positioning element 979, a gas actuator 170, and a valve 216 which cooperate to prepare microdroplet 800 from microfluidic samples received from the enrichment zone.


As explained above, actuator 168 of the enriched zone pushes the enriched sample into the microdroplet preparation zone 800. The enriched sample moves until reaching positioning element 979. In general, a positioning element inhibits the downstream progress of a microfluidic sample to thereby position the sample at a desired location. However, as explained more fully below, the positioning element does not permanently inhibit progress of the sample. Rather, it allows the microfluidic sample to continue downstream at a predetermined later time.


The leading edge of microfluidic sample 808 that reaches positioning element 979 is positioned downstream from an opening 820 of gas actuator 170. Accordingly, a first portion 821 of microfluidic sample 808 is disposed upstream from opening 820 and a second portion 822 of microfluidic sample 808 is disposed downstream from opening 820.


Referring to FIGS. 8a-8b, gas actuator 170 is actuated, such as by DAQ 126, to thereby generate a gas pressure sufficient to separate microdroplet 802 from the second portion 822 of microfluidic sample 808. The gas pressure is preferably provided by the actuation of a heat source 958, which heats a volume of gas associated with gas actuator 957. As the pressure increases, the gas expands, thereby separating a microdroplet 802 from the rest of sample 808. Microdroplet 802 may comprise only a portion, such as less than about 75%, or less than about 50%, of microfluidic sample 808 received by microdroplet preparation zone 800. The dimensions of microdroplet 802 are determined by the volume of the channel between fluid barrier 979 and opening 820. For example, for a channel having a uniform cross-sectional area, a length 1.sub.1 of microdroplet 802 corresponds to a distance d.sub.4 between positioning element 979 and opening 820. Thus, a microfluidic device can be configured to prepare microdroplets of any volume by varying the length between the fluid barrier and corresponding actuator opening.


Continued actuation of gas actuator 170 overcomes the inhibitory effect of positioning element 979, thereby driving microdroplet 802 to a location downstream of microdroplet preparation zone 800 while the second portion 822 of the microfluidics sample moves upstream from microdroplet 802 to cell lysis module 160.


3. Cell Lysis Module


Referring back to FIG. 3, a lysing module 160 receives the microdroplet 802 prepared by microdroplet preparation zone 800. In general, lysing module 160 releases material from inside the particles, such as by releasing intracellular material from cells.


As shown in FIGS. 4 and 12, lysing module 160 includes a lysing zone 950, a lysing mechanism within the lysing zone (such as electrodes 954), and a vented positioning element 200 positioned upstream from the lysing zone. The lysing mechanism preferably includes a set of electrodes or other structures for generating electric fields within the lysing zone. The vented positioning element preferably includes a vent 202, a valve 204, and a second positioning element 206 for inhibiting fluid from flowing into the vent.


As explained above, actuator 170 of the microdroplet preparation module 158 drives a microdroplet into cell lysis module 160. As the microdroplet moves into module 160, vented positioning element 200 positions microdroplet 802 in a lysing position with respect to electrodes 954. More specifically, as the microdroplet arrives in lysing module 160 it passes the opening of positioning element 200, because second positioning element 206 inhibits the microdroplet from flowing into vent 202. When the rear end of the microdroplet passes the opening of barrier 200, the propulsion gas from actuator 170 dissipates through vent 202, thereby substantially equalizing gas pressure upstream of microdroplet 802 with a pressure downstream of microdroplet 802. Thus, the microdroplet stops movement at a lysing position just downstream from barrier 200. Preferably, in the lysing position, substantially all of microdroplet 802 is disposed between an upstream edge 212 and a downstream edge 214 of electrodes 954.


After microdroplet 802 is placed in the cell lysing position, a pulse circuit of DAQ 126 supplies a pulsed voltage signal across electrodes 954. In response, electrodes 954 generate a pulsed electric field in the vicinity of the electrodes. Because the microdroplet is position in this vicinity, cells within the microdroplet are subjected to the pulsed field. Preferably, substantially all of the cells, such as greater than about 75%, of the microdroplet are subjected to an electric field sufficient to release intracellular material therefrom. The lysing module thus prepares a lysed microdroplet comprising a predetermined amount of sample.


A preferred pulse circuit is shown in FIG. 14. In general, this circuit generates a sequence of voltage pulses that yields a corresponding sequence of electrical field pulses in the vicinity of electrodes 954 having an amplitude and duration sufficient to release a desired amount of intracellular material from cells within the microdroplet.


Intracellular material present in lysed microdroplet is accessible to further process steps. For example, DNA and/or RNA released from cells is accessible for amplification by a polymerase chain reaction. As used herein, the term lysing does not require that the cells be completely ruptured. Rather, lysing refers to the release of intracellular material. For example, rather than rupturing the cells, the electric field may increase the porosity of cell membranes by an amount that allows release of intracellular material without permanent rupture of the membranes.


Other lysing mechanisms may also be employed to release intracellular material from cells. For example, material may be released by subjecting cells to other forces including for example osmotic shock or pressure. Chemicals, selected from the group of surfactants, solvents, and antibiotics may be contacted with the cells. Mechanical shear methods may also be used to release intracellular materials.


The lysed microdroplet may be moved downstream to mixing module 160 for further processing. To move lysed microdroplet downstream, valve 216, which is disposed upstream of lysing zone 950, is closed. Valve 204 is also closed to prevent gas from exiting lysing zone 950 via vent. Actuator 170 is then actuated, as described above, to provide a gas pressure sufficient to move lysed microdroplet downstream of lysing zone 950.


In an alternative embodiment, a lysing module 300, as shown in FIGS. 13a, 13b, includes a lysing zone 302 which is configured to prepare a lysed microdroplet 304 of predetermined volume from a microfluidic sample 306, which may have an indeterminate volume. Lysing zone 302 preferably includes a lysing mechanism such as electrodes 308. Electrical leads 310 provide a connection to a pulse circuit of DAQ 126, via contacts 112, chip carrier 120, and contacts 125. A positioning element 312 is disposed downstream of lysing zone 302. An actuator 314 is disposed upstream from lysing zone. Actuator 314 preferably includes a second positioning element 316 to prevent fluid from the microfluidic sample from entering therein.


Lysing zone 302 operates as follows. The microfluidic sample 306 enters lysing zone 302 and moves downstream until a downstream interface 316 of the microfluidic sample 306 encounters positioning element 312. The positioning element 312 preferably increases a surface tension of the downstream interface of the microfluidic sample 306, thereby inhibiting further downstream movement and positioning a portion of the microfluidic sample in a lysing position with respect to electrodes 308. The lysing position is defined as the location of the portion of the microfluidic sample disposed downstream of actuator 314 and upstream of positioning element 312. Preferably, actuator 314 and positioning element 312 are disposed adjacent electrodes 308 such that substantially all of the material present in the lysing position is subjected to the electric field upon actuating electrodes 308.


Actuation of electrodes 308 in the embodiment described above, provides an electrical field sufficient to release intracellular material from cells present in the portion of the microfluidic sample in the lysing position. Once a sufficient amount of intracellular material has been released, actuator 314 is actuated to prepare lysed microdroplet 304 from the microfluidic sample 306. Actuator 314 preferably provides a gas pressure sufficient to move the lysed microdroplet 304 to a downstream portion of a microfluidic device such as mixing module 166.


4. Mixing Module and Reagent Input Module


Referring back to FIG. 4, a lysed sample prepared by lysing module 160 is received by mixing module 166. Mixing module 166 includes a mixing zone 958. In this zone, the lysed cell sample is contacted, such as by mixing, with an amount of reagent received from the reagent source module 152. Reagent source module 152 includes a reagent microdroplet preparation zone (RMPZ) 434, which preferably operates to prepare a microdroplet having a predetermined volume of reagent.


a. Reagent Input Module


Reagent input module 152 is essentially the same as microdroplet formation module 158, however, it is specifically designed for formation of a microdroplet of reagent having a predetermined volume which will yield a desired ratio of reagent to sample when mixed with the microdroplet from cell lysing module 160. Module 152 includes an input port 420, a valve 422, and an actuator 172, each of which joins a reagent source channel 428. An overflow channel 424, which also joins reagents source channel 428, may also be provided. Actuator 172 may include a second positioning element 432 to prevent liquid from entering therein.


Reagent materials, which preferably comprise at least one liquid, are introduced via input port 420, such as with a pipette or syringe. Examples of suitable reagent materials include substances to facilitate further processing of the lysed cell sample, such as enzymes and other materials for amplifying DNA therein by polymerase chain reaction (PCR). The reagent material moves downstream within reagent source channel 428 until a downstream portion of the reagent material contacts a positioning element 426. Any additional reagent material that continues to be received within reagent source module preferably enters overflow channel 424. When the introduction of reagent is complete, valve 422 is closed to prevent reagent from exiting reagent source channel via reagent source port 420.


b. Mixing Module


Mixing zone 958 of the mixing module includes adjoined first and second channels 410, 412. Materials moving downstream toward mixing zone 958 contact one another and preferably mix therein. Because of the micro-scale dimensions of mixing zone 958, the sample and reagent materials preferably mix by diffusion even in the absence of other sources of mass transport, such as mechanical agitation. It should be understood however, that agitation forces, such as acoustic waves may be applied to enhance mixing within mixing zone 958.


c. Operation of Mixing Module and Reagent Input Module


Reagent source module 152 and mixing module 166 preferably operate as follows. When a lysed sample from lysing zone 950 is ready to be mixed with reagent material, actuator 172 is actuated to prepare a microdroplet of reagent. The microdroplet of reagent is prepared from the portion of reagent material downstream of an opening 430 of actuator 172 and upstream of positioning element 427. Thus, assuming that the dimensions of the reagent source channel 428 are constant, the volume of the microdroplet of reagent is determined by the distance between the positioning element 426 and the actuator opening 430.


The microdroplet of reagent moves downstream toward channel 412 of reagent mixing zone. Meanwhile, a sample of lysed material, such as a lysed microdroplet, is moved downstream from lysing zone 950 toward channel 410 of mixing zone 958. Actuator 170 may provide the motive force to move the lysed microdroplet downstream. Alternatively, as discussed above, another actuator may be disposed upstream of lysing zone 950 but downstream of actuator 170 to provide the necessary motive force.


The sample and reagent material enter a downstream channel 438 of mixing zone 958, where the materials contact and mix. Because both the lysed sample and reagent material are mixed in the form of microdroplets, mixing zone 958 prepares an amount of mixed material having a predetermined ratio of sample to reagent. The volumes of microdroplets prepared within microfluidic device 110 are preferably independent of physical properties, such as viscosity, electrical conductivity, and osmotic strength, of the microdroplets. Thus, mixing zone 958 prepares an amount of mixed material having a sample to reagent material that is also independent of the physical and chemical properties of the mixed materials. A vent 440, which is downstream of the various zones of the microfluidic device 110 ensures that downstream pressure buildup does not inhibit downstream movement of samples within microfluidic device 110.


5. DNA Manipulation Module


The mixed lysed cell sample and reagent are received within a DNA manipulation zone 971 of DNA manipulation module 162. Module 162 can perform, for example, restriction, digestion, ligation, hybridization and amplification of DNA material. In one embodiment, DNA manipulation zone 971 is configured to perform PCR amplification of nucleic acids present within the lysed cell sample. Vent 440 prevents pressure from increasing within zone 971 as the lysed cell sample and reagent are being introduced thereto. Valves 972 and 973 of DNA manipulation module 162 may be closed to prevent substances therein zone from exiting, such as by evaporation, during PCR amplification. The DNA manipulation zone is configured with heat sources under control of computer 127 to allow thermal cycling of DNA manipulation zone during amplification, as understood by one of skill in the art.


System 901 includes also includes a detector 981 to detect the presence of amplified polynucleotides produced by PCR. Detector 981 is preferably an optical detector in optical communication, such as by a fiber optic 981, with zone 971. A light source, such as a laser diode, introduces light to DNA Manipulation zone 971 to generate fluorescence indicative of the amount of amplified polynucleotides present therein. The fluorescence arises from fluorescent tags, included in the reagent and associated with the polynucleotides upon amplification.


C. Preferred Positioning Elements


Preferred positioning elements are discussed below.


1. Non-Wetting Positioning Elements


A positioning element 979 may be formed by a non-wetting material disposed to contact a microfluidic sample. The physio-chemical properties of the non-wetting material are chosen upon considering the type of liquid forming the microfluidic sample. For example, where the microfluidic sample is an aqueous sample, the positioning element preferably comprises a hydrophobic material. An exemplary hydrophobic material includes a non-polar organic compound, such as an aliphatic silane, which can be formed by modifying an internal surface of microfluidic device 901. For microfluidic samples formed of organic solvents, the non-wetting material may comprise a hydrophilic material.


When microfluidic sample 808 encounters positioning element 979, the liquid of the microfluidic sample experiences an increased surface tension at downstream interface 810, which increased surface tension inhibits continued downstream motion of microfluidic sample 808. Increasing the gas pressure difference between upstream and downstream portions of the microfluidic sample overcomes the resistance and moves the microfluidic sample downstream.


2. Capillary Assisted Positioning Elements


Referring to FIGS. 10a-10c, another type of positioning element may be formed by modifying the dimensions of the microfluidic channel to form a capillary assisted positioning element (CAFB) 700. A CAFB comprises an upstream feed zone 702, a loading zone 704, and a stop zone 704. A microfluidic sample 720 encountering the CAFB moves downstream until a downstream interface 710 of the microfluidic sample contacts upstream surfaces 714 of the loading zone 706. At this point, capillary action causes the microfluidic sample to move downstream until the downstream sample interface 710 encounters the opening 712 between the loading zone 704 and the stop zone 706. Surface tension resists the tendency of the microfluidic sample to continue downstream past opening 714. Thus, the microfluidic sample 720 is positioned at a predetermined location along the channel axis with respect to positioning element 700.


The volume of the microfluidic sample encountering the CAFB preferably has a larger volume than a volume of the loading zone 704 to ensure that the microfluidic sample will advance fully to opening. For fluids that have similar surface tensions and interface properties as water, the depth d.sub.1 of the loading zone 704 is preferably about 50% or less of the respective depths d.sub.2, d.sub.3 of the stop and feed zones.


The tendency of a microfluidic sample to move in a given direction is governed by the ratio between the mean radius of curvature (MRC) of the front of the microfluidic sample and the MRC of the back of the microfluidic sample. These curvatures depend upon the contact angle of the fluid of the sample and the dimensions of the zone in which the microdroplet is moving. A MRC r.sub.1 of a microdroplet interface in the loading zone is preferably smaller than a MRC r.sub.2 of a droplet interface within the feed zone or a MRC r.sub.3 of a droplet interface within the stop zone. The MRC r.sub.2 is preferably larger than the MRC r.sub.3. Thus, the radius of curvature of the downstream microdroplet interface increases upon encountering the stop zone thereby inhibiting further downstream movement. Preferably, the contact angle of the fluid with the wall is substantially constant throughout the capillary assisted loading zone.


3. Vented Positioning Elements


Referring to FIGS. 11a-11c, a positioning element 500 operates to position a microfluidic sample 502 by reducing the gas pressure acting upon an upstream portion 504 of the microfluidic sample relative to the gas pressure acting upon a downstream portion 506 of the microfluidic sample. Positioning element 500 includes a vent 508 disposed in gaseous communication with a zone 510 along which microfluidic sample 502 moves. Vent 508 preferably communicates with zone 510 via a passage 526. The zone may be for example, a channel or conduit. Positioning element 500 may also include a second positioning element 516, such as a non-wetting material, to substantially prevent fluid from the microfluidic sample from contacting the vent.


An open state of a valve 512 allows passage of gas between zone 510 and vent 508. A closed state of valve 512 prevents such passage of gas. Valve 514 is preferably thermally actuated and includes a mass 514 of TRS.


An actuator 518 is disposed upstream of positioning element 500. Actuator 518 is preferably a gas actuator and may include a heat source 520 to heat a gas associated with actuator 518. Actuator 518 may include a positioning element 522, such as non-wetting material, to substantially prevent fluid from the microfluidic sample from entering therein.


Positioning element 500 preferably operates as follows. Referring to FIG. 11a, microfluidic sample 502 moves downstream in the direction of arrow 524. Microfluidic sample is preferably moved by a gas pressure provided from an upstream actuator, which is not shown in FIGS. 9a-9c. The gas pressure acts upon upstream portion 504.


Referring to FIG. 11b, when upstream portion 504 passes the opening of vent 508, the upstream gas dissipates through vent 508, thereby reducing the upstream pressure. The pressure reduction, which preferably equalizes the downstream and upstream pressures, reduces or eliminates the motive force tending to urge the microfluidic sample downstream.


Referring to FIG. 11c, valve 512 is closed to prevent passage of gas between zone 510 and vent 508. Preferably, TRS 514 moves into passage 526. Upon closing valve 512, the actuation of actuator 518 provides a motive force to move microfluidic sample 502 downstream in the direction of arrow 528 for further processing.


4. Active Fluid Positioning Elements


Referring to FIGS. 15a-15c, a microdroplet preparation module 652 has a microdroplet preparation zone 650, an active fluid positioning element 654, an actuator 656, and a valve 658. A second actuator 660 is operatively associated with the active positioning element 654 to introduce a microfluidic sample 666 to the microdroplet preparation zone 650. Second actuator 660 is preferably located upstream from valve 658. Microdroplet preparation module 652 prepares a microdroplet 668, which has a predetermined volume from the microfluidic sample 666 received therein.


In operation, microfluidic preparation module 652 receives the microfluidic sample 666, which moves downstream because of a motive force provided by the second actuator 660. The motive force is preferably an upstream gas pressure, which is greater than a downstream gas pressure acting upon the microfluidic sample 666. The microfluidic sample moves downstream until a downstream portion 670 thereof encounters active positioning element 654, which preferably comprises a sensor 672 having electrical leads 674. The leads 674 are in electrical communication with I/O pins of the microfluidic device to allow signals from sensor 672 to be received by a DAQ.


Sensing element 672 is preferably a pair of electrical contacts. To sense the presence of the liquid, DAQ 126 applies a small voltage across leads 674 and measures the resultant current. As the liquid of the microfluidic sample contacts the first and second contacts, the current passing therebetween changes, thereby indicating to DAQ 126 that the liquid has arrived at sensor 672.


Upon recognition that the liquid has arrived at sensor 672, the DAQ instructs second actuator 660 to decrease a downstream motive force acting upon the microfluidic sample 666. For example, DAQ may reduce a current flowing through a heat source 676 associated with second actuator 660 thereby reducing a temperature of a gas therein. The temperature reduction reduces the gas pressure acting upon a upstream portion 678 of microfluidic sample thereby inhibiting the downstream motion of the microfluidic sample 666. The microfluidic sample is positioned such that a first portion 680 is located downstream of actuator 656 and a second portion 682 is located upstream of actuator 656.


To prepare microdroplet 668, DAQ 126 actuates actuator to provide a motive force which prepares the microdroplet 668 from the first portion 680 of microfluidic sample 666. Microdroplet 668 moves downstream while the second portion 682 of the microfluidic sample 666 moves upstream from actuator 656. During microdroplet preparation, valve 658 may be closed to substantially isolate the actuator 656 from second actuator 660 and other upstream portions of the microfluidic device.


The active positioning element preferably operates as a closed loop element that provides feedback from sensor 672 to the DAQ. The feedback is indicated when a microfluidic sample has reached a predetermined position within the microfluidic device. Upon receiving the feedback, the DAQ changes the state of the actuator providing the motive force to move the microdroplet.


While the above invention has been described with reference to certain preferred embodiments, it should be kept in mind that the scope of the present invention is not limited to these. Thus, one skilled in the art may find variations of these preferred embodiments which, nevertheless, fall within the spirit of the present invention, whose scope is defined by the claims set forth below.

Claims
  • 1. A method of amplifying a nucleic acid-containing sample within a microfluidic device, the method comprising: moving the sample from an upstream channel of the microfluidic device into a DNA manipulation module located downstream of the upstream channel, the DNA manipulation module including a DNA manipulation zone configured to perform amplification of the sample, a first valve disposed upstream of the DNA manipulation zone, and a second valve disposed downstream of the DNA manipulation zone, the only ingress to and egress from the DNA manipulation zone being through the first valve and the second valve;receiving the sample in the DNA manipulation zone;closing the first valve and the second valve such that gas and liquid are prevented from flowing into or out of the DNA manipulation zone; andthermal cycling the sample in the DNA manipulation zone.
  • 2. The method of claim 1, wherein moving the sample from an upstream channel into the DNA manipulation module comprises actuating a gas actuator.
  • 3. The method of claim 2, wherein actuating the gas actuator comprises increasing a gas pressure within the upstream channel relative to a gas pressure within the DNA manipulation zone.
  • 4. The method of claim 2, wherein actuating the gas actuator comprises decreasing a gas pressure within the DNA manipulation zone relative to a gas pressure within the upstream channel.
  • 5. The method of claim 1, wherein closing the first valve and the second valve comprises beating a thermally responsive substance in the first valve and the second valve.
  • 6. The method of claim 1, wherein thermal cycling the sample in the DNA manipulation zone comprises cyclically heating the sample with a computer-controlled heat source in thermal contact with the DNA manipulation zone.
  • 7. The method of claim 1, wherein thermal cycling the sample in the DNA manipulation zone comprises controlling a plurality of resistive heaters in thermal contact with the DNA manipulation zone.
  • 8. The method of claim 1, further comprising identifying the presence of one or more nucleic acids within the DNA manipulation zone.
  • 9. The method of claim 8, wherein identifying the presence of one or more nucleic acids comprises introducing light into the DNA manipulation zone, the light selected to generate fluorescence indicative of the presence of amplified nucleic acids within the DNA manipulation zone.
  • 10. The method of claim 1, further comprising identifying an amount of one or more amplified nucleic acids within the DNA manipulation zone.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 11/929,971, filed Oct. 30, 2007, which is a continuation of application Ser. No. 10/075,371, filed Feb. 15, 2002, which is a continuation-in-part of application Ser. No. 10/014,519, filed Dec. 14, 2001, application Ser. No. 09/953,921, filed Sep. 18, 2001, and application Ser. No. 09/819,105, filed Mar. 28, 2001, and claiming priority of provisional application No. 60/307,638 filed Jul. 26, 2001. Each of the above-mentioned applications are incorporated herein by reference.

US Referenced Citations (790)
Number Name Date Kind
1434314 Raich Oct 1922 A
1616419 Wilson Feb 1927 A
1733401 Lovekin Aug 1930 A
D189404 Nicolle Dec 1960 S
3528449 Witte et al. Sep 1970 A
3813316 Chakrabarty et al. May 1974 A
3985649 Eddelman Oct 1976 A
4018089 Dzula et al. Apr 1977 A
4018652 Lanham et al. Apr 1977 A
4038192 Serur Jul 1977 A
4055395 Honkawa et al. Oct 1977 A
D249706 Adamski Sep 1978 S
4139005 Dickey Feb 1979 A
D252157 Kronish et al. Jun 1979 S
D252341 Thomas Jul 1979 S
D254687 Fadler et al. Apr 1980 S
4212744 Oota Jul 1980 A
D261033 Armbruster Sep 1981 S
D261173 Armbruster Oct 1981 S
4301412 Hill et al. Nov 1981 A
4439526 Columbus Mar 1984 A
4457329 Werley et al. Jul 1984 A
4466740 Kano et al. Aug 1984 A
4504582 Swann Mar 1985 A
4522786 Ebersole Jun 1985 A
D279817 Chen et al. Jul 1985 S
D282208 Lowry Jan 1986 S
4599315 Terasaki et al. Jul 1986 A
4612873 Eberle Sep 1986 A
4612959 Costello Sep 1986 A
D288478 Carlson et al. Feb 1987 S
4647432 Wakatake Mar 1987 A
4654127 Baker et al. Mar 1987 A
4673657 Christian Jun 1987 A
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
D292735 Lovborg Nov 1987 S
4720374 Ramachandran Jan 1988 A
4798693 Mase et al. Jan 1989 A
4800022 Leonard Jan 1989 A
4841786 Schulz Jun 1989 A
D302294 Hillman Jul 1989 S
4871779 Killat et al. Oct 1989 A
4895650 Wang Jan 1990 A
4919829 Gates et al. Apr 1990 A
4921809 Shiff et al. May 1990 A
4935342 Seligson et al. Jun 1990 A
4946562 Guruswamy Aug 1990 A
4949742 Rando et al. Aug 1990 A
D310413 Bigler et al. Sep 1990 S
4963498 Hillman Oct 1990 A
4967950 Legg et al. Nov 1990 A
D312692 Bradley Dec 1990 S
4978502 Dole et al. Dec 1990 A
4978622 Mishell et al. Dec 1990 A
4989626 Takagi et al. Feb 1991 A
5001417 Pumphrey et al. Mar 1991 A
5004583 Guruswamy et al. Apr 1991 A
5048554 Kremer Sep 1991 A
5053199 Keiser et al. Oct 1991 A
5060823 Perlman Oct 1991 A
5061336 Soane Oct 1991 A
5064618 Baker et al. Nov 1991 A
5071531 Soane Dec 1991 A
5091328 Miller Feb 1992 A
D324426 Fan et al. Mar 1992 S
5096669 Lauks et al. Mar 1992 A
D325638 Sloat et al. Apr 1992 S
5126002 Iwata et al. Jun 1992 A
5126022 Soane et al. Jun 1992 A
D328135 Fan et al. Jul 1992 S
D328794 Frenkel et al. Aug 1992 S
5135627 Soane Aug 1992 A
5135872 Pouletty et al. Aug 1992 A
5147606 Charlton et al. Sep 1992 A
5169512 Wiedenmann et al. Dec 1992 A
D333522 Gianino Feb 1993 S
5186339 Heissler Feb 1993 A
5192507 Taylor et al. Mar 1993 A
5208163 Charlton et al. May 1993 A
5223226 Whittmer et al. Jun 1993 A
D338275 Fischer et al. Aug 1993 S
5250263 Manz Oct 1993 A
5252743 Barrett et al. Oct 1993 A
5256376 Callan et al. Oct 1993 A
5275787 Yuguchi et al. Jan 1994 A
5282950 Dietze et al. Feb 1994 A
5296375 Kricka et al. Mar 1994 A
5304477 Nagoh et al. Apr 1994 A
5304487 Wilding et al. Apr 1994 A
D347478 Pinkney May 1994 S
5311896 Kaartinen et al. May 1994 A
5311996 Duffy et al. May 1994 A
5316727 Suzuki et al. May 1994 A
5327038 Culp Jul 1994 A
5339486 Persic Aug 1994 A
D351475 Gerber Oct 1994 S
D351913 Hieb et al. Oct 1994 S
5364591 Green et al. Nov 1994 A
5372946 Cusak et al. Dec 1994 A
5374395 Robinson Dec 1994 A
5389339 Petschek et al. Feb 1995 A
D356232 Armstrong et al. Mar 1995 S
5397709 Berndt Mar 1995 A
5401465 Smethers et al. Mar 1995 A
5411708 Moscetta et al. May 1995 A
5414245 Hackleman May 1995 A
5416000 Allen et al. May 1995 A
5422271 Chen et al. Jun 1995 A
5422284 Lau Jun 1995 A
5427946 Kricka et al. Jun 1995 A
5474796 Brennan Dec 1995 A
D366116 Biskupski Jan 1996 S
5486335 Wilding et al. Jan 1996 A
5494639 Grzegorzewski Feb 1996 A
5498392 Wilding et al. Mar 1996 A
5503803 Brown Apr 1996 A
5516410 Schneider et al. May 1996 A
5519635 Miyake et al. May 1996 A
5529677 Schneider et al. Jun 1996 A
5559432 Logue Sep 1996 A
5565171 Dovichi et al. Oct 1996 A
5569364 Hooper et al. Oct 1996 A
5578270 Reichler et al. Nov 1996 A
5578818 Kain et al. Nov 1996 A
5579928 Anukwuem Dec 1996 A
5580523 Bard Dec 1996 A
5582884 Ball et al. Dec 1996 A
5585069 Zanucchi et al. Dec 1996 A
5585089 Queen et al. Dec 1996 A
5585242 Bouma et al. Dec 1996 A
5587128 Wilding et al. Dec 1996 A
5589136 Northrup et al. Dec 1996 A
5593838 Zanzucchi et al. Jan 1997 A
5595708 Berndt Jan 1997 A
5599432 Manz et al. Feb 1997 A
5599503 Manz et al. Feb 1997 A
5599667 Arnold, Jr. et al. Feb 1997 A
5601727 Bormann et al. Feb 1997 A
5603351 Cherukuri et al. Feb 1997 A
5605662 Heller et al. Feb 1997 A
D378782 LaBarbera et al. Apr 1997 S
5628890 Carter et al. May 1997 A
5630920 Friese et al. May 1997 A
5631337 Sassi et al. May 1997 A
5632876 Zanzucchi et al. May 1997 A
5632957 Heller et al. May 1997 A
5635358 Wilding et al. Jun 1997 A
5637469 Wilding et al. Jun 1997 A
5639423 Northrup et al. Jun 1997 A
5643738 Zanzucchi et al. Jul 1997 A
5646039 Northrup et al. Jul 1997 A
5647994 Tuunanen et al. Jul 1997 A
5651839 Rauf Jul 1997 A
5652149 Mileaf et al. Jul 1997 A
D382346 Buhler et al. Aug 1997 S
D382647 Staples et al. Aug 1997 S
5667976 Van Ness et al. Sep 1997 A
5671303 Shieh et al. Sep 1997 A
5674394 Whitmore Oct 1997 A
5674742 Northrup et al. Oct 1997 A
5681484 Zanzucchi et al. Oct 1997 A
5681529 Taguchi et al. Oct 1997 A
5683657 Mian Nov 1997 A
5699157 Parce Dec 1997 A
5700637 Southern Dec 1997 A
5705813 Apffel et al. Jan 1998 A
5726026 Wilding et al. Mar 1998 A
5726404 Brody Mar 1998 A
5726944 Pelley et al. Mar 1998 A
5731212 Gavin et al. Mar 1998 A
5744366 Kricka et al. Apr 1998 A
5747666 Willis May 1998 A
5750015 Soane et al. May 1998 A
5755942 Zanzucchi et al. May 1998 A
5763262 Wong et al. Jun 1998 A
5770029 Nelson et al. Jun 1998 A
5770388 Vorpahl Jun 1998 A
5772966 Maracas et al. Jun 1998 A
5779868 Parce et al. Jul 1998 A
5787032 Heller et al. Jul 1998 A
5788814 Sun et al. Aug 1998 A
5800600 Lima-Marques et al. Sep 1998 A
5800690 Chow et al. Sep 1998 A
5804436 Okun et al. Sep 1998 A
D399959 Prokop et al. Oct 1998 S
5827481 Bente et al. Oct 1998 A
5842106 Thaler et al. Nov 1998 A
5842787 Kopf-Sill et al. Dec 1998 A
5846396 Zanzucchi et al. Dec 1998 A
5846493 Bankier et al. Dec 1998 A
5849208 Hayes et al. Dec 1998 A
5849486 Heller et al. Dec 1998 A
5849489 Heller Dec 1998 A
5849598 Wilson et al. Dec 1998 A
5852495 Parce Dec 1998 A
5856174 Lipshutz et al. Jan 1999 A
5858187 Ramsey et al. Jan 1999 A
5858188 Soane et al. Jan 1999 A
5863502 Southgate et al. Jan 1999 A
5863708 Zanzucchi et al. Jan 1999 A
5863801 Southgate et al. Jan 1999 A
5866345 Wilding et al. Feb 1999 A
5869004 Parce et al. Feb 1999 A
5869244 Martin et al. Feb 1999 A
5872010 Karger et al. Feb 1999 A
5872623 Stabile et al. Feb 1999 A
5874046 Megerle Feb 1999 A
5876675 Kennedy Mar 1999 A
5880071 Parce et al. Mar 1999 A
5882465 McReynolds Mar 1999 A
5883211 Sassi et al. Mar 1999 A
5885432 Hooper et al. Mar 1999 A
5885470 Parce et al. Mar 1999 A
5895762 Greenfield et al. Apr 1999 A
5900130 Benvegnu et al. May 1999 A
5912124 Kumar Jun 1999 A
5912134 Shartle Jun 1999 A
5916522 Boyd et al. Jun 1999 A
5916776 Kumar Jun 1999 A
5919646 Okun et al. Jul 1999 A
5919711 Boyd et al. Jul 1999 A
5922591 Anderson et al. Jul 1999 A
5927547 Papen et al. Jul 1999 A
5928880 Wilding et al. Jul 1999 A
5929208 Heller et al. Jul 1999 A
D413391 Lapeus et al. Aug 1999 S
5932799 Moles Aug 1999 A
5935401 Amigo Aug 1999 A
5939291 Loewy et al. Aug 1999 A
5942443 Parce et al. Aug 1999 A
D413677 Dumitrescu et al. Sep 1999 S
5948227 Dubrow Sep 1999 A
5955028 Chow Sep 1999 A
5955029 Wilding et al. Sep 1999 A
5957579 Kopf-Sill et al. Sep 1999 A
5958203 Parce et al. Sep 1999 A
5958694 Nikiforov Sep 1999 A
5959221 Boyd et al. Sep 1999 A
5959291 Jensen Sep 1999 A
5964995 Nikiforov et al. Oct 1999 A
5964997 McBride Oct 1999 A
5965001 Chow et al. Oct 1999 A
5965410 Chow et al. Oct 1999 A
5965886 Sauer et al. Oct 1999 A
5968745 Thorp et al. Oct 1999 A
5972187 Parce et al. Oct 1999 A
5973138 Collis Oct 1999 A
D417009 Boyd Nov 1999 S
5976336 Dubrow et al. Nov 1999 A
5980704 Cherukuri et al. Nov 1999 A
5980719 Cherukuri et al. Nov 1999 A
5981735 Thatcher et al. Nov 1999 A
5989402 Chow et al. Nov 1999 A
5992820 Fare et al. Nov 1999 A
5993611 Moroney, III et al. Nov 1999 A
5993750 Ghosh et al. Nov 1999 A
5997708 Craig Dec 1999 A
6001229 Ramsey Dec 1999 A
6001231 Kopf-Sill Dec 1999 A
6001307 Naka et al. Dec 1999 A
6004515 Parce et al. Dec 1999 A
6007690 Nelson et al. Dec 1999 A
6010607 Ramsey Jan 2000 A
6010608 Ramsey Jan 2000 A
6010627 Hood, III Jan 2000 A
6012902 Parce Jan 2000 A
D420747 Dumitrescu et al. Feb 2000 S
D421130 Cohen et al. Feb 2000 S
6024920 Cunanan Feb 2000 A
D421653 Purcell Mar 2000 S
6033546 Ramsey Mar 2000 A
6043080 Lipshutz et al. Mar 2000 A
6046056 Parce et al. Apr 2000 A
6048734 Burns et al. Apr 2000 A
6054034 Soane et al. Apr 2000 A
6054277 Furcht et al. Apr 2000 A
6056860 Amigo et al. May 2000 A
6057149 Burns et al. May 2000 A
6062261 Jacobson et al. May 2000 A
6063341 Fassbind et al. May 2000 A
6063589 Kellogg et al. May 2000 A
6068752 Dubrow et al. May 2000 A
6071478 Chow Jun 2000 A
6074725 Kennedy Jun 2000 A
6074827 Nelson et al. Jun 2000 A
D428497 Lapeus et al. Jul 2000 S
6086740 Kennedy Jul 2000 A
6096509 Okun et al. Aug 2000 A
6100541 Nagle et al. Aug 2000 A
6102897 Lang Aug 2000 A
6103537 Ullman et al. Aug 2000 A
6106685 McBride et al. Aug 2000 A
6110343 Ramsey et al. Aug 2000 A
6123205 Dumitrescu et al. Sep 2000 A
6123798 Gandhi et al. Sep 2000 A
6130098 Handique et al. Oct 2000 A
6132580 Mathies et al. Oct 2000 A
6132684 Marino Oct 2000 A
6133436 Koster et al. Oct 2000 A
D433759 Mathis et al. Nov 2000 S
6143250 Tajima Nov 2000 A
6149787 Chow et al. Nov 2000 A
6156199 Zuk, Jr. Dec 2000 A
6158269 Dorenkott et al. Dec 2000 A
6167910 Chow Jan 2001 B1
6168948 Anderson et al. Jan 2001 B1
6171850 Nagle et al. Jan 2001 B1
6174675 Chow et al. Jan 2001 B1
6180950 Olsen Jan 2001 B1
D438311 Yamanishi et al. Feb 2001 S
6190619 Kilcoin et al. Feb 2001 B1
D438632 Miller Mar 2001 S
D438633 Miller Mar 2001 S
D439673 Brophy et al. Mar 2001 S
6197595 Anderson et al. Mar 2001 B1
6211989 Wulf et al. Apr 2001 B1
6213151 Jacobson et al. Apr 2001 B1
6221600 MacLeod et al. Apr 2001 B1
6228635 Armstrong et al. May 2001 B1
6232072 Fisher May 2001 B1
6235175 Dubrow et al. May 2001 B1
6235313 Mathiowitz et al. May 2001 B1
6235471 Knapp et al. May 2001 B1
6236456 Giebeler et al. May 2001 B1
6236581 Foss et al. May 2001 B1
6238626 Higuchi et al. May 2001 B1
6251343 Dubrow et al. Jun 2001 B1
6254826 Acosta et al. Jul 2001 B1
6259635 Khouri et al. Jul 2001 B1
6261431 Mathies et al. Jul 2001 B1
6267858 Parce et al. Jul 2001 B1
D446306 Ochi et al. Aug 2001 S
6271021 Burns et al. Aug 2001 B1
6274089 Chow et al. Aug 2001 B1
6280967 Ransom et al. Aug 2001 B1
6281008 Komai et al. Aug 2001 B1
6284113 Bjornson et al. Sep 2001 B1
6287254 Dodds Sep 2001 B1
6287774 Nikiforov Sep 2001 B1
6291248 Haj-Ahmad Sep 2001 B1
6294063 Becker et al. Sep 2001 B1
6302134 Kellogg et al. Oct 2001 B1
6302304 Spencer Oct 2001 B1
6303343 Kopf-Sill Oct 2001 B1
6306273 Wainright et al. Oct 2001 B1
6306590 Mehta et al. Oct 2001 B1
6319469 Mian et al. Nov 2001 B1
6322683 Wolk et al. Nov 2001 B1
6326083 Yang et al. Dec 2001 B1
6326147 Oldham et al. Dec 2001 B1
6326211 Anderson et al. Dec 2001 B1
6334980 Hayes et al. Jan 2002 B1
6337435 Chu et al. Jan 2002 B1
6353475 Jensen et al. Mar 2002 B1
6358387 Kopf-Sill et al. Mar 2002 B1
6366924 Parce Apr 2002 B1
6368871 Christel et al. Apr 2002 B1
6370206 Schenk Apr 2002 B1
6375185 Lin Apr 2002 B1
6375901 Robotti et al. Apr 2002 B1
6379884 Wada et al. Apr 2002 B2
6379929 Burns et al. Apr 2002 B1
6379974 Parce et al. Apr 2002 B1
6382254 Yang et al. May 2002 B1
6391541 Petersen et al. May 2002 B1
6391623 Besemer et al. May 2002 B1
6395161 Schneider et al. May 2002 B1
6398956 Coville et al. Jun 2002 B1
6399025 Chow Jun 2002 B1
6399389 Parce et al. Jun 2002 B1
6399952 Maier et al. Jun 2002 B1
6401552 Elkins Jun 2002 B1
6403338 Knapp et al. Jun 2002 B1
6408878 Unger et al. Jun 2002 B2
6413401 Chow et al. Jul 2002 B1
6416642 Alajoki et al. Jul 2002 B1
6420143 Kopf-Sill Jul 2002 B1
6425972 McReynolds Jul 2002 B1
D461906 Pham Aug 2002 S
6428987 Franzen Aug 2002 B2
6430512 Gallagher Aug 2002 B1
6432366 Ruediger et al. Aug 2002 B2
6440725 Pourahmadi et al. Aug 2002 B1
D463031 Slomski et al. Sep 2002 S
6444461 Knapp et al. Sep 2002 B1
6447661 Chow et al. Sep 2002 B1
6447727 Parce et al. Sep 2002 B1
6448064 Vo-Dinh et al. Sep 2002 B1
6453928 Kaplan et al. Sep 2002 B1
6465257 Parce et al. Oct 2002 B1
6468761 Yang et al. Oct 2002 B2
6472141 Nikiforov Oct 2002 B2
6475364 Dubrow et al. Nov 2002 B1
D467348 McMichael et al. Dec 2002 S
D467349 Niedbala et al. Dec 2002 S
6488897 Dubrow et al. Dec 2002 B2
6495104 Unno et al. Dec 2002 B1
6498497 Chow et al. Dec 2002 B1
6500323 Chow et al. Dec 2002 B1
6500390 Boulton et al. Dec 2002 B1
D468437 McMenamy et al. Jan 2003 S
6506609 Wada et al. Jan 2003 B1
6509193 Tajima Jan 2003 B1
6511853 Kopf-Sill et al. Jan 2003 B1
D470595 Crisanti et al. Feb 2003 S
6515753 Maher Feb 2003 B2
6517783 Horner et al. Feb 2003 B2
6520197 Deshmukh et al. Feb 2003 B2
6521188 Webster Feb 2003 B1
6524456 Ramsey et al. Feb 2003 B1
6524790 Kopf-Sill et al. Feb 2003 B1
D472324 Rumore et al. Mar 2003 S
6534295 Tai et al. Mar 2003 B2
6537771 Farinas et al. Mar 2003 B1
6540896 Manz et al. Apr 2003 B1
6544734 Briscoe et al. Apr 2003 B1
6547942 Parce et al. Apr 2003 B1
6555389 Ullman et al. Apr 2003 B1
6556923 Gallagher et al. Apr 2003 B2
D474279 Mayer et al. May 2003 S
D474280 Niedbala et al. May 2003 S
6558916 Veerapandian et al. May 2003 B2
6558945 Kao May 2003 B1
6569607 McReynolds May 2003 B2
6572830 Burdon et al. Jun 2003 B1
6575188 Parunak Jun 2003 B2
6576459 Miles et al. Jun 2003 B2
6579453 Bächler et al. Jun 2003 B1
6589729 Chan et al. Jul 2003 B2
6592821 Wada et al. Jul 2003 B1
6597450 Andrews et al. Jul 2003 B1
6602474 Tajima Aug 2003 B1
6613211 McCormick et al. Sep 2003 B1
6613512 Kopf-Sill et al. Sep 2003 B1
6613580 Chow et al. Sep 2003 B1
6613581 Wada et al. Sep 2003 B1
6614030 Maher et al. Sep 2003 B2
6620625 Wolk et al. Sep 2003 B2
6623860 Hu et al. Sep 2003 B2
6627406 Singh et al. Sep 2003 B1
D480814 Lafferty et al. Oct 2003 S
6632655 Mehta et al. Oct 2003 B1
6633785 Kasahara et al. Oct 2003 B1
D482796 Oyama et al. Nov 2003 S
6649358 Parce et al. Nov 2003 B1
6664104 Pourahmadi et al. Dec 2003 B2
6669831 Chow et al. Dec 2003 B2
6670153 Stern Dec 2003 B2
D484989 Gebrian Jan 2004 S
6681616 Spaid et al. Jan 2004 B2
6681788 Parce et al. Jan 2004 B2
6685813 Williams et al. Feb 2004 B2
6692700 Handique Feb 2004 B2
6695009 Chien et al. Feb 2004 B2
6706519 Kellogg et al. Mar 2004 B1
6720148 Nikiforov Apr 2004 B1
6730206 Ricco et al. May 2004 B2
6733645 Chow May 2004 B1
6734401 Bedingham et al. May 2004 B2
6737026 Bergh et al. May 2004 B1
6740518 Duong et al. May 2004 B1
D491272 Alden et al. Jun 2004 S
D491273 Biegler et al. Jun 2004 S
D491276 Langille Jun 2004 S
6750661 Brooks et al. Jun 2004 B2
6752966 Chazan Jun 2004 B1
6756019 Dubrow et al. Jun 2004 B1
6766817 da Silva Jul 2004 B2
6773567 Wolk Aug 2004 B1
6777184 Nikiforov et al. Aug 2004 B2
6783962 Olander et al. Aug 2004 B1
D495805 Lea et al. Sep 2004 S
6787015 Lackritz et al. Sep 2004 B2
6787016 Tan et al. Sep 2004 B2
6790328 Jacobson et al. Sep 2004 B2
6790330 Gascoyne et al. Sep 2004 B2
6811668 Berndt et al. Nov 2004 B1
6818113 Williams et al. Nov 2004 B2
6819027 Saraf Nov 2004 B2
6824663 Boone Nov 2004 B1
D499813 Wu Dec 2004 S
D500142 Crisanti et al. Dec 2004 S
6827831 Chow et al. Dec 2004 B1
6827906 Bjornson et al. Dec 2004 B1
6838156 Neyer et al. Jan 2005 B1
6838680 Maher et al. Jan 2005 B2
6852287 Ganesan Feb 2005 B2
6858185 Kopf-Sill et al. Feb 2005 B1
6859698 Schmeisser Feb 2005 B2
6861035 Pham et al. Mar 2005 B2
6878540 Pourahmadi et al. Apr 2005 B2
6878755 Singh et al. Apr 2005 B2
6884628 Hubbell et al. Apr 2005 B2
6887693 McMillan et al. May 2005 B2
6893879 Petersen et al. May 2005 B2
6900889 Bjornson et al. May 2005 B2
6905583 Wainright et al. Jun 2005 B2
6905612 Dorian et al. Jun 2005 B2
6906797 Kao et al. Jun 2005 B1
6908594 Schaevitz et al. Jun 2005 B1
6911183 Handique et al. Jun 2005 B1
6914137 Baker Jul 2005 B2
6915679 Chien et al. Jul 2005 B2
6918404 Dias da Silva Jul 2005 B2
D508999 Fanning et al. Aug 2005 S
6939451 Zhao et al. Sep 2005 B2
6942771 Kayyem Sep 2005 B1
6958392 Fomovskaia et al. Oct 2005 B2
D512155 Matsumoto Nov 2005 S
6964747 Banerjee et al. Nov 2005 B2
6977163 Mehta Dec 2005 B1
6984516 Briscoe et al. Jan 2006 B2
D515707 Sinohara et al. Feb 2006 S
D516221 Wohlstadter et al. Feb 2006 S
7001853 Brown et al. Feb 2006 B1
7004184 Handique et al. Feb 2006 B2
D517554 Yanagisawa et al. Mar 2006 S
7010391 Handique et al. Mar 2006 B2
7023007 Gallagher Apr 2006 B2
7024281 Unno Apr 2006 B1
7036667 Greenstein et al. May 2006 B2
7037416 Parce et al. May 2006 B2
7038472 Chien May 2006 B1
7039527 Tripathi et al. May 2006 B2
7040144 Spaid et al. May 2006 B2
7049558 Baer et al. May 2006 B2
D523153 Akashi et al. Jun 2006 S
7055695 Greenstein et al. Jun 2006 B2
7060171 Nikiforov et al. Jun 2006 B1
7066586 da Silva Jun 2006 B2
7069952 McReynolds et al. Jul 2006 B1
7099778 Chien Aug 2006 B2
D528215 Malmsater Sep 2006 S
7101467 Spaid Sep 2006 B2
7105304 Nikiforov et al. Sep 2006 B1
D531321 Godfrey et al. Oct 2006 S
7118910 Unger et al. Oct 2006 B2
7138032 Gandhi et al. Nov 2006 B2
D534280 Gomm et al. Dec 2006 S
7148043 Kordunsky et al. Dec 2006 B2
7150814 Parce et al. Dec 2006 B1
7150999 Shuck Dec 2006 B1
D535403 Isozaki et al. Jan 2007 S
7160423 Chien et al. Jan 2007 B2
7161356 Chien Jan 2007 B1
7169277 Ausserer et al. Jan 2007 B2
7169618 Skould Jan 2007 B2
D537951 Okamoto et al. Mar 2007 S
D538436 Patadia et al. Mar 2007 S
7192557 Wu et al. Mar 2007 B2
7195986 Bousse et al. Mar 2007 B1
7208125 Dong Apr 2007 B1
7235406 Woudenberg et al. Jun 2007 B1
7247274 Chow Jul 2007 B1
D548841 Brownell et al. Aug 2007 S
D549827 Maeno et al. Aug 2007 S
7252928 Hafeman et al. Aug 2007 B1
7270786 Parunak et al. Sep 2007 B2
D554069 Bolotin et al. Oct 2007 S
D554070 Bolotin et al. Oct 2007 S
7276330 Chow et al. Oct 2007 B2
D556914 Okamoto et al. Dec 2007 S
7303727 Dubrow et al. Dec 2007 B1
D559995 Handique et al. Jan 2008 S
7323140 Handique et al. Jan 2008 B2
7332130 Handique Feb 2008 B2
7338760 Gong et al. Mar 2008 B2
D566291 Parunak et al. Apr 2008 S
7351377 Chazan et al. Apr 2008 B2
D569526 Duffy et al. May 2008 S
7374949 Kuriger May 2008 B2
7390460 Osawa et al. Jun 2008 B2
7419784 Dubrow et al. Sep 2008 B2
7422669 Jacobson et al. Sep 2008 B2
7440684 Spaid et al. Oct 2008 B2
7476313 Siddiqi Jan 2009 B2
7494577 Williams et al. Feb 2009 B2
7494770 Wilding et al. Feb 2009 B2
7514046 Kechagia et al. Apr 2009 B2
7518726 Rulison et al. Apr 2009 B2
7521186 Burd Mehta Apr 2009 B2
7527769 Bunch et al. May 2009 B2
D595423 Johansson et al. Jun 2009 S
7553671 Sinclair et al. Jun 2009 B2
D596312 Giraud et al. Jul 2009 S
D598566 Allaer Aug 2009 S
D599234 Ito Sep 2009 S
7595197 Brasseur Sep 2009 B2
7604938 Takahashi et al. Oct 2009 B2
7635588 King et al. Dec 2009 B2
7645581 Knapp et al. Jan 2010 B2
7670559 Chien et al. Mar 2010 B2
7674431 Ganesan Mar 2010 B2
7704735 Facer et al. Apr 2010 B2
7723123 Murphy et al. May 2010 B1
D618820 Wilson et al. Jun 2010 S
7727371 Kennedy et al. Jun 2010 B2
7727477 Boronkay et al. Jun 2010 B2
7744817 Bui Jun 2010 B2
D621060 Handique Aug 2010 S
7867776 Kennedy et al. Jan 2011 B2
7892819 Wilding et al. Feb 2011 B2
D637737 Wilson et al. May 2011 S
7998708 Handique et al. Aug 2011 B2
8088616 Handique Jan 2012 B2
8105783 Handique Jan 2012 B2
8133671 Williams et al. Mar 2012 B2
8182763 Duffy et al. May 2012 B2
8273308 Handique et al. Sep 2012 B2
D669597 Cavada et al. Oct 2012 S
8287820 Williams et al. Oct 2012 B2
8323584 Ganesan Dec 2012 B2
8323900 Handique et al. Dec 2012 B2
8324372 Brahmasandra et al. Dec 2012 B2
8415103 Handique Apr 2013 B2
8420015 Ganesan et al. Apr 2013 B2
8440149 Handique May 2013 B2
8470586 Wu et al. Jun 2013 B2
8473104 Handique et al. Jun 2013 B2
20010012492 Acosta et al. Aug 2001 A1
20010021355 Baugh et al. Sep 2001 A1
20010023848 Gjerde et al. Sep 2001 A1
20010038450 McCaffrey et al. Nov 2001 A1
20010046702 Schembri Nov 2001 A1
20010055765 O'Keefe et al. Dec 2001 A1
20020001848 Bedingham et al. Jan 2002 A1
20020008053 Hansen et al. Jan 2002 A1
20020009015 Laugharn et al. Jan 2002 A1
20020015667 Chow Feb 2002 A1
20020021983 Comte et al. Feb 2002 A1
20020037499 Quake et al. Mar 2002 A1
20020039783 McMillan et al. Apr 2002 A1
20020053399 Soane et al. May 2002 A1
20020054835 Robotti et al. May 2002 A1
20020055167 Pourahmadi et al. May 2002 A1
20020058332 Quake et al. May 2002 A1
20020060156 Mathies et al. May 2002 A1
20020068357 Mathies et al. Jun 2002 A1
20020141903 Parunak et al. Oct 2002 A1
20020142471 Handique et al. Oct 2002 A1
20020143297 Francavilla et al. Oct 2002 A1
20020143437 Handique et al. Oct 2002 A1
20020155477 Ito Oct 2002 A1
20020169518 Luoma et al. Nov 2002 A1
20020187557 Hobbs et al. Dec 2002 A1
20030019522 Parunak Jan 2003 A1
20030049174 Ganesan Mar 2003 A1
20030049833 Chen et al. Mar 2003 A1
20030064507 Gallagher et al. Apr 2003 A1
20030070677 Handique et al. Apr 2003 A1
20030073106 Johansen et al. Apr 2003 A1
20030083686 Freeman et al. May 2003 A1
20030087300 Knapp et al. May 2003 A1
20030096310 Hansen et al. May 2003 A1
20030127327 Kurnik Jul 2003 A1
20030136679 Bohn et al. Jul 2003 A1
20030186295 Colin et al. Oct 2003 A1
20030190608 Blackburn Oct 2003 A1
20030199081 Wilding et al. Oct 2003 A1
20030211517 Carulli et al. Nov 2003 A1
20040014238 Krug et al. Jan 2004 A1
20040029258 Heaney et al. Feb 2004 A1
20040029260 Hansen et al. Feb 2004 A1
20040037739 McNeely et al. Feb 2004 A1
20040053290 Terbrueggen et al. Mar 2004 A1
20040063217 Webster et al. Apr 2004 A1
20040072278 Chou et al. Apr 2004 A1
20040072375 Gjerde et al. Apr 2004 A1
20040086956 Bachur May 2004 A1
20040141887 Mainquist et al. Jul 2004 A1
20040151629 Pease et al. Aug 2004 A1
20040157220 Kurnool et al. Aug 2004 A1
20040161788 Chen et al. Aug 2004 A1
20040189311 Glezer et al. Sep 2004 A1
20040200909 McMillan et al. Oct 2004 A1
20040209331 Ririe Oct 2004 A1
20040209354 Mathies et al. Oct 2004 A1
20040219070 Handique Nov 2004 A1
20040235154 Oh et al. Nov 2004 A1
20040240097 Evans Dec 2004 A1
20050009174 Nikiforov et al. Jan 2005 A1
20050041525 Pugia et al. Feb 2005 A1
20050042639 Knapp et al. Feb 2005 A1
20050048540 Inami et al. Mar 2005 A1
20050058574 Bysouth et al. Mar 2005 A1
20050084424 Ganesan et al. Apr 2005 A1
20050106066 Saltsman et al. May 2005 A1
20050121324 Park et al. Jun 2005 A1
20050129580 Swinehart et al. Jun 2005 A1
20050133370 Park et al. Jun 2005 A1
20050135655 Kopf-Sill et al. Jun 2005 A1
20050152808 Ganesan Jul 2005 A1
20050170362 Wada et al. Aug 2005 A1
20050186585 Juncosa et al. Aug 2005 A1
20050202470 Sundberg et al. Sep 2005 A1
20050202504 Anderson et al. Sep 2005 A1
20050208676 Kahatt Sep 2005 A1
20050220675 Reed et al. Oct 2005 A1
20050227269 Lloyd et al. Oct 2005 A1
20050233370 Ammann et al. Oct 2005 A1
20050238545 Parce et al. Oct 2005 A1
20050272079 Burns et al. Dec 2005 A1
20060041058 Yin et al. Feb 2006 A1
20060057039 Morse et al. Mar 2006 A1
20060057629 Kim Mar 2006 A1
20060062696 Chow et al. Mar 2006 A1
20060094108 Yoder et al. May 2006 A1
20060113190 Kurnik Jun 2006 A1
20060133965 Tajima et al. Jun 2006 A1
20060134790 Tanaka et al. Jun 2006 A1
20060148063 Fauzzi et al. Jul 2006 A1
20060165558 Witty et al. Jul 2006 A1
20060165559 Greenstein et al. Jul 2006 A1
20060166233 Wu et al. Jul 2006 A1
20060177376 Tomalia et al. Aug 2006 A1
20060177855 Utermohlen et al. Aug 2006 A1
20060183216 Handique et al. Aug 2006 A1
20060207944 Siddiqi Sep 2006 A1
20060210435 Alavie et al. Sep 2006 A1
20060246493 Jensen et al. Nov 2006 A1
20060246533 Fathollahi et al. Nov 2006 A1
20070004028 Lair et al. Jan 2007 A1
20070009386 Padmanabhan et al. Jan 2007 A1
20070020699 Carpenter et al. Jan 2007 A1
20070026421 Sundberg et al. Feb 2007 A1
20070042441 Masters et al. Feb 2007 A1
20070092901 Ligler et al. Apr 2007 A1
20070098600 Kayyem et al. May 2007 A1
20070099200 Chow et al. May 2007 A1
20070104617 Coulling et al. May 2007 A1
20070154895 Spaid et al. Jul 2007 A1
20070177147 Parce Aug 2007 A1
20070178607 Prober et al. Aug 2007 A1
20070184463 Molho et al. Aug 2007 A1
20070184547 Handique et al. Aug 2007 A1
20070196238 Kennedy et al. Aug 2007 A1
20070199821 Chow Aug 2007 A1
20070215554 Kreuwel et al. Sep 2007 A1
20070218459 Miller et al. Sep 2007 A1
20070231213 Prabhu et al. Oct 2007 A1
20070243626 Windeyer et al. Oct 2007 A1
20070261479 Spaid et al. Nov 2007 A1
20070269861 Williams et al. Nov 2007 A1
20070292941 Handique et al. Dec 2007 A1
20080000774 Park et al. Jan 2008 A1
20080017306 Liu et al. Jan 2008 A1
20080050804 Handique et al. Feb 2008 A1
20080056948 Dale et al. Mar 2008 A1
20080069729 McNeely Mar 2008 A1
20080075634 Herchenbach et al. Mar 2008 A1
20080090244 Knapp et al. Apr 2008 A1
20080095673 Xu Apr 2008 A1
20080118987 Eastwood et al. May 2008 A1
20080124723 Dale et al. May 2008 A1
20080149840 Handique et al. Jun 2008 A1
20080160601 Handique Jul 2008 A1
20080182301 Handique et al. Jul 2008 A1
20080192254 Kim et al. Aug 2008 A1
20080226502 Jonsmann et al. Sep 2008 A1
20080247914 Edens et al. Oct 2008 A1
20080262213 Wu et al. Oct 2008 A1
20090047713 Handique Feb 2009 A1
20090129978 Wilson et al. May 2009 A1
20090130719 Handique May 2009 A1
20090130745 Williams et al. May 2009 A1
20090131650 Brahmasandra et al. May 2009 A1
20090134069 Handique May 2009 A1
20090136385 Handique et al. May 2009 A1
20090136386 Duffy et al. May 2009 A1
20090155123 Williams et al. Jun 2009 A1
20090189089 Bedingham et al. Jul 2009 A1
20090221059 Williams et al. Sep 2009 A1
20090223925 Morse et al. Sep 2009 A1
20100009351 Brahmasandra et al. Jan 2010 A1
20100173393 Handique et al. Jul 2010 A1
20110008825 Ingber et al. Jan 2011 A1
20110027151 Handique et al. Feb 2011 A1
20110207140 Handique et al. Aug 2011 A1
20110210257 Handique et al. Sep 2011 A9
20120022695 Handique et al. Jan 2012 A1
20120085416 Ganesan Apr 2012 A1
20120122108 Handique May 2012 A1
20120160826 Handique Jun 2012 A1
20120171759 Williams et al. Jul 2012 A1
20120183454 Handique Jul 2012 A1
20120258463 Duffy et al. Oct 2012 A1
20130037564 Williams et al. Feb 2013 A1
20130101990 Handique et al. Apr 2013 A1
20130164832 Ganesan Jun 2013 A1
Foreign Referenced Citations (54)
Number Date Country
2294819 Jan 1999 CA
19929734 Dec 1999 DE
0766256 Apr 1997 EP
2372367 Oct 2011 EP
2672301 Aug 1992 FR
2795426 Dec 2000 FR
58212921 Dec 1983 JP
H07-290706 Nov 1995 JP
2001-502790 Jan 1998 JP
2000-514928 Apr 1999 JP
2001-509437 Jul 2001 JP
2001-515216 Sep 2001 JP
2001-527220 Dec 2001 JP
2002-215241 Jul 2002 JP
2003-500674 Jan 2003 JP
2005-514718 May 2005 JP
2005-204661 Aug 2005 JP
2005-291954 Oct 2005 JP
WO 8806633 Sep 1988 WO
WO 9012350 Oct 1990 WO
WO 9205443 Apr 1992 WO
WO 9705492 Feb 1997 WO
WO 9800231 Jan 1998 WO
WO 9822625 May 1998 WO
WO 9853311 Nov 1998 WO
WO 9901688 Jan 1999 WO
WO 9909042 Feb 1999 WO
WO 9912016 Mar 1999 WO
WO 9933559 Jul 1999 WO
WO 0105510 Jan 2001 WO
WO 0114931 Mar 2001 WO
WO 0127614 Apr 2001 WO
WO 0128684 Apr 2001 WO
WO 0141931 Jun 2001 WO
WO 0154813 Aug 2001 WO
WO 0189681 Nov 2001 WO
WO 02072264 Sep 2002 WO
WO 02078845 Oct 2002 WO
WO 03012325 Feb 2003 WO
WO 03012406 Feb 2003 WO
WO 03048295 Jun 2003 WO
WO 03055605 Jul 2003 WO
WO 2004007081 Jan 2004 WO
WO 2004055522 Jul 2004 WO
WO 2004074848 Sep 2004 WO
WO 2005011867 Feb 2005 WO
WO 2005108620 Nov 2005 WO
WO 2006079082 Jul 2006 WO
WO 2007044917 Apr 2007 WO
WO 2007050327 May 2007 WO
WO 2008030914 Mar 2008 WO
WO 2008060604 May 2008 WO
WO 2009012185 Jan 2009 WO
WO 2010118541 Oct 2010 WO
Non-Patent Literature Citations (39)
Entry
Bollet, C. et al., “A simple method for the isolation of chromosomal DNA from Gram positive or acid-fast bacteria”, Nucleic Acids Research, vol. 19, No. 8 (1991), p. 1955.
Brahmassandra, et al., On-Chip DNA Detection in Microfabricated Separation Systems, Part of the SPIE Conference on Microfluidic Devices and Systems, 1998, Santa Clara, California, vol. 3515, pp. 242-251.
Breadmore, M.C. et al., “Microchip-Based Purification of DNA from Biological Samples”, Anal. Chem., vol. 75 (2003), pp. 1880-1886.
Brody, et al., Diffusion-Based Extraction in a Microfabricated Device, Sensors and Actuators Elsevier, 1997, vol. A58, No. 1, pp. 13-18.
Broyles et al., “Sample Filtration, Concentration, and Separation Integrated on Microfluidic Devices” Analytical Chemistry (American Chemical Society), (2003) 75(11): 2761-2767.
Burns et al., “An Integrated Nanoliter DNA Analysis Device”, Science 282:484-487 (1998).
Carlen et al., “Paraffin Actuated Surface Micromachined Valve,” in IEEE MEMS 2000 Conference, Miyazaki, Japan, (Jan. 2000) pp. 381-385.
Chung, Y. et al., “Microfluidic chip for high efficiency DNA extraction”, Miniaturisation for Chemistry, Biology & Bioengineering, vol. 4, No. 2 (Apr. 2004), pp. 141-147.
File History of the related U.S. Appl. No. 11/281,247, as of Jun. 1, 2010.
Handique K., et al., On-Chip Thermopneumatic Pressure for Discrete Drop Pumping, Analytical Chemistry, American Chemical Society, Apr. 15, 2001, vol. 73, No. 8, 1831-1838.
Handique, K. et al, “Microfluidic flow control using selective hydrophobic patterning”, SPIE, vol. 3224, pp. 185-194 (1997).
Handique, K. et al., “Nanoliter-volume discrete drop injection and pumping in microfabricated chemical analysis systems”, Solid-State Sensor and Actuator Workshop (Hilton Head, South Carolina, Jun. 8-11, 1998) pp. 346-349.
Handique, K. et al., “Mathematical Modeling of Drop Mixing in a Slit-Type Microchannel”, J. Micromech. Microeng., 11:548-554 (2001).
Handique, K. et al., “Nanoliter Liquid Metering in Microchannels Using Hydrophobic Patterns”, Anal. Chem., 72:4100-4109 (2000).
He, et al., Microfabricated Filters for Microfluidic Analytical Systems, Analytical Chemistry, American Chemical Society, 1999, vol. 71, No. 7, pp. 1464-1468.
Ibrahim, et al., Real-Time Microchip PCR for Detecting Single-Base Differences in Viral and Human DNA, Analytical Chemistry, American Chemical Society, 1998, vol. 70, No. 9, pp. 2013-2017.
Khandurina, et al., Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis, Analytical Chemistry American Chemical Society, 1999, vol. 71, No. 9, pp. 1815-1819.
Kopp, et al., Chemical Amplification: Continuous-Flow PCR on a Chip, www.sciencemag.org, 1998, vol. 280, pp. 1046-1048.
Kutter, et al., Solid Phase Extraction on Microfluidic Devices, J. Microcolumn Separations, John Wiley & Sons, Inc., 2000, vol. 12, No. 2, pp. 93-97.
Lagally, et al., Single-Molecule DNA Amplification and Analysis in an Integrated Microfluidic Device, Analytical Chemistry, American Chemical Society, 2001, vol. 73, No. 3 pp. 565-570.
Livache, T. et al., “Polypyrrole DNA chip on a Silicon Device: Example of Hepatitis C Virus Genotyping”, Analytical Biochemistry, vol. 255 (1998), pp. 188-194.
Northrup, et al., A Miniature Analytical Instrument for Nucleic Acids Based on Micromachined Silicon Reaction Chambers, Analytical Chemistry, American Chemical Society, 1998, vol. 70, No. 5, pp. 918-922.
Oleschuk, et al., Trapping of Bead-Based Reagents within Microfluidic Systems,: On-Chip Solid-Phase Extraction and Electrochromatography, Analytical Chemistry, American Chemical Society, 2000, vol. 72, No. 3, pp. 585-590.
Roche, et al. “Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells” Faseb J (2005) 19: 1341-1343.
Ross, et al., Analysis of DNA Fragments from Conventional and Microfabricated PCR Devices Using Delayed Extraction MALDI-TOF Mass Spectrometry, Analytical Chemistry, American Chemical Society, 1998, vol. 70, No. 10, pp. 2067-2073.
Shoffner, M. A. et al., Chip PCR.I. Surface Passivation of Microfabricated Silicon-Glass Chips for PCR, Nucleic Acids Research, Oxford University Press, 1996, vol. 24, No. 2, 375-379.
Smith, K. et al., “Comparison of Commercial DNA Extraction Kits for Extraction of Bacterial Genomic DNA from Whole-Blood Samples”, Journal of Clinical Microbiology, vol. 41, No. 6 (Jun. 2003), pp. 2440-2443.
Waters, et al., Microchip Device for Cell Lysis, Multiplex PCR Amplification, and Electrophoretic Sizing, Analytical Chemistry, American Chemical Society, 1998, vol. 70, No. 1, pp. 158-162.
Weigl, et al., Microfluidic Diffusion-Based Separation and Detection, www.sciencemag.org, 1999, vol. 283, pp. 346-347.
Yoza et al., DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer, Mar. 20, 2003, vol. 101, No. 3, 219-228.
Yoza et al., “Fully Automated DNA Extraction from Blood Using Magnetic Particles Modified with a Hyperbranched Polyamidomine Dendrimer”, Journal of Bioscience and Bioengineering, 95(1):21-26, 2003.
Mascini et al., “DNA electrochemical biosensors”, Fresenius J. Anal. Chem., 369: 15-22, (2001).
Nakagawa et al., Fabrication of amino silane-coated microchip for DNA extraction from whole blood, J of Biotechnology, Mar. 2, 2005, vol. 116, pp. 105-111.
Plambeck et al., “Electrochemical Studies of Antitumor Antibiotics”, J. Electrochem Soc.: Electrochemical Science and Technology (1984), 131(11): 2556-2563.
Wang, “Survey and Summary, from DNA Biosensors to Gene Chips”, Nucleic Acids Research, 28(16):3011-3016, (2000).
International Search Report dated Sep. 23, 2002 for Application No. PCT/US2002/009441, filed Mar. 27, 2002.
International Preliminary Examination Report dated Dec. 17, 2003 for Application No. PCT/US2002/009441, filed Mar. 27, 2002.
Supplementary European Search Report dated Jun. 3, 2005 for European Patent Application No. 02723636.3, filed Mar. 27, 2002.
EP Communication dated Aug. 9, 2006 for European Patent Application 02723636.3.
Related Publications (1)
Number Date Country
20130071851 A1 Mar 2013 US
Provisional Applications (1)
Number Date Country
60307638 Jul 2001 US
Continuations (2)
Number Date Country
Parent 11929971 Oct 2007 US
Child 13620452 US
Parent 10075371 Feb 2002 US
Child 11929971 US
Continuation in Parts (3)
Number Date Country
Parent 10014519 Dec 2001 US
Child 10075371 US
Parent 09953921 Sep 2001 US
Child 10014519 US
Parent 09819105 Mar 2001 US
Child 09953921 US