This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2005-346046, filed Nov. 30, 2005, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
This invention relates to a multi-beam klystron apparatus for amplifying radio-frequency power.
2. Description of the Related Art
The conventional klystron apparatus includes an electron gun unit for generating an electron beam, an input unit for inputting radio-frequency power, a radio-frequency interaction unit for amplifying the radio-frequency power by the interaction between the electron beam and the radio-frequency electric field, an output unit for outputting the radio-frequency power from the radio-frequency interaction unit, a klystron body having a collector unit for capturing the used electron beam having passed through the radio-frequency interaction unit, and a focusing magnetic field unit mounted on the klystron body for focusing the electron beams. The radio-frequency interaction unit includes drift tubes through which the electron beams pass, an input cavity connected to the drift tubes along the direction in which the electron beams proceed and a plurality of intermediate and output cavities, wherein the input cavity is connected with the input unit and the output cavity with the output unit.
Generally, the electron beam of the klystron apparatus, in the absence of radio frequency, has a substantially constant thickness. In the radio-frequency operation, however, the electron beams are bunched progressively downstream in the direction of radiation and, in the neighborhood of the output cavity, the degree of density thereof comes to be clearly defined. At points where electron density is high, the electron beam tends to spread diametrically due to the reaction of the electrons due to the space charge thereof. For this reason, a method is employed in which the radius of the drift tube surrounding the electron beam is increased to prevent collision or the axial magnetic flux density of the focusing magnetic field in the neighborhood of the output cavity is increased to suppress the spread of the electron beam. The method of simply increasing the radius of the drift tube, however, encounters the problem of a reduced output conversion efficiency, and therefore a method is generally employed in which the axial magnetic flux density of the focusing magnetic field is increased in the neighborhood of the output cavity.
Also, it is generally known in this particular field of technique that the lower the ratio of the beam current to the beam voltage called the perveance, the higher the output conversion efficiency of the klystron apparatus. Also, one of the means for improving the efficiency is known to be provided by a multi-beam klystron apparatus in which the number of electron beams is increased from one to several or several tens and the perveance of each electron beam is set low to suppress the beam voltage applied to the electron gun unit while at the same time improving the overall output conversion efficiency (Jpn. PCT National Publication No. 2002-520772).
In the multi-beam klystron apparatus, several to several tens of electron beams are arranged at a distance from the center axis of the klystron apparatus. For example, electron beams are arranged at intervals of 60 degrees at the distance of 60 mm from the center axis of the body of the klystron apparatus.
In this multi-beam klystron apparatus, an increase in the axial magnetic flux density in the neighborhood of the output cavity to suppress the spread of the electron beam, like in the single-beam klystron apparatus, would pose the problem that the lines of magnetic force are curved and so are the electron beams. This is specifically explained with reference to the graph of
In the case where the output unit such as the waveguide or the coaxial tube output unit connected to the output cavity is led out substantially at right angles to the center axis of the klystron body, on the other hand, a focusing magnet may not be arranged at the particular location. In such a case, the axial magnetic flux density is reduced in the neighborhood of the output cavity. This curves the lines of magnetic force at other than the center axis of the klystron body, with the result that the electron beam is curved in the multi-beam klystron apparatus in which the electron beam passes a point distant from the center axis of the klystron body.
This invention has been achieved in view of this situation, and the object thereof is to provide a multi-beam klystron apparatus in which the axial magnetic flux density in the neighborhood of the output cavity can be increased without curving the electron beam.
A multi-beam klystron apparatus of the present invention comprises: an electron gun unit which generates electron beams from a plurality of points; an input unit which inputs radio-frequency power; a radio-frequency interaction unit which includes, from the electron gun unit side, an input cavity, a plurality of intermediate cavities and an output cavity, and amplifies the radio-frequency power input from the input unit to the input cavity by the interaction between the electron beams generated in the electron gun unit and a radio-frequency electric field; an output unit which outputs the radio-frequency power from the output cavity of the radio-frequency interaction unit; a collector unit which captures the electron beams passing through the radio-frequency interaction unit; and a focusing magnetic field unit which focuses the electron beams generated by the electron gun unit, the focusing magnetic field unit including: a main magnetic field generator arranged on the outside of the input cavity and the intermediate cavities of the radio-frequency interaction unit; an output-side magnetic field generator arranged on the outside of the output cavity of the radio-frequency interaction unit; an electron gun-side pole piece arranged between the radio-frequency interaction unit and the electron gun unit; a collector-side pole piece arranged between the radio-frequency interaction unit and the collector unit; and a radio-frequency interaction unit pole piece arranged between the output-side magnetic field generator and the main magnetic field generator.
According to this invention, there is provided a multi-beam klystron apparatus in which a pole piece in a radio-frequency interaction unit (radio-frequency interaction unit pole piece) is arranged between an output magnetic field generator and a main magnetic field generator thereby to separate the magnetic circuit in the neighborhood of the output cavity of the radio-frequency interaction unit. Therefore, the axial magnetic flux density can be increased in the neighborhood of the output cavity without curving the electron beam so that the spread of the electron beams in the neighborhood of the output cavity can be prevented.
Advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. Advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention, and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the invention.
Embodiments of this invention will be explained below with reference to the accompanying drawings.
As shown in
As shown in
The electron gun unit 18 includes a plurality of cathodes 26 arranged on the circumference around the center axis 14 and generating electron beams. An anode 27 is arranged in opposed relation to each cathode 26. A focusing electrode 28 to focus the electron beams is arranged around the cathodes 26.
The radio-frequency interaction unit 19 includes a plurality of drift tubes 30 arranged on the circumference around the center axis 14 and allowing the electron beams to pass therethrough, respectively, an input cavity 31 connected to each drift tube 30 along the direction in which the electron beams proceed, a plurality of intermediate cavities 32, 33, 34, 35 and an output cavity 36. The input unit 20 is connected to the input cavity 31, and the output unit 21 is connected to the output cavity 36.
Next, as shown in
An outer peripheral magnetic pole 46 is arranged on the outer periphery of the magnetic field generators 40 to 44. An end surface magnetic pole 47 is arranged on the end surface on the collector unit 22 side, and an inner peripheral magnetic pole 48 is arranged on the inside of the end surface magnetic pole 47. These magnetic poles 46 to 48 make up a return frame. An electron gun-side pole piece 49 is arranged between the radio-frequency interaction unit 19 and the electron gun unit 18. A collector-side pole piece 50 is arranged between the radio-frequency interaction unit 19 and the collector unit 22. An electron beam trajectory correcting-auxiliary pole piece 51 is arranged between the main magnetic field generator 40, the lateral magnetic field-suppressing magnetic field generator 41 and the intermediate cavity 32 on the one hand and the electron beam trajectory-correcting magnetic field generator 43 on the other hand and also between the two electron beam trajectory-correcting magnetic field generators 43. A radio-frequency interaction unit pole piece 52 is arranged between the main magnetic field generator 40, the lateral magnetic field-suppressing magnetic field generator 41 and the intermediate cavity 35 on the one hand and the output-side magnetic field generator 44 and the output cavity 36 on the other hand. The magnetic poles 46 to 48 and the pole pieces 49 to 52 are formed of a magnetic material and generate therein the magnetic field of each of the magnetic field generators 40 to 44.
The pole pieces 49 to 52 each form a discal magnetic pole configured of each of the pole pieces 49a to 52a arranged on the focusing magnetic field unit 13 and each of the pole pieces 49b to 52b arranged on the klystron body 12. The pole pieces 49 to 52 are each formed with a plurality of holes 53 on the circumference around the center axis 14, through which each electron beam passes.
Also, the electron gun-side magnetic field generator 42 is arranged on the outside of the electron gun-side pole piece 49, and configured of, for example, one auxiliary magnet 58 formed of an electromagnet including a coil. This auxiliary magnet 58 is surrounded by the electron gun-side magnetic pole 59 configured of a magnetic material coupled to the electron gun-side pole piece 49. The electron gun-side magnetic pole 59 has an outer peripheral magnetic pole, an inner peripheral magnetic pole and magnetic poles at axial ends, and the inner peripheral surface of the electron gun-side magnetic pole 59 is formed with two axial magnetic gaps 60 corresponding to the direction in which the electron beams proceed.
Now, the operation of the multi-beam klystron apparatus 11 is explained.
In the multi-beam klystron apparatus 11, a plurality of electron beams are generated at points displaced from the center axis 14 of the focusing magnetic field unit 13. At a point displaced from the center axis 14, lateral magnetic fields are generated in addition to axial magnetic fields, and therefore the electron beam is liable to be curved at the ends of the main magnetic field generator 40. In order to suppress this lateral magnetic field, the lateral magnetic field-suppressing magnetic field generator 41 high in current density is arranged at each end of the axially long main magnetic field generator 40. Thus, the lines of magnetic force 54 parallel to the center axis 14 of the klystron body 12 are formed on the inside of the inner diameter of the main magnetic field generator 40.
Also, in order to suppress the spread of the electron beam in the neighborhood of the output cavity 36, the output-side magnetic field generator 44 is arranged.
The radio-frequency interaction pole piece 52 arranged between the main magnetic field generator 40 and the output-side magnetic field generator 44 is shielded to prevent the magnetic field generated in the main magnetic field generator 44 from leaking to the neighborhood of the output cavity 36 on the one hand while at the same time preventing the magnetic field generated in the output-side magnetic field generator 44 from leaking to the area in the front intermediate cavity 35.
The axial distance between the collector-side pole piece 50 and the radio-frequency interaction unit pole piece 52 is comparatively small, and therefore the lines of magnetic force 56 generated in the output-side magnetic field generator 44 remain parallel with the center axis 14 of the klystron body 12 on the inside of the inner diameter of the output-side magnetic field generator 44 even if the axial magnetic flux density is increased.
As shown in
Also, the electron gun-side magnetic field generator 42 includes two magnetic gaps 60 formed so that the lines of magnetic force locally leak along the center axis and the lines of magnetic force in the neighborhood of the cathode 26 are parallel to the center axis 14. By using the following electron beam trajectory-correcting magnetic field generator 43, the radius of the electron beam is regulated and ripples corrected thereby to produce a beautiful electron beam.
The pole pieces 49 to 52 each have a hole 53 through which the electron beam passes. Since this hole 53 may have the minimum radius to pass the electron beam, however, the magnetic field leaking out of the hole has substantially no effect on the other electron beams.
By separating the main magnetic field generator 40 and the lateral magnetic field-suppressing magnetic field generator 41, the electron gun-side magnetic field generator 42, the electron beam trajectory-correcting magnetic field generator 43 and the output-side magnetic field generator 44 from each other by the pole pieces 49, 51, 52, the mutual effect is greatly reduced and each unit can generate the lines of magnetic force parallel to the center axis 14 independently.
As described above, by arranging the radio-frequency interaction unit pole piece 52 between the output-side magnetic field generator 44 and the main magnetic field generator 40, the magnetic circuit formed in the neighborhood of the output cavity 36 of the radio-frequency interaction unit 19 can be separated. Therefore, the axial magnetic flux density in the neighborhood of the output cavity 36 can be increased without curving the electron beams, thereby making it possible to prevent the spread of the electron beams in the neighborhood of the output cavity 36.
The main magnetic field generator 40 is separated into a main magnetic field generator 40A arranged on the outside of the input cavity 31 to the intermediate cavities 32, 33, 34 except for the intermediate cavity 35 near to the output cavity 36 on the one hand and a main magnetic field generator 40B arranged on the outside of the intermediate cavity 35 near to the output cavity 36.
The radio-frequency interaction unit pole piece 52 is configured of a radio-frequency interaction unit pole piece 52A arranged between the main magnetic field generator 40 and the lateral magnetic field-suppressing magnetic field generator 41 on the one hand and the intermediate cavity 35, the output-side magnetic field generator 44 and the output cavity 36 on the other hand, and a radio-frequency interaction unit pole piece 52B arranged between the separated main magnetic field generators 40A and 40B.
The main magnetic field generator 40A generates a magnetic field parallel to the center axis 14 in the area from the input cavity 31 to the intermediate cavities 32, 33, 34, while the main magnetic field generator 40B generates a magnetic field parallel to the center axis 14 in the area of the intermediate cavity 35 near to the output cavity 36.
According to this embodiment, the electron beams are progressively bunched in the radio-frequency interaction unit 19 of the multi-beam klystron apparatus 11, and in order to prevent the gradual spread of the electron beams, the magnetic flux density distribution can be increased progressively as the electron beams proceed downstream.
As an alternative, the main magnetic field generator 40 may be separated into three or more parts on the output cavity 36 side, and three or more radio-frequency interaction unit pole pieces 52 may be arranged correspondingly.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2005-346046 | Nov 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5773934 | Uhm | Jun 1998 | A |
6326730 | Symons | Dec 2001 | B1 |
6495953 | Imura | Dec 2002 | B1 |
6847168 | Ives et al. | Jan 2005 | B1 |
7116064 | Bluem | Oct 2006 | B1 |
20020008478 | Schult | Jan 2002 | A1 |
20020180362 | Symons | Dec 2002 | A1 |
20030038603 | Mako et al. | Feb 2003 | A1 |
Number | Date | Country |
---|---|---|
2002-520772 | Jul 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20080100384 A1 | May 2008 | US |