1. Field of Invention
The present invention relates to a bandsaw machine, and more particularly to a multi-bandsaw machine having several bandsaws, capable of cutting wood, stone, or other materials into a plurality of plates in a single process.
2. Related Art
A bandsaw machine is mainly used for cutting in metalwork or carpentry. Wood, stone, or other materials are cut by the bandsaw machine into plates with a certain thickness, so as to be easily conveyed or used by workers. Generally, the bandsaw machine is formed by a machine body and a cutter mounted on the body. The cutter has two symmetrically disposed bandsaw wheels, and a bandsaw winds around the bandsaw wheels. The two bandsaw wheels are spaced by a span with a predetermined length, and the two ends of the bandsaw are respectively fit on the two bandsaw wheels.
Meanwhile, a conveyor belt is disposed near the bandsaw machine at a position corresponding to the bandsaw. The conveyor belt is used for delivering wood, stone, or other materials to be cut. Taking a cutting process of a stone material for example, when the bandsaw machine is adapted to cut the stone material, the bandsaw wheels are driven to rotate by a motor, so as to force the bandsaw to revolve at a high speed between the two bandsaw wheels.
Then, the worker starts the conveyor belt to deliver the stone material to the bandsaw, and the bandsaw in high-speed revolving cuts the stone material into a plate with a predetermined thickness. However, in the configuration of the bandsaw machine, as only one bandsaw is provided, a single piece of stone material is obtained by cutting each time, and the delivering distance of the conveyor belt must be controlled in order to obtain stone plates at the same thickness. Thereby, it is impossible to produce a large number of stone plates by cutting within a certain period of time, so that the producing efficiency of the stone plates is low and the manufacturing cost is greatly increased.
Accordingly, the present invention is a multi-bandsaw machine capable of improving the design of a common bandsaw machine having only one bandsaw, so as to solve the problem in the prior art that only a single piece of wood, stone, or other materials is obtained by cutting in a single process, and meanwhile the thickness of the cut plate is difficult to control, which not only affects the cutting efficiency of the process, but also increases the manufacturing cost.
The present invention provides a multi-bandsaw machine for cutting a material into a plurality of plates in a single process. The multi-bandsaw machine comprises several bandsaws, and the bandsaws move in a single direction on the multi-bandsaw machine. At least one of two opposite side edges of each bandsaw is provided with a plurality of diamond grits, so that the bandsaws cut the material with the diamond grits and form a cutting notch on the material. The cutting notch has a depth to kerf ratio at least larger than 100:1 during the process of cutting the material with the diamond grits in each hour.
The multi-bandsaw machine provided by the present invention has several bandsaws, and is capable of cutting metal, wood, stone, or other materials into a plurality of plates in a single process, in which the obtained plates may have the same thickness or different thicknesses. Thereby, the cutting efficiency is enhanced and the operating times of the cutting process is reduced, so as to lower the operating cost of the process. Moreover, in the cutting process of a material, as the cutting notch made by the bandsaws on the material has a depth to kerf ratio maintained larger than 100:1 in each hour, the scraps produced in forming the cutting notch are reduced, thus saving the material and lowering the manufacturing cost of the plates.
The description on the content of the present invention above and the description on the embodiments below are used to exemplify and explain the spirit and principle of the present invention, and provide further explanation on the claims of the present invention.
The present invention will become more fully understood from the detailed description given herein below for illustration only, and thus are not limitative of the present invention, and wherein:
The multi-bandsaw machine provided by the present invention is used to cut metal, wood, and stone materials. In the embodiments of the present invention, a cutting process of a stone material is taken as an example for illustration, and the present invention is not limited thereto.
Referring to
The elevator mechanism 20 has two elevating bases 21 and two elevating motors 22. The two elevating bases 21 are respectively disposed on the two fixing posts 12, and partially embedded in the fixing posts 12. Each elevating base 21 has a screw rod 211 and a slide block 212. One end of the screw rod 211 penetrates the elevating base 21, and the other end protrudes from the other side of the platform 11 opposite to the fixing posts 12. The slide block 212 is fit on the end of the screw rod 211 penetrating the elevating base 21. A nut (not shown) is annularly disposed on a contact surface between the slide block 212 and the screw rod 211, and the nut matches with the thread on the screw rod 211. The two elevating motors 22 are disposed on the other side of the platform 11 opposite to the two fixing posts 12, and respectively connected to the ends of the two screw rods 211 protruding from the platform 11.
Referring to
A plurality of sleeve joint portions 314, 324 of different diameters is annularly disposed on the rotating discs 313, 323. In this embodiment, the rotating discs 313, 323 respectively have three sleeve joint portions 314, 324, and the number of the sleeve joint portions 314, 324 may be set as two, four, or others upon actual requirements, which is not limited herein. The sleeve joint portions 314, 324 of different diameters are integrally formed on the rotating discs 313, 323, and respectively constitute a step-like structure on the rotating discs 313, 323, as shown in
Referring to
The bandsaws 40 are diamond bandsaws. Specifically, a plurality of diamond grits 41 (as shown in
Meanwhile, a tension controller 325 is disposed on the body 321 of the second bandsaw wheel 32, and has a plurality of push rods 326. One end of each push rod 326 is movably disposed on the tension controller 325, and the other end is connected to the rotating shaft 322 of the second bandsaw wheel 32. The tension controller 325 drives the push rods 326 to draw or push against the rotating shaft 322 by means of oil pressure or hydraulic pressure, such that the rotating shaft 322 of the second bandsaw wheel 32 forces the rotating disc 323 to approach to or move away from the body 321, so as to adjust the tightness (i.e., the bandsaw tension) of the bandsaws 40 between the first bandsaw wheel 31 and the second bandsaw wheel 32. For example, when the push rods 326 of the tension controller 325 push against the rotating shaft 322 to make the rotating disc 323 apart from the body 321, the bandsaws 40 are tightly pressed against the sleeve joint portions 314, 324 of the first bandsaw wheel 31 and the second bandsaw wheel 32, thus preventing the bandsaws 40 from falling off the bandsaw wheelset 30.
Referring to
Further referring to
The two counterweight devices 80 are symmetrically disposed on two ends of the machine body 10, and each counterweight device 80 has a pulley block 81 and a chain 82. The pulley block 81 may have a single pulley or a plurality of pulleys. In this embodiment, the pulley block 81 formed by two pulleys is disposed on the platform 11 at a position adjacent to the elevating motor 22. The chain 82 is disposed across and rested on the two pulleys 81. The chains 82 of the two counterweight devices 80 are respectively connected to the bodies 311, 321 of the first bandsaw wheel 31 and the second bandsaw wheel 32. A counterweight block 83 is disposed on the other end of each chain 82, for adjusting the positioning of the first bandsaw wheel 31 and the second bandsaw wheel 32 between the machine body 10 and the plane 70.
Referring to
Then, the elevating motors 22 of the elevator mechanism 20 are started to drive the screw rods 211 connected thereto to rotate, and thus the slide block 212 fit on each screw rod 211 is forced to make a synchronous displacement. Moreover, as the bodies 311, 321 of the first bandsaw wheel 31 and the second bandsaw wheel 32 are respectively connected to the slide blocks 212 on the screw rods 211, when the elevating motors 22 are started, the first bandsaw wheel 31 and the second bandsaw wheel 32 are propelled to make synchronous to-and-fro displacements between the platform 11 and the plane 70, and the first bandsaw wheel 31 and the second bandsaw wheel 32 remain at the same level between the platform 11 and the plane 70. Further, in accordance with the adjustment of the counterweight blocks 83 of the counterweight devices 80, the weights of the first bandsaw wheel 31 and the second bandsaw wheel 32 are adjusted, so as to make the bandsaws 40 remain in parallel with the plane 70 between the machine body 10 and the stone material 74.
In addition, a connecting device (not shown) may also be disposed between the body 311 of the first bandsaw wheel and the body 321 of the second bandsaw wheel, for example, a connecting rod or a connecting plate, such that the body 311 of the first bandsaw wheel and the body 321 of the second bandsaw wheel are connected via the connecting device, so as to enhance the stability of the synchronous displacement of the first bandsaw wheel 31 and the second bandsaw wheel 32 between the platform 11 and the plane 70.
Next, referring to
Moreover, when the bandsaws 40 cut the stone material 74, the cutting notch made by the bandsaws 40 on the stone material 74 has a depth h1 and a width w1 with a ratio (depth to kerf ratio, h1/w1) at least larger than 100:1 in each hour. That is, if the width w1 of the cutting notch is 1.8 to 2.5 mm, for example, 2.2 mm, the depth h1 of the cutting notch formed by the bandsaws 40 cutting into the stone material 74 is at least 440 mm, and the depth to kerf ratio remains larger than 200:1 in each hour till obtaining a stone plate from the stone material 74. Therefore, when the bandsaws 40 cut the granite at a speed of 70 to 120 cm/h, the cutting notch 741 made by the bandsaws 40 on the granite has a depth to kerf ratio in a range of 280:1 (70 cm/2.5 mm) to 667:1 (120 cm/1.8 mm). When the bandsaws 40 cut the marble at a speed of 210 to 360 cm/h, the cutting notch 741 made by the bandsaws 40 on the marble has a depth to kerf ratio in a range of 840:1 (210 cm/2.5 mm) to 2000:1 (360 cm/1.8 mm). The above content is an example for illustration only, instead of limiting the present invention.
As the multi-bandsaw machine of the present invention cuts the stone material 74 with several bandsaws 40 at the same time, a plurality of stone plates (not shown) is obtained when the elevator mechanism 20 propels the bandsaws 40 to cut the stone material 74 in a single process, thereby accelerating the cutting speed of the stone material 74. Moreover, due to the distances between the bandsaws 40 as well as the tangential speed of the bandsaws 40 in accordance with the cutting speed, the cut stone plate has a thickness of 3 to 20 mm, for example, 3 mm, 5 mm, 10 mm, 12 mm, or 18 mm.
Meanwhile, for a common to-and-fro drag-saw machine generally used for cutting a stone material, limited by the length of the drag-saw during the cutting process, the drag-saw has to be held up for a while when reaching a set point, and then starts moving to the opposite direction. Therefore, when cutting a stone material, the drag-saw will pause for a while at two set points in two opposite directions, resulting in a delay of the cutting process. However, for the multi-bandsaw machine in the first embodiment of the present invention, as the bandsaws rotate in a single direction at a tangential speed of 20 to 40 m/s, for example, in a clockwise or anticlockwise direction, the cutting process of the stone material 74 may not be restricted by the length of the bandsaws, and no delay will be caused, so that the cutting efficiency of the bandsaws on the stone material is significantly improved.
In addition, when a bandsaw machine or drag-saw machine is used for cutting a stone material, as the bandsaw (or drag-saw) goes deeper and deeper in the stone material, the cutting notch made by the bandsaw (or drag-saw) on the stone material also becomes increasingly wider. For example, when the bandsaw (or drag-saw) is 100 mm deep cut into the stone material, a cutting notch with a width of 2 mm is formed, and the larger the width of the cutting notch is, the more waste of the stone material made by the bandsaw (or drag-saw) will be. Besides, in each cutting process, a part of the stone material is wasted, and the number of the stone plates that can be produced from a single stone material is largely reduced, so that the utilization of the stone material is reduced and the cost is increased. However, for the multi-bandsaw machine in the first embodiment of the present invention, during the cutting process of the stone material, when the bandsaws cut into the stone material, the cutting depth and width made by the bandsaws in the stone material are maintained at a depth to kerf ratio larger than 100:1 in each hour, and the cutting notch made by the bandsaw on the stone material has a width of about 2.2 mm. Therefore, the waste of the stone material made by the bandsaws is significantly reduced, and the number of the stone plates that can be produced from a single unit of the stone material is increased, thus lowering the manufacturing cost of the stone plates.
Referring to
Further, referring to
The bandsaw wheelset 30 has a first bandsaw wheel 31 and a second bandsaw wheel 32, the first bandsaw wheel 31 and the second bandsaw wheel 32 respectively have a rotating shaft 312, 322 and a rotating disc 313, 323, and a plurality of sleeve joint portions 314, 324 of different diameters is annularly disposed on the rotating discs 313, 323, so that the rotating discs 313, 323 respectively form a step-like structure. In this embodiment, the rotating discs 313, 323 respectively have three sleeve joint portions 314, 324, and the number of the sleeve joint portions 314, 324 may be altered upon actual requirements. The first bandsaw wheel 31 and the second bandsaw wheel 32 are disposed perpendicular to the plane 70 on the machine body 10, the rotating shaft 312 of the first bandsaw wheel 31 penetrates the rotating disc 313, and two ends of the rotating shaft 312 are respectively movably disposed on two opposite sidewalls 113 in the gap 112 of the platform 11, such that the first bandsaw wheel 31 may rotate in the gap 112 via the rotating shaft 312. Besides, a belt pulley 315 is fit on one end of the rotating shaft 312.
The second bandsaw wheel 32 is disposed in the groove 73 of the plane 70, the rotating shaft 322 of the second bandsaw wheel 32 penetrates the rotating disc 323, and two ends of the rotating shaft 322 are respectively movably disposed on two opposite support arms 114 of the support frame 111, such that the second bandsaw wheel 32 may rotate on the support frame 111 via the rotating shaft 322. Therefore, the bandsaw wheelset 30 is disposed perpendicular to the plane 70 on the machine body 10.
Further referring to
The two guide wheelsets 50 are respectively disposed on the platform 11 at positions adjacent to the first bandsaw wheel 31 and the second bandsaw wheel 32, and each guide wheelset 50 has a plurality of rollers 51. The rollers 51 are press-fit on a band surface of each bandsaw 40, so as to guide the rotation of the bandsaws 40 between the first bandsaw wheel 31 and the second bandsaw wheel 32.
The power mechanism 60 may be disposed on the platform 11 at a position adjacent to either the first bandsaw wheel 31 or the second bandsaw wheel 32, or at positions respectively adjacent to the first bandsaw wheel 31 and the second bandsaw wheel 32. In this embodiment, to ease the illustration, the power mechanism 60 is, for example, disposed on the platform 11 at a position adjacent to the first bandsaw wheel 31, and the present invention is not limited thereto. The power mechanism 60 has a drive motor 61, a drive pulley 62, and a belt 63. The drive pulley 62 is disposed on one end of the drive motor 61, and connected to the rotating shaft 312 through the belt 63. Two ends of the belt 63 are respectively fit on the drive pulley 62 of the drive motor 61 and the belt pulley 315 of the rotating shaft 312. Thereby, the drive motor 61 drives the drive pulley 62 to rotate, and the belt pulley 315 on the rotating shaft 312 is forced by the belt 63 to propel the first bandsaw wheel 31 to rotate.
The bandsaw tension controller 90 is disposed on one side of the machine body 10 adjacent to the bandsaws, and has a plurality of pull rods 91. One end of each pull rod 91 is movably disposed on the bandsaw tension controller 90, and the other end has a column 92. The columns 92 are respectively hooked on the bandsaws 40. The bandsaw tension controller 90 drives the pull rods 91 by means of oil pressure, hydraulic pressure, or gravity. In this embodiment, the pull rods 91 are driven by oil pressure to propel the columns 92 to draw the bandsaws 40, such that the bandsaws 40 are closely attached to the sleeve joint portions 314, 324 of the first bandsaw wheel 31 and the second bandsaw wheel 32 due to the increase of the tension.
Referring to
In addition, during the cutting process of the stone material, when the bandsaws 40 contact the stone material 74, a cutting notch (not shown) having a width of 1.8 to 2.5 mm (for example, 2.2 mm) is made by the bandsaws 40 on the stone material 74. The bandsaws 40 cut into the stone material 74 at a speed of 70 to 360 cm/h, and the cutting speed may be adjusted according to the type of the stone material 74. For example, when the stone material 74 is granite, the cutting speed is in a range of 70 to 120 cm/h, and when the stone material 74 is marble, the cutting speed is in a range of 210 to 360 cm/h. Moreover, during the cutting process, a ratio between the depth of the bandsaws 40 cutting into the stone material 74 and the width of the cutting notch made by the bandsaws 40 on the stone material 74 (i.e., depth to kerf ratio) is at least larger than 100:1 in each hour. That is to say, if the width of the cutting notch is 2.2 mm, the depth of the bandsaws 40 cutting into the stone material 74 is at least 440 mm, and the depth to kerf ratio remains larger than 200:1 in each hour till obtaining a stone plate from the stone material 74.
The multi-bandsaw machine provided by the present invention has a plurality of sleeve joint portions of different diameters on two symmetrically disposed bandsaw wheels, and the bandsaws are fit on the sleeve joint portions, such that the multi-bandsaw machine is capable of cutting metal, wood, stone, or other materials into a plurality of plates in a single process, in which the obtained plates may have the same thickness or different thicknesses. Thereby, the operating times of the cutting process is reduced and the cutting efficiency is enhanced, so as to lower the operating cost of the process. Meanwhile, the diameters of the sleeve joint portions may be changed to selectively control the thickness of the plates, and the obtained plates may have the same thickness.
Moreover, when the multi-bandsaw machine of the present invention is used for cutting a material, as the cutting notch made by the bandsaws on the material has a depth to kerf ratio maintained larger than 100:1 in each hour, the waste of the material is significantly reduced, the utilization of the material is improved, and the manufacturing cost of the plates is also lowered.