MRAM synthetic anitferomagnet structure

Information

  • Patent Application
  • 20070278547
  • Publication Number
    20070278547
  • Date Filed
    May 31, 2006
    18 years ago
  • Date Published
    December 06, 2007
    17 years ago
Abstract
An MRAM bit (10) includes a free magnetic region (15), a fixed magnetic region (17) comprising an antiferromagnetic material, and a tunneling barrier (16) comprising a dielectric layer positioned between the free magnetic region (15) and the fixed magnetic region (17). The MRAM bit (10) avoids a pinning layer by comprising a fixed magnetic region exhibiting a well-defined high Hflop using a combination of high Hk (uniaxial anisotropy), high Hsat (saturation field), and ideal soft magnetic properties exhibiting well-defined easy and hard axes.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and



FIG. 1 is a cross-sectional view of a magnetic tunnel junction bit in accordance with an exemplary embodiment;



FIG. 2 is a simplified plan view of the magnetic tunnel junction bit of FIG. 1 with bit and digit lines;



FIG. 3 is a partial cross-sectional view of an exemplary embodiment of a magnetic region within a magnetic tunnel junction bit; and



FIG. 4 is a partial cross-sectional view of another exemplary embodiment of a magnetic region within a magnetic tunnel junction bit.





DETAILED DESCRIPTION OF THE INVENTION

The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention.


The exemplary embodiment described herein is a SAF structure exhibiting a well-defined high Hflop (flop field) using a combination of high Hk (uniaxial anisotropy), high Hsat (saturation field), and ideal soft magnetic properties exhibiting well-defined easy and hard axes. The exemplary embodiment comprises an amorphous Cobalt-Iron-Boron-based (CoFeB) SAF grown on Tantalum (Ta), with a Cobalt-Iron (CoFe) insertion layer at the bottom interface of the spacer to boost Hsat. This structure has been shown to have the combination of sufficiently high Hsat and well-defined high Hk with the desired soft magnetic behavior. This exemplary embodiment eliminates the need for a pinning layer in MRAM devices.


CoFe-based alloys are generally known to exhibit high saturation fields; however, other alloy SAFs exhibiting desirable properties as described herein can be used as well. A well-defined and high flop field is an essential requirement in addition to a high saturation field. The first step is to grow soft/well-behaved (well-defined easy and hard axis, low coercivity and high Hk) single layer films of CoFe/CoFe-based alloys. Films with these above mentioned desirable properties are achieved when grown on a Ta seed layer. Using the above mentioned seed, soft CoFe-based films (CoFe, CoFeB with different Boron compositions) with coercivities<5.0 Oe and Hk>30.0 Oe are achievable.


SAFs grown with these alloys exhibit high Hsat. CoFe provides the highest Hsat; however, at or near balance these SAFs did not exhibit a well-defined Hflop. The flop field shows up in a magnetization-versus-field (M-H) loop as a sharp slope change from a flat region at low field to a steep slope when the SAF moves approximately 90 degrees to the applied field. With the CoFe SAFs, the flat-region disappears, indicating changes in the magnetization direction, something that broadens the free layer transition. Amorphous CoFeB SAFs, on the other hand, retain the flat, well-defined flop at balance. When the boron composition in the CoFeB is decreased too much, the alloy becomes crystalline and the flat region is no longer well defined, i.e., crystalline CoFeB behaves similar to CoFe and is therefore not suitable. These SAFs, which have no well-defined flop, are not rigid and will move when a field is applied, though the saturation fields are high. Amorphous CoFeB (B>9%) with a thin CoFe at the bottom interface to boost Hsat exhibits desirable properties. Hsat preferably is greater than 1500 Oe. These SAFs exhibit similar MR as the ones with pinned SAF. Having CoFe at one interface is desirable for increasing Hsat, but introducing CoFe on both the interfaces caused the disappearance of the flop region similar to that observed in an all CoFe or crystalline CoFeB SAFs.



FIG. 1 is a simplified sectional view of an MRAM array 3 in accordance with the exemplary embodiment. In this illustration, only a single magnetoresistive memory bit 10 is shown, but it will be understood that MRAM array 3 includes a number of MRAM bits 10 and only one such bit is shown for simplicity.


MRAM bit 10 is sandwiched between a bit line 20 and a digit line 30. Bit line 20 and digit line 30 include conductive material such that a current can be passed there through. In this illustration, bit line 20 is positioned on top of MRAM bit 10 and digit line 30 is positioned on the bottom of MRAM bit 10 and is directed at a 90° angle to bit line 20 as shown in FIG. 2.


MRAM bit 10 includes a free magnetic region 15, a tunneling barrier 16, and a fixed magnetic region 17, wherein tunneling barrier 16 is sandwiched between free magnetic region 15 and fixed magnetic region 17. In this exemplary embodiment, free magnetic region 15 includes a tri-layer structure 18, which has an anti-ferromagnetic coupling spacer layer 65 sandwiched between two ferromagnetic layers 45 and 55. Anti-ferromagnetic coupling spacer layer 65 has a thickness 86 and ferromagnetic layers 45 and 55 have thicknesses 41 and 51, respectively. Further, fixed magnetic region 17 has a tri-layer structure 19, which has an anti-ferromagnetic coupling spacer layer 66 sandwiched between two ferromagnetic layers 46 and 58. The fixed magnetic region 17 is formed on a suitable seed layer 54 such as Tantalum. The magnetic bit 10 contacts the bit line 30 and digit line 20 through bottom and top electrodes (not shown). Anti-ferromagnetic coupling spacer layer 66 has a thickness 87 and ferromagnetic layers 46 and 58 have thicknesses 42 and 52, respectively.


Generally, anti-ferromagnetic coupling spacer layers 65 and 66 include at least one of the elements Ruthenium, Rhodium, Chromium, Vanadium, Molybdenum, for example, or combinations thereof and alloys of these such as Ruthenium-Tantalum. Further, ferromagnetic layers 45 and 55 include at least one of elements Nickel, Iron, Cobalt, or combinations thereof. In accordance with the exemplary embodiment, ferromagnetic layers 46 and 58 comprise Cobalt-Iron-Boron. Also, it will be understood that magnetic regions 15 and 17 can include material structures other than tri-layer structures and the use of tri-layer structures in this embodiment is for illustrative purposes only. For example, one such material structure could include a five-layer stack of a ferromagnetic layer/anti-ferromagnetic coupling spacer layer/ferromagnetic layer/anti-ferromagnetic coupling spacer layer/ferromagnetic layer structure. Another exemplary material structure for layer 15 would include a single ferromagnetic layer.


Ferromagnetic layers 45 and 55 each have a magnetic moment vector 57 and 53, respectively, that are usually held anti-parallel by coupling of the anti-ferromagnetic coupling spacer layer 65. Also, in some embodiments, the fixed magnetic region 17 has a resultant magnetic moment vector 50. The resultant magnetic moment vector 50 is oriented along an anisotropy easy-axis in a direction that is at an angle, for example between 30° to 60°, but preferably 45°, from bit line 20 and digit line 30 (see FIG. 2). Further, magnetic region 15 is a free ferromagnetic region, meaning that magnetic moment vectors 53 and 57 are free to rotate in the presence of an appropriately applied magnetic field. Magnetic region 17 is a fixed ferromagnetic region, meaning that the magnetic moment vectors 47 and 48 are not free to rotate in the presence of a moderate applied magnetic field. Layer 46 is the reference layer, meaning that the direction of its magnetic moment vector 48 determines which free layer magnetic states will result in high and low resistance. Ferromagnetic layer 58 having a magnetic moment 47, which could be either a single layer or a double layer, comprises ferromagnetic layer 56 and ferromagnetic interlayer 49, would be the pinned layer in conventional pinned SAF structures, but in this bit structure 10 the tri-layer structure 19 is designed so that a pinning layer beneath layer 58 is unnecessary.


The MRAM bit 10 does not have a pinning layer positioned contiguous to and for influencing the vector 50 within the fixed magnetic region 17. This is accomplished by fabricating the ferromagnetic layers 46 and 58 so that they exhibit a well-defined and sufficiently-high Hflop; using a combination of high Hk (uniaxial anisotropy), high Hsat (saturation field), and ideal soft magnetic properties exhibiting well-defined easy and hard axes.


The fixed SAF with no pinning layer provides several advantages over the conventional pinned SAFs. Some of these advantages are: (a) Simplified MTJ stack, (b) reduced cost (PtMn, pinning material typically used is the most expensive part of the MTJ stack), (c) an anneal step that is optimized for the MTJ stack rather than the pinning material (which is usually a higher temperature and for a longer time) and (d) reduced Mn diffusion related problems.


The exemplary embodiment comprises an amorphous Cobalt-Iron-Boron-based fixed SAF with different Boron compositions, grown on Tantalum, with a CoFe insertion layer 49 at the bottom interface of the spacer to boost Hsat. The CoFe-based films preferably comprise coercivities of less than 5.0 Oe and Hk greater than 10 Oe and preferably greater than 15 Oe. This structure has been shown to have the combination of sufficiently high Hsat and well-defined high Hk with the desired soft magnetic behavior.


While anti-ferromagnetic coupling layers 65 and 66 are illustrated between the two ferromagnetic layers in each tri-layer structure 18 and 19, it will be understood that the ferromagnetic layers 45, 55, 46, 58 could be anti-ferromagnetically coupled through other means, such as magnetostatic fields or other features. For example, when the aspect ratio of a cell is reduced to five or less, the ferromagnetic layers are anti-parallel coupled from magnetostatic flux closure.


MRAM bit 10 has tri-layer structures 18 that have a length/width ratio in a range of 1 to 5 for a non-circular plan. It will be understood that MRAM bit 10 can have various shapes, such as square, elliptical, rectangular, or diamond, but is illustrated in FIG. 2 as being circular for simplicity.


Further, during fabrication of MRAM array 3, each succeeding layer (i.e. 30, 54, 58, 66, 46, 16, 55, 65, etc.) is deposited or otherwise formed in sequence and each MRAM bit 10 may be defined by selective deposition, photolithography processing, etching, etc. in any of the techniques known in the semiconductor industry. During deposition of at least the ferromagnetic layers 45 and 55, a magnetic field may be provided to set a preferred easy magnetic axis for this pair (induced anisotropy). Similarly, a strong magnetic field applied during the post-deposition anneal step may induce a preferred easy axis. In addition, the bits are typically patterned to be longer in one direction, resulting in a shape anisotropy that favors the long axis of the bit.


It is desirable to have the magnetic vector within the ferromagnetic layer 46 pointing in a particular direction. However, in case of a balanced SAF, this is difficult because the symmetric nature of the structure means it is equally likely for the structure to end up in either of the two stable states after the high-field anneal process step. The measured resistance vs. field (R-H) loops for perfectly balanced SAFs illustrate that, since some curves have increasing resistance as the external field H is turned up and others have decreasing resistance with increasing H, some of the bottom SAFs set in one direction and some in the other.


This is controllable by introducing symmetry breakers in the reference SAF. A slightly magnetically imbalanced structure makes the fixed SAFs fall into a preferred state when removed from the high-field used for the high-field anneal step. An imbalance may be accomplished by making one layer slightly thicker than the other, generating a net magnetic moment 50 for the trilayer structure 10. A small amount of imbalance is sufficient to make the fixed layer in all the bits to go to the same direction. Too much imbalance in the SAF is not preferred due to various reasons. If the imbalance is too high, then we have a magnetic field acting on the bits from the imbalanced layer which influences device characteristics, which is undesirable. Also, too much of an imbalance will change flop behavior of the SAF. For best operation, the imbalance should be between 0.5% and 10%.


Another structure involving symmetry breaking without imbalancing the moment comprises the fixed magnetic region 17 (SAF) where the intrinsic Hk is different for the two ferromagnetic layers 46 and 58 (see FIG. 3). For example, different alloys of NiFe or CoFe can be chosen to give a factor of 2 to 4 difference in Hk, where vector 21 comprises a first Hk and vector 22 comprises a second Hk. The Hk difference gives an anisotropy energy difference for the two layers. Therefore, even after saturation from a large external field, the layer with the higher Hk will stay closer to the applied field direction so as to minimize energy. Then the lower Hk layer will be the one to reverse.


Yet another symmetry breaking structure for the fixed magnetic region 17 comprises a triple SAF shown in FIG. 4. This structure consists of a middle ferromagnetic layer 33 of thickness t1, and upper and lower ferromagnetic layers 35 and 31 respectively, of thickness t0 and t2 respectively. Anti-ferromagnetic coupling spacer layers 32 and 34 are positioned between ferromagnetic layers 31 and 33, and ferromagnetic layers 33 and 35, respectively. For this structure, t1≈2t0≈2t2. In this way, the moment is approximately balanced, but the dipole energy for the middle ferromagnetic layer 33 is twice that of either outer ferromagnetic layer 31 and 35. In addition, the shape anisotropy for the middle ferromagnetic layer 33 is twice that of the outer ferromagnetic layers 31 and 35. The net 9′ result is that after saturation, the thicker middle ferromagnetic layer 33 remains pointing in the field direction while the thinner ferromagnetic outer layers reverse.


While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.

Claims
  • 1. An MRAM bit comprising: a free magnetic region;an electrode;a fixed magnetic region comprising a synthetic antiferromagnetic material grown on the electrode, with Hflop greater than the switching field of the free magnetic region and with broken magnetic symmetry to define a preferred set direction of the magnetic moments of the synthetic antiferromagnet; anda tunneling barrier comprising a dielectric layer positioned between the free magnetic region and the fixed magnetic region.
  • 2. The MRAM bit of claim 1 wherein the electrode includes a layer of tantalum positioned in contact with the fixed magnetic region.
  • 3. The MRAM bit of claim 1 wherein the fixed magnetic region includes one or more layers comprised of an amorphous Cobalt Iron Boron alloy.
  • 4. The MRAM bit of claim 3 wherein the Boron within the Cobalt Iron Boron alloy is greater than 9.0 percent by atomic weight.
  • 5. The MRAM bit of claim 1 wherein the fixed magnetic region comprises first and second ferromagnetic layers positioned on opposed sides of the synthetic antiferromagnetic material, wherein the uniaxial anisotropy (Hk) of first and second ferromagnetic layers is greater than 10.0 Oe.
  • 6. The MRAM bit of claim 1 wherein the saturation field (Hsat) of the fixed magnetic region is greater than 1500 Oe.
  • 7. The MRAM bit of claim 1 wherein the fixed magnetic region comprises at least two ferromagnetic layers, each having coercivities less than 5.0 Oe.
  • 8. The MRAM bit of claim 1 wherein the fixed magnetic region comprises: a first ferromagnetic layer;a second ferromagnetic layer;a first anti-ferromagnetic coupling spacer layer grown between the first and second ferromagnetic layer;a third ferromagnetic layer grown between the first ferromagnetic layer and the anti-ferromagnetic coupling spacer layer; andwherein the first ferromagnetic layer and the second ferromagnetic layer comprise an amorphous cobalt-iron-boron alloy, the third ferromagnetic layer comprises one of a crystalline cobalt-iron alloy and a crystalline cobalt-iron-boron alloy, and the first anti-ferromagnetic coupling spacer layer comprises at least one of the elements Ruthenium, Rhodium, Chromium, Vanadium, Molybdenum, combinations and alloys thereof.
  • 9. The MRAM bit of claim 8 wherein the third ferromagnetic layer comprises a thickness less than a thickness of the first ferromagnetic layer.
  • 10. The MRAM bit of claim 1 wherein the fixed magnetic region comprises an anti-ferromagnetic coupling spacer layer positioned between two ferromagnetic layers, the two ferromagnetic layer comprising a different intrinsic Hk from one another.
  • 11. The MRAM bit of claim 1 wherein the fixed magnetic region comprises: a first ferromagnetic layer;a second ferromagnetic layer;a first anti-ferromagnetic coupling spacer layer grown between the first and second ferromagnetic layer;a third ferromagnetic layer; anda second anti-ferromagnetic coupling spacer layer grown between the second and third ferromagnetic layers, wherein the thickness of the second ferromagnetic layer is twice that of each of the first and third ferromagnetic layers.
  • 12. The MRAM bit of claim 11 wherein the second anti-ferromagnetic coupling spacer layer comprises at least one of Ruthenium, Rhodium, Chromium, Vanadium, Molybdenum, combinations thereof, and alloys thereof.
  • 13. The MRAM bit of claim 1 wherein the fixed magnetic region comprises an anti-ferromagnetic coupling spacer layer positioned between two ferromagnetic layers, the first and second ferromagnetic layers having a magnetic moment difference between the two of between 0.5 and 10.0 percent.
  • 14. An array of MRAM bits, wherein each MRAM bit is uniquely coupled between one of a plurality of first conductors and one of a plurality of second conductors, each MRAM bit comprising: a fixed magnetic region comprising: a first ferromagnetic layer electrically coupled to one of the first conductors;a first anti-ferromagnetic coupling spacer layer formed on the first ferromagnetic layer; anda second ferromagnetic layer formed on the first anti-ferromagnetic coupling spacer layer;a tunneling barrier comprising a dielectric layer formed on the second ferromagnetic layer; anda free magnetic region formed between the tunneling barrier and one of the second conductors and electrically coupled to one of the second conductors, the fixed magnetic region having an Hflop greater than the switching field of the free magnetic region and with broken magnetic symmetry to define a preferred set direction of the magnetic moments of the fixed magnetic region.
  • 15. The MRAM bit of claim 14 further comprises an electrode including a layer of tantalum positioned between the first ferromagnetic layer and the one of the first conductors.
  • 16. The MRAM bit of claim 14 wherein at least one of the first and second ferromagnetic layers comprises an amorphous Cobalt Iron Boron alloy.
  • 17. The MRAM bit of claim 16 wherein the Boron within the Cobalt Iron Boron alloy is greater than 9.0 percent by atomic weight.
  • 18. The MRAM bit of claim 14 wherein the uniaxial anisotropy (Hk) of the ferromagnetic layers in the fixed region is great than 10.0 Oe.
  • 19. The MRAM bit of claim 14 wherein the saturation field (Hsat) of the fixed region is greater than 1500 Oe.
  • 20. The MRAM bit of claim 14 wherein each of the first and second ferromagnetic layers comprised have coercivities less than 5.0 Oe.
  • 21. The MRAM bit of claim 14 further wherein the first anti-ferromagnetic coupling spacer layer comprises at least one of the elements Ruthenium, Rhodium, Chromium, Vanadium, Molybdenum, combinations thereof, and alloys thereof, further comprising a layer of one of a Cobalt-Iron alloy and a crystalline Cobalt-Iron-Boron alloy grown between the first antiferromagnetic coupling spacer layer and the first ferromagnetic layer.
  • 22. The MRAM bit of claim 21 wherein the layer of one of the Cobalt-Iron or crystalline Cobalt-Iron-Boron comprises a thickness less than a thickness of the first ferromagnetic layer.
  • 23. The MRAM bit of claim 14 wherein the first and second ferromagnetic layers comprise a different intrinsic Hk from one another.
  • 24. The MRAM bit of claim 14 further comprising: a third ferromagnetic layer; anda second anti-ferromagnetic coupling spacer layer grown between the second and third ferromagnetic layers, wherein the thickness of the second ferromagnetic layer is twice that of each of the first and third ferromagnetic layers.
  • 25. The MRAM bit of claim 14 wherein the first and second ferromagnetic layers have a magnetic moment difference between the two of between 0.5 and 10.0 percent.