The present invention relates generally to the field of radio frequency (RF) multiple-input-multiple-output (MIMO) systems and in particular to systems and methods for enhanced performance of RF MIMO systems using RF beamforming and/or digital signal processing.
In order to increase the number of users that can simultaneously use a cell's resources (e.g., spectrum), as well as reducing inter-cell interference by shrinking footprint of downlink signals, Active Antenna Array solutions (AAS) may be used to split cells into sectors; such cell splitting may be done in both Azimuth and Elevation domains, breaking up the cell into horizontal or vertical beams, or 2D (two dimensional) beams. Efficient reuse of spectrum in such sectors apparatus requires knowledge of “cross-talk” between different beams as seen by the UEs. It is also desirable to shape the beams in such a way that will minimize such cross-talk; internal cross-talk created by side-lobes and grating lobes should be controlled by antenna technology means, while external cross-talk sources coming from environmental reflections (multipath) should be handled by informed antennas weight setting.
As typical AAS solutions require multiplication of transceivers and baseband circuitries, sometimes driving costs up, architectures that may implement MU (multiple users) MIMO base station with less hardware may be advantageous in cases where cost sensitivity is significant.
Some embodiments of the present invention provide a system and method which may include a plurality of transmit and receive antennas covering one sector of a cellular communication base station; a multi-beam RF beamforming matrix connected to said transmit and receive antennas; a plurality of radio circuitries connected to said multi-beam RF beamforming matrix; and a baseband module connected to said radio circuitries. The multi-beam RF beamforming matrix is configured to generate one sector beam and two or more directional co-frequency beams pointed at user equipment (UEs) within said sector, as instructed by the baseband module. A number M denotes the number said directional beams and a number N denotes the number of said radio circuitries and wherein M>N.
For a better understanding of the invention and in order to show how it may be implemented, references are made, purely by way of example, to the accompanying drawings in which like numerals designate corresponding elements or sections. In the accompanying drawings:
With specific reference now to the drawings in detail, it is stressed that the particulars shown are for the purpose of example and solely for discussing the preferred embodiments of the present invention, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention. The description taken with the drawings makes apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
Before explaining the embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following descriptions or illustrated in the drawings. The invention is applicable to other embodiments and may be practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
In one embodiment each of the beams (e.g., up to sixteen) may have a radio capable of measuring channel metrics for the communications to users (operating UE devices) in a subsector beam. When one user UE device is transmitting, the other radios may measure and record the amplitude of that signal in the other beams as contamination (interference). After all subsector beams have been characterized for all UE devices in a sector, a decision can be made to assign which UE devices to which subsector beams for operation and to determine which UE devices can be operated simultaneously with which others. Inasmuch as the beams and subsectors overlap in coverage to ensure communications are possible anywhere in the sector, support for one UE device may be provided by more than one beam (e.g., in
Beamformer 200 of
The system may include a plurality of transmit and receive antennas covering one sector of a cellular communication base station; a multi-beam RF beamforming matrix connected to said transmit and receive antennas; a plurality of radio circuitries connected to said multi-beam RF beamforming matrix; and a baseband module connected to said radio circuitries 320, wherein the multi-beam RF beamforming matrix is configured to generate two or more directional co-frequency beams pointed at or directed at (e.g., sending signals in the direction of) user equipment (UEs) within a sector, as instructed by the baseband module, wherein a number M denotes the number of said directional beams and a number N denotes the number of said radio circuitries and wherein M>N. Each of the directional co-frequency beams may serve different and independent channels.
A scheduler 301 may implement switch control 340 over M×N switch matrix 320.
According to some embodiments, the system is further configured to: estimate cross-talk level amongst the co-channel beams, and calculate weights for applying to said beamforming matrix, that reduce said cross-talk. According to some embodiments, the system analyzes the cross-talk information derived from said estimation, and identifies victim UEs being UEs affected by victimizer beams being co-frequency neighboring beams beyond a specified signal to interference ratio (SIR) threshold.
According to some embodiments, for each one of the victim UEs, and for each one of the victimizing beams, the system calculates possible weights or other parameters which result in a reduction of the cross-talk, e.g. via weight setting of the antennas of the victimizing beams. According to other embodiments, for each one of the victim UEs, and for each one of the victimizing beams, the system calculates a possible reduction of the cross-talk via weight setting of antennas of the victim UE.
According to some embodiments, the estimated cross-talks carried out or effected over partial uplink channels are extrapolated for using in the downlink channels.
According to some embodiments, the system may further include a dedicated scanning (e.g., custom made, such as an application specific integrated circuit—ASIC) receiver connected to the directional co-frequency beams, for estimating the signals of UE devices in other directional co-frequency beams, to determine and estimate cross-talk levels. It should be noted however that the scanning receiver may be omitted if Femto receivers are assigned to channel estimate all users (and not only their own beam's users).
According to some embodiments, the sector beam is assigned to cover areas not covered by said beams at a given time. According to some embodiments, the sector beam is assigned to cover UEs (e.g., special UEs) that are in the areas covered by said directional co-frequency beams at a given time. According to some embodiments, the directional co-frequency beams cover all or part of the said sector area on a time-share basis, by switching from one coverage part to another, where each unit of time share matches a time frame or subframe depending on a protocol implemented by the cellular communication base station.
In some embodiments, a scheduler 840 is arranged to schedule all base station of omni section 810 and multi beam section 820.
Following is an exemplary embodiment for implementing the Procedure and algorithm in accordance with the present invention. Other assumptions, definitions, and operations may be used:
Assumptions: flat channel, all UEs are assigned equal number of RBs.
K: MIMO rank=number of antennas of each UE
L: total number of BTS antennas=M*K
N: (total number of radios)/K
T: total number of UEs
R: number of UEs that share the same RBs, 1≦R≦N
Hi: K×L channel matrix from the BTS antennas to UEi, i=1 . . . T
Φ={φi, φ2, . . . φF}: set of F adjustable phases
B=B(Φ): L×L transfer matrix from baseband to the BTS antennas
B can be partitioned into M weight matrices of size L×K:
B=[W1 . . . WM]
Only one weight matrix is used for transmitting data to a particular UE. The overall K×K channel from BTS to UEi including weights Wj is: Di,j=Hi Wj When the BTS transmits data simultaneously to several UEs, sharing the same resources, the K×K cross-talk channel from BTS to UEi is defined as:
where S is the set of weight matrices used to transmit data to the interfering UEs (Wi∉S)
For any K×K matrix A with elements aij define a power operator P(A) as:
Channel strengths associated with Di,j and Ci,j (data and cross-talk) are defined as:
PDi,j=P(Di,j)
PCi,S=P(Ci,S)
The signal to interference ratio for UEi is defined as:
Expressing UEi's data rate, delivered over its selected beam, in the presence of cross-talk coming from other beam's transmissions to other UEs:
DataRatei,j,S=data rate corresponding to SIRi,j,S (1)
Define all sets of R non-overlapping beams, R=N, N/2, N/4 . . . 1, based on topology. During operation the BTS will connect radios to the first set of beams and transmit data, then switch radios over to the next set for the next transmission, etc., until all UEs are served (note that when a given beam has no UE assigned to it, transmission of will not take place).
Optimization process may be depicted as follows:
Start with R=N.
Step 1: For all UEs compute PDi,j, i=1 . . . T,j=1 . . . , i.e., for all UEs compute the channel strength through all possible beams.
Step 2: Grade PDi,j and select the strongest and 2nd strongest beams for each UE.
Step 3: Compare strongest and 2nd strongest powers, and tag cases where the power difference is smaller than x (e.g. 6 dB); such UEs are categorized as candidates for 2nd best beam allocation; compare combined bandwidth requirements per beam and tag differences larger than 1:y (e.g. 1:2); calculate moving of candidate UEs to 2nd best beams, and pick such candidates moving that improve load balancing.
Step 4: Starting with the first set of non-overlapping beams, compute the total data rate as the sum of the data rates of all UEs in the beam set, where each UE's data rate is expressed in formula (I) above.
Step 5: Scanning the Φ domain for all beams, repeat Step 4, compare results and pick the highest total data rate weights as candidates setting.
Step 6: Repeat Steps 4 and 5 for all sets of non-overlapping beams, choosing candidate settings.
Step 7: Repeat Steps 4, 5 and 6 for R=N/2, N/4 . . . 1, choosing candidate settings for each.
Step 8: Calculate global data rates for N, N/2, N/4 . . . 1, and pick highest as chosen Weights settings.
According to some embodiments, the system further includes a N×M switch matrix which is connected to the M×N ports, enabling feeding said directional co-frequency beams with one or more base-stations, and the single port with an additional base station.
According to some embodiments, the single port base station which feeds the sector beam is using high power amplifier while the base stations connected to either one of the M×N ports is using a low power amplifier, wherein the ratio between the gain of the high and the low power amplifier is inversely proportional to the ratio between the gain of a directional beam created by the said array and the gain of the sector beam.
According to some embodiments, the base stations connected to the M×N ports are configured to use the same frequency channel on non-adjacent beams.
The process of the embodiment of
The process illustrated in
According to some embodiments, all non-adjacent beams are being fed by a cluster of co-channel base stations, and wherein the base stations of the cluster are systematically switched between said group of ports so that all the sector's angle is methodically covered via sequential or other cycle, and by doing so serve all assigned UE devices residing in the sector with the directional beams on a time-share basis.
According to some embodiments, the RF beamformer includes variable phase shifters with limited range so that the directional beams can be tilted up or down and left or right.
According to some embodiments, the tilting of both victim and victimizer is used for reducing measured cross-talk via channel estimation and/or blind process.
According to some embodiments, a protocol used by the base station is orthogonal frequency-division multiplexing (OFDM), and wherein at least some of the OFDM subcarriers are allocated to the sector beams and the rest of the OFDM subcarriers are allocated to the directional beams, so that the ratio between the number of subcarriers allocated to the sector beams and the number of subcarriers allocated to the directional beams reflects respective bandwidth requirements of assigned UE devices, based on a specified fairness scheme.
According to some embodiments, the base stations used are operating in a Time Domain duplex TDD mode, in which channel estimation of an uplink channel is used to set weights of a downlink channel.
According to some embodiments, the cross-talk reduction is carried out using periodic (e.g., that is carried repeatedly at a specified duty cycle) look-through configurations, wherein the uplink spectrum allocated to the directional beams is split or divided up to NB subgroups where NB is the number of simultaneous directional co-frequency beams, so that during the look-through, each beam assigns its served UE devices with its allocated 1/NB of the uplink spectrum, so that during the look-through, uplink transmissions of directional co-frequency beams are orthogonal.
In various embodiments, computational modules may be implemented by e.g., processors (e.g., a general purpose computer processor or central processing unit executing software), or DSPs, or other circuitry. The baseband modem may be implemented, for example, as a DSP. A beamforming matrix can be calculated and implemented for example by software running on general purpose processor. Beamformers, a gain controller, switches, combiners, phase shifters may be for example RF circuitries.
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or an apparatus. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit”, “module” or “system.”
In various embodiments, computational modules may be implemented by e.g., processors (e.g., a general purpose computer processor or central processing unit executing software), or digital signal processors (DSPs), or other circuitry. The baseband modem may be implemented, for example, as a DSP. A beamforming matrix can be calculated and implemented for example by software running on general purpose processor. Beamformers, gain controllers, switches, combiners, and phase shifters may be implemented, for example using RF circuitries.
The flowchart and block diagrams herein illustrate the architecture, functionality, and operation of possible implementations of systems and methods according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
In the above description, an embodiment is an example or implementation of the inventions. The various appearances of “one embodiment”, “an embodiment” or “some embodiments” do not necessarily all refer to the same embodiments.
Although various features of the invention may be described in the context of a single embodiment, the features may also be provided separately or in any suitable combination. Conversely, although the invention may be described herein in the context of separate embodiments for clarity, the invention may also be implemented in a single embodiment.
Reference in the specification to “some embodiments”, “an embodiment”, “one embodiment” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments, of the inventions.
It is to be understood that the phraseology and terminology employed herein is not to be construed as limiting and are for descriptive purpose only.
The principles and uses of the teachings of the present invention may be better understood with reference to the accompanying description, figures and examples.
It is to be understood that the details set forth herein do not construe a limitation to an application of the invention.
Furthermore, it is to be understood that the invention can be carried out or practiced in various ways and that the invention can be implemented in embodiments other than the ones outlined in the description above.
It is to be understood that the terms “including”, “comprising”, “consisting” and grammatical variants thereof do not preclude the addition of one or more components, features, steps, or integers or groups thereof and that the terms are to be construed as specifying components, features, steps or integers.
If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element.
It is to be understood that where the claims or specification refer to “a” or “an” element, such reference is not be construed that there is only one of that element.
It is to be understood that where the specification states that a component, feature, structure, or characteristic “may”, “might”, “can” or “could” be included, that particular component, feature, structure, or characteristic is not required to be included.
Where applicable, although state diagrams, flow diagrams or both may be used to describe embodiments, the invention is not limited to those diagrams or to the corresponding descriptions. For example, flow need not move through each illustrated box or state, or in exactly the same order as illustrated and described.
The term “method” may refer to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the art to which the invention belongs.
The descriptions, examples, methods and materials presented in the claims and the specification are not to be construed as limiting but rather as illustrative only.
Meanings of technical and scientific terms used herein are to be commonly understood as by one of ordinary skill in the art to which the invention belongs, unless otherwise defined.
The present invention may be implemented in the testing or practice with methods and materials equivalent or similar to those described herein.
While the invention has been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of some of the preferred embodiments. Other possible variations, modifications, and applications are also within the scope of the invention. Accordingly, the scope of the invention should not be limited by what has thus far been described, but by the appended claims and their legal equivalents.
This application claims benefit of U.S. provisional patent application 61/762,486 filed on Feb. 8, 2013 and of U.S. provisional patent application 61/811,751 filed on Apr. 14, 2013 which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4044359 | Applebaum et al. | Aug 1977 | A |
4079318 | Kinoshita | Mar 1978 | A |
4359738 | Lewis | Nov 1982 | A |
4540985 | Clancy et al. | Sep 1985 | A |
4628320 | Downie | Dec 1986 | A |
5162805 | Cantrell | Nov 1992 | A |
5363104 | Richmond | Nov 1994 | A |
5444762 | Frey et al. | Aug 1995 | A |
5732075 | Tangemann et al. | Mar 1998 | A |
5915215 | Williams et al. | Jun 1999 | A |
5936577 | Shoki et al. | Aug 1999 | A |
5940033 | Locher et al. | Aug 1999 | A |
6018317 | Dogan et al. | Jan 2000 | A |
6026081 | Hamabe | Feb 2000 | A |
6046655 | Cipolla | Apr 2000 | A |
6094165 | Smith | Jul 2000 | A |
6101399 | Raleigh et al. | Aug 2000 | A |
6163695 | Takemura | Dec 2000 | A |
6167286 | Ward et al. | Dec 2000 | A |
6215812 | Young et al. | Apr 2001 | B1 |
6226507 | Ramesh et al. | May 2001 | B1 |
6230123 | Mekuria et al. | May 2001 | B1 |
6259683 | Sekine et al. | Jul 2001 | B1 |
6297772 | Lewis | Oct 2001 | B1 |
6321077 | Saitoh et al. | Nov 2001 | B1 |
6335953 | Sanderford et al. | Jan 2002 | B1 |
6370378 | Yahagi | Apr 2002 | B1 |
6377783 | Lo et al. | Apr 2002 | B1 |
6393282 | Iimori | May 2002 | B1 |
6584115 | Suzuki | Jun 2003 | B1 |
6647276 | Kuwahara et al. | Nov 2003 | B1 |
6697622 | Ishikawa et al. | Feb 2004 | B1 |
6697633 | Dogan et al. | Feb 2004 | B1 |
6735182 | Nishimori et al. | May 2004 | B1 |
6834073 | Miller et al. | Dec 2004 | B1 |
6842460 | Olkkonen et al. | Jan 2005 | B1 |
6914890 | Tobita et al. | Jul 2005 | B1 |
6927646 | Niemi | Aug 2005 | B2 |
6934541 | Miyatani | Aug 2005 | B2 |
6975582 | Karabinis et al. | Dec 2005 | B1 |
6987958 | Lo et al. | Jan 2006 | B1 |
7068628 | Li et al. | Jun 2006 | B2 |
7154960 | Liu et al. | Dec 2006 | B2 |
7177663 | Axness et al. | Feb 2007 | B2 |
7190964 | Damnjanovic et al. | Mar 2007 | B2 |
7257425 | Wang et al. | Aug 2007 | B2 |
7299072 | Ninomiya | Nov 2007 | B2 |
7391757 | Haddad et al. | Jun 2008 | B2 |
7392015 | Farlow et al. | Jun 2008 | B1 |
7474676 | Tao et al. | Jan 2009 | B2 |
7499109 | Kim et al. | Mar 2009 | B2 |
7512083 | Li | Mar 2009 | B2 |
7606528 | Mesecher | Oct 2009 | B2 |
7634015 | Waxman | Dec 2009 | B2 |
7646744 | Li | Jan 2010 | B2 |
7719993 | Li et al. | May 2010 | B2 |
7742000 | Mohamadi | Jun 2010 | B2 |
7769107 | Sandhu et al. | Aug 2010 | B2 |
7876848 | Han et al. | Jan 2011 | B2 |
7881401 | Kraut et al. | Feb 2011 | B2 |
7898478 | Niu et al. | Mar 2011 | B2 |
7904086 | Kundu et al. | Mar 2011 | B2 |
7904106 | Han et al. | Mar 2011 | B2 |
7933255 | Li | Apr 2011 | B2 |
7970366 | Arita et al. | Jun 2011 | B2 |
8078109 | Mulcay | Dec 2011 | B1 |
8103284 | Mueckenheim et al. | Jan 2012 | B2 |
8111782 | Kim et al. | Feb 2012 | B2 |
8115679 | Falk | Feb 2012 | B2 |
8155613 | Kent et al. | Apr 2012 | B2 |
8194602 | van Rensburg et al. | Jun 2012 | B2 |
8275377 | Nanda et al. | Sep 2012 | B2 |
8280443 | Tao et al. | Oct 2012 | B2 |
8294625 | Kittinger et al. | Oct 2012 | B2 |
8306012 | Lindoff et al. | Nov 2012 | B2 |
8315671 | Kuwahara et al. | Nov 2012 | B2 |
8369436 | Stirling-Gallacher | Feb 2013 | B2 |
8504098 | Khojastepour | Aug 2013 | B2 |
8509190 | Rofougaran | Aug 2013 | B2 |
8520657 | Rofougaran | Aug 2013 | B2 |
8526886 | Wu et al. | Sep 2013 | B2 |
8571127 | Jiang et al. | Oct 2013 | B2 |
8588844 | Shpak | Nov 2013 | B2 |
8599955 | Kludt et al. | Dec 2013 | B1 |
8599979 | Farag et al. | Dec 2013 | B2 |
8605658 | Fujimoto | Dec 2013 | B2 |
8611288 | Zhang et al. | Dec 2013 | B1 |
8644413 | Harel et al. | Feb 2014 | B2 |
8649458 | Kludt et al. | Feb 2014 | B2 |
8666319 | Kloper et al. | Mar 2014 | B2 |
8670504 | Naguib | Mar 2014 | B2 |
8744511 | Jones et al. | Jun 2014 | B2 |
8754810 | Guo et al. | Jun 2014 | B2 |
8767862 | Abreu et al. | Jul 2014 | B2 |
8780743 | Sombrutzki et al. | Jul 2014 | B2 |
8797969 | Harel et al. | Aug 2014 | B1 |
8891598 | Wang et al. | Nov 2014 | B1 |
8928528 | Harel et al. | Jan 2015 | B2 |
8942134 | Kludt et al. | Jan 2015 | B1 |
8976845 | O'Keeffe et al. | Mar 2015 | B2 |
9014066 | Wang et al. | Apr 2015 | B1 |
9035828 | O'Keeffe et al. | May 2015 | B2 |
20010029326 | Diab et al. | Oct 2001 | A1 |
20010038665 | Baltersee et al. | Nov 2001 | A1 |
20020024975 | Hendler | Feb 2002 | A1 |
20020051430 | Kasami et al. | May 2002 | A1 |
20020065107 | Harel et al. | May 2002 | A1 |
20020085643 | Kitchener et al. | Jul 2002 | A1 |
20020107013 | Fitzgerald | Aug 2002 | A1 |
20020115474 | Yoshino et al. | Aug 2002 | A1 |
20020181426 | Sherman | Dec 2002 | A1 |
20020181437 | Ohkubo et al. | Dec 2002 | A1 |
20030087645 | Kim et al. | May 2003 | A1 |
20030114162 | Chheda et al. | Jun 2003 | A1 |
20030153322 | Burke et al. | Aug 2003 | A1 |
20030153360 | Burke et al. | Aug 2003 | A1 |
20030186653 | Mohebbi et al. | Oct 2003 | A1 |
20030203717 | Chuprun et al. | Oct 2003 | A1 |
20030203743 | Sugar et al. | Oct 2003 | A1 |
20040023693 | Okawa et al. | Feb 2004 | A1 |
20040056795 | Ericson et al. | Mar 2004 | A1 |
20040063455 | Eran et al. | Apr 2004 | A1 |
20040081144 | Martin et al. | Apr 2004 | A1 |
20040121810 | Goransson et al. | Jun 2004 | A1 |
20040125899 | Li et al. | Jul 2004 | A1 |
20040125900 | Liu et al. | Jul 2004 | A1 |
20040142696 | Saunders et al. | Jul 2004 | A1 |
20040147266 | Hwang et al. | Jul 2004 | A1 |
20040156399 | Eran | Aug 2004 | A1 |
20040166902 | Castellano et al. | Aug 2004 | A1 |
20040198292 | Smith et al. | Oct 2004 | A1 |
20040228388 | Salmenkaita | Nov 2004 | A1 |
20040235527 | Reudink et al. | Nov 2004 | A1 |
20040264504 | Jin | Dec 2004 | A1 |
20050068230 | Munoz et al. | Mar 2005 | A1 |
20050068918 | Mantravadi et al. | Mar 2005 | A1 |
20050075140 | Famolari | Apr 2005 | A1 |
20050085266 | Narita | Apr 2005 | A1 |
20050129155 | Hoshino | Jun 2005 | A1 |
20050147023 | Stephens et al. | Jul 2005 | A1 |
20050163097 | Do et al. | Jul 2005 | A1 |
20050245224 | Kurioka | Nov 2005 | A1 |
20050250544 | Grant et al. | Nov 2005 | A1 |
20050254513 | Cave et al. | Nov 2005 | A1 |
20050265436 | Suh et al. | Dec 2005 | A1 |
20050286440 | Strutt et al. | Dec 2005 | A1 |
20050287962 | Mehta et al. | Dec 2005 | A1 |
20060041676 | Sherman | Feb 2006 | A1 |
20060092889 | Lyons et al. | May 2006 | A1 |
20060094372 | Ahn et al. | May 2006 | A1 |
20060098605 | Li | May 2006 | A1 |
20060111149 | Chitrapu et al. | May 2006 | A1 |
20060135097 | Wang et al. | Jun 2006 | A1 |
20060183503 | Goldberg | Aug 2006 | A1 |
20060203850 | Johnson et al. | Sep 2006 | A1 |
20060227854 | McCloud et al. | Oct 2006 | A1 |
20060264184 | Li et al. | Nov 2006 | A1 |
20060270343 | Cha et al. | Nov 2006 | A1 |
20060271969 | Takizawa et al. | Nov 2006 | A1 |
20060285507 | Kinder et al. | Dec 2006 | A1 |
20070041398 | Benveniste | Feb 2007 | A1 |
20070058581 | Benveniste | Mar 2007 | A1 |
20070076675 | Chen | Apr 2007 | A1 |
20070093261 | Hou et al. | Apr 2007 | A1 |
20070097918 | Cai et al. | May 2007 | A1 |
20070115882 | Wentink | May 2007 | A1 |
20070115914 | Ohkubo et al. | May 2007 | A1 |
20070152903 | Lin et al. | Jul 2007 | A1 |
20070217352 | Kwon | Sep 2007 | A1 |
20070223380 | Gilbert et al. | Sep 2007 | A1 |
20070249386 | Bennett | Oct 2007 | A1 |
20070298742 | Ketchum et al. | Dec 2007 | A1 |
20080043867 | Blanz et al. | Feb 2008 | A1 |
20080051037 | Molnar et al. | Feb 2008 | A1 |
20080081671 | Wang et al. | Apr 2008 | A1 |
20080095163 | Chen et al. | Apr 2008 | A1 |
20080108352 | Montemurro et al. | May 2008 | A1 |
20080125120 | Gallagher et al. | May 2008 | A1 |
20080144737 | Naguib | Jun 2008 | A1 |
20080165732 | Kim et al. | Jul 2008 | A1 |
20080238808 | Arita et al. | Oct 2008 | A1 |
20080240314 | Gaal et al. | Oct 2008 | A1 |
20080247370 | Gu et al. | Oct 2008 | A1 |
20080267142 | Mushkin et al. | Oct 2008 | A1 |
20080280571 | Rofougaran et al. | Nov 2008 | A1 |
20080285637 | Liu et al. | Nov 2008 | A1 |
20090003299 | Cave et al. | Jan 2009 | A1 |
20090028225 | Runyon et al. | Jan 2009 | A1 |
20090046638 | Rappaport et al. | Feb 2009 | A1 |
20090058724 | Xia et al. | Mar 2009 | A1 |
20090121935 | Xia et al. | May 2009 | A1 |
20090137206 | Sherman et al. | May 2009 | A1 |
20090154419 | Yoshida et al. | Jun 2009 | A1 |
20090187661 | Sherman | Jul 2009 | A1 |
20090190541 | Abedi | Jul 2009 | A1 |
20090227255 | Thakare | Sep 2009 | A1 |
20090239486 | Sugar et al. | Sep 2009 | A1 |
20090268616 | Hosomi | Oct 2009 | A1 |
20090279478 | Nagaraj et al. | Nov 2009 | A1 |
20090285331 | Sugar et al. | Nov 2009 | A1 |
20090322610 | Hants et al. | Dec 2009 | A1 |
20090322613 | Bala et al. | Dec 2009 | A1 |
20090323608 | Adachi et al. | Dec 2009 | A1 |
20100002656 | Ji et al. | Jan 2010 | A1 |
20100037111 | Ziaja et al. | Feb 2010 | A1 |
20100040369 | Zhao et al. | Feb 2010 | A1 |
20100067473 | Cave et al. | Mar 2010 | A1 |
20100087227 | Francos et al. | Apr 2010 | A1 |
20100111039 | Kim et al. | May 2010 | A1 |
20100117890 | Vook et al. | May 2010 | A1 |
20100135420 | Xu et al. | Jun 2010 | A1 |
20100150013 | Hara et al. | Jun 2010 | A1 |
20100172429 | Nagahama et al. | Jul 2010 | A1 |
20100195560 | Nozaki et al. | Aug 2010 | A1 |
20100195601 | Zhang | Aug 2010 | A1 |
20100208712 | Wax et al. | Aug 2010 | A1 |
20100222011 | Behzad | Sep 2010 | A1 |
20100232355 | Richeson et al. | Sep 2010 | A1 |
20100234071 | Shabtay et al. | Sep 2010 | A1 |
20100278063 | Kim et al. | Nov 2010 | A1 |
20100283692 | Achour et al. | Nov 2010 | A1 |
20100285752 | Lakshmanan et al. | Nov 2010 | A1 |
20100291931 | Suemitsu et al. | Nov 2010 | A1 |
20100303170 | Zhu et al. | Dec 2010 | A1 |
20100316043 | Doi et al. | Dec 2010 | A1 |
20110019639 | Karaoguz et al. | Jan 2011 | A1 |
20110032849 | Yeung et al. | Feb 2011 | A1 |
20110032972 | Wang et al. | Feb 2011 | A1 |
20110085465 | Lindoff et al. | Apr 2011 | A1 |
20110085532 | Scherzer et al. | Apr 2011 | A1 |
20110105036 | Rao et al. | May 2011 | A1 |
20110116489 | Grandhi | May 2011 | A1 |
20110134816 | Liu et al. | Jun 2011 | A1 |
20110150050 | Trigui et al. | Jun 2011 | A1 |
20110150066 | Fujimoto | Jun 2011 | A1 |
20110151826 | Miller et al. | Jun 2011 | A1 |
20110163913 | Cohen et al. | Jul 2011 | A1 |
20110205883 | Mihota | Aug 2011 | A1 |
20110205998 | Hart et al. | Aug 2011 | A1 |
20110228742 | Honkasalo et al. | Sep 2011 | A1 |
20110249576 | Chrisikos et al. | Oct 2011 | A1 |
20110250884 | Brunel et al. | Oct 2011 | A1 |
20110273977 | Shapira et al. | Nov 2011 | A1 |
20110281541 | Borremans | Nov 2011 | A1 |
20110299437 | Mikhemar et al. | Dec 2011 | A1 |
20110310827 | Srinivasa et al. | Dec 2011 | A1 |
20110310853 | Yin et al. | Dec 2011 | A1 |
20120014377 | Joergensen et al. | Jan 2012 | A1 |
20120015603 | Proctor et al. | Jan 2012 | A1 |
20120020396 | Hohne et al. | Jan 2012 | A1 |
20120027000 | Wentink | Feb 2012 | A1 |
20120028638 | Mueck et al. | Feb 2012 | A1 |
20120028655 | Mueck et al. | Feb 2012 | A1 |
20120028671 | Niu et al. | Feb 2012 | A1 |
20120033761 | Guo et al. | Feb 2012 | A1 |
20120034952 | Lo et al. | Feb 2012 | A1 |
20120045003 | Li et al. | Feb 2012 | A1 |
20120051287 | Merlin et al. | Mar 2012 | A1 |
20120064838 | Miao et al. | Mar 2012 | A1 |
20120069828 | Taki et al. | Mar 2012 | A1 |
20120076028 | Ko et al. | Mar 2012 | A1 |
20120076229 | Brobston et al. | Mar 2012 | A1 |
20120088512 | Yamada et al. | Apr 2012 | A1 |
20120092217 | Hosoya et al. | Apr 2012 | A1 |
20120100802 | Mohebbi | Apr 2012 | A1 |
20120115523 | Shpak | May 2012 | A1 |
20120155349 | Bajic et al. | Jun 2012 | A1 |
20120155397 | Shaffer et al. | Jun 2012 | A1 |
20120163257 | Kim et al. | Jun 2012 | A1 |
20120163302 | Takano | Jun 2012 | A1 |
20120170453 | Tiwari | Jul 2012 | A1 |
20120170672 | Sondur | Jul 2012 | A1 |
20120201153 | Bharadia et al. | Aug 2012 | A1 |
20120201173 | Jain et al. | Aug 2012 | A1 |
20120207256 | Farag et al. | Aug 2012 | A1 |
20120212372 | Petersson et al. | Aug 2012 | A1 |
20120213065 | Koo et al. | Aug 2012 | A1 |
20120218962 | Kishiyama et al. | Aug 2012 | A1 |
20120220331 | Luo et al. | Aug 2012 | A1 |
20120230380 | Keusgen et al. | Sep 2012 | A1 |
20120251031 | Suarez et al. | Oct 2012 | A1 |
20120270531 | Wright et al. | Oct 2012 | A1 |
20120270544 | Shah | Oct 2012 | A1 |
20120281598 | Struhsaker et al. | Nov 2012 | A1 |
20120314570 | Forenza et al. | Dec 2012 | A1 |
20120321015 | Hansen et al. | Dec 2012 | A1 |
20120327870 | Grandhi et al. | Dec 2012 | A1 |
20130010623 | Golitschek | Jan 2013 | A1 |
20130012134 | Jin et al. | Jan 2013 | A1 |
20130017794 | Kloper et al. | Jan 2013 | A1 |
20130023225 | Weber | Jan 2013 | A1 |
20130044877 | Liu et al. | Feb 2013 | A1 |
20130051283 | Lee et al. | Feb 2013 | A1 |
20130058239 | Wang et al. | Mar 2013 | A1 |
20130070741 | Li et al. | Mar 2013 | A1 |
20130079048 | Cai et al. | Mar 2013 | A1 |
20130094437 | Bhattacharya | Apr 2013 | A1 |
20130094621 | Luo et al. | Apr 2013 | A1 |
20130095780 | Prazan et al. | Apr 2013 | A1 |
20130101073 | Zai et al. | Apr 2013 | A1 |
20130150012 | Chhabra et al. | Jun 2013 | A1 |
20130156016 | Debnath et al. | Jun 2013 | A1 |
20130156120 | Josiam et al. | Jun 2013 | A1 |
20130170388 | Ito et al. | Jul 2013 | A1 |
20130172029 | Chang et al. | Jul 2013 | A1 |
20130188541 | Fischer | Jul 2013 | A1 |
20130190006 | Kazmi et al. | Jul 2013 | A1 |
20130208587 | Bala et al. | Aug 2013 | A1 |
20130208619 | Kudo et al. | Aug 2013 | A1 |
20130223400 | Seo et al. | Aug 2013 | A1 |
20130229996 | Wang et al. | Sep 2013 | A1 |
20130229999 | Da Silva et al. | Sep 2013 | A1 |
20130235720 | Wang et al. | Sep 2013 | A1 |
20130242853 | Seo et al. | Sep 2013 | A1 |
20130242899 | Lysejko et al. | Sep 2013 | A1 |
20130242965 | Horn et al. | Sep 2013 | A1 |
20130242976 | Katayama et al. | Sep 2013 | A1 |
20130252621 | Dimou et al. | Sep 2013 | A1 |
20130272437 | Eidson et al. | Oct 2013 | A1 |
20130301551 | Ghosh et al. | Nov 2013 | A1 |
20130304962 | Yin et al. | Nov 2013 | A1 |
20130331136 | Yang et al. | Dec 2013 | A1 |
20130343369 | Yamaura | Dec 2013 | A1 |
20140010089 | Cai et al. | Jan 2014 | A1 |
20140010211 | Asterjadhi et al. | Jan 2014 | A1 |
20140029433 | Wentink | Jan 2014 | A1 |
20140071873 | Wang et al. | Mar 2014 | A1 |
20140079016 | Dai et al. | Mar 2014 | A1 |
20140086077 | Safavi | Mar 2014 | A1 |
20140086081 | Mack et al. | Mar 2014 | A1 |
20140098681 | Stager et al. | Apr 2014 | A1 |
20140119288 | Zhu et al. | May 2014 | A1 |
20140185501 | Park et al. | Jul 2014 | A1 |
20140185535 | Park et al. | Jul 2014 | A1 |
20140192820 | Azizi et al. | Jul 2014 | A1 |
20140204821 | Seok et al. | Jul 2014 | A1 |
20140241182 | Smadi | Aug 2014 | A1 |
20140242914 | Monroe | Aug 2014 | A1 |
20140269409 | Dimou et al. | Sep 2014 | A1 |
20140307653 | Liu et al. | Oct 2014 | A1 |
20150016438 | Harel et al. | Jan 2015 | A1 |
20150018042 | Radulescu et al. | Jan 2015 | A1 |
20150085777 | Seok | Mar 2015 | A1 |
20150124634 | Harel et al. | May 2015 | A1 |
20150139212 | Wang et al. | May 2015 | A1 |
Number | Date | Country |
---|---|---|
1 189 303 | Mar 2002 | EP |
1 867 177 | May 2010 | EP |
2 234 355 | Sep 2010 | EP |
2009-278444 | Nov 2009 | JP |
WO 03047033 | Jun 2003 | WO |
WO 03073645 | Sep 2003 | WO |
WO 2010085854 | Aug 2010 | WO |
WO 2011060058 | May 2011 | WO |
WO 2013192112 | Dec 2013 | WO |
Entry |
---|
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated May 15, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated May 21, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Jun. 6, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Jun. 11, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Jun. 20, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jul. 17, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated Jul. 19, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jul. 31, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated Aug. 19, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Sep. 17, 2013. |
Ahmadi-Shokouh et al., “Pre-LNA Smart Soft Antenna Selection for MIMO Spatial Multiplexing/Diversity System when Amplifier/Sky Noise Dominates”, European Transactions on Telecommunications, Wiley & Sons, Chichester, GB, vol. 21, No. 7, Nov. 1, 2010, pp. 663-677. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Sep. 25, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Oct. 15, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Oct. 23, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Oct. 28, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Oct. 30, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Nov. 5, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Nov. 5, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Dec. 17, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Dec. 17, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Dec. 17, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Dec. 23, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jan. 22, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Mar. 27, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Apr. 16, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated May 2, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jan. 7, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/018,965 dated Jan. 13, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/858,302 dated Jan. 16, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jan. 16, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jan. 27, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated Jan. 29, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Jan. 31, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Feb. 6, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Feb. 21, 2014. |
Huang et al., “Antenna Mismatch and Calibration Problem in Coordinated Multi-point Transmission System,” IET Communications, 2012, vol. 6, Issue 3, pp. 289-299. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Feb. 27, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Mar. 7, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/172,500 dated Mar. 26, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Mar. 25, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Mar. 25, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Apr. 4, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Apr. 7, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Apr. 9, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Apr. 9, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Apr. 22, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated May 9, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated May 9, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated May 13, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated May 20, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,252 dated Jun. 18, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Jun. 24, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jun. 24, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Jul. 1, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Jul. 2, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Jul. 8, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Jul. 10, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Jul. 23, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Jul. 25, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,280 dated Jul. 29, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jul. 31, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Aug. 6, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/306,458 dated Aug. 13, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/297,898 dated Aug. 15, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,252 dated Aug. 27, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Aug. 29, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/296,209 dated Sep. 4, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Sep. 8, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated Sep. 8, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,155 dated Sep. 12, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Oct. 6, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/449,431 dated Oct. 10, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/171,736 dated Oct. 16, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Oct. 20, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated Oct. 23, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Nov. 10, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Nov. 17, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,280 dated Nov. 18, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/480,920 dated Nov. 18, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/481,319 dated Nov. 19, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/273,866 dated Nov. 28, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Dec. 1, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/297,898 dated Dec. 5, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/281,358 dated Dec. 16, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Dec. 26, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Dec. 31, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Jan. 5, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/306,458 dated Jan. 9, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US14/65958 dated Jan. 13, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,155 dated Jan. 26, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/296,209 dated Jan. 27, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Feb. 3, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Feb. 3, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2014/064185 dated Feb. 5, 2015. |
Kai Yang et al., “Coordinated Dual-Layer Beamforming for Public Safety Network: Architecture and Algorithms”, Communications (ICC), 2012 IEEE International Conference On, IEEE, Jun. 10, 2012, pp. 4095-4099. |
Songtao Lu et al., “A Distributed Adaptive GSC Beamformer over Coordinated Antenna Arrays Network for Interference Mitigation”, Asilomar Conference on Signals, Systems and Computers. Conference Record, IEEE Computer Society, US, Nov. 4, 2012, pp. 237-242. |
International Search Report and Written Opinion for International Application No. PCT/US2014/065635 dated Feb. 13, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/171,736 dated Feb. 20, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated Feb. 23, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Mar. 23, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/449,431 dated Mar. 23, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/273,866 dated Mar. 25, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/517,114 dated Apr. 6, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Apr. 14, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/543,357 dated Apr. 23, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/450,625 dated Apr. 28, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Apr. 29, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated May 13, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated May 26, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated May 29, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/481,319 dated Jun. 12, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/505,655 dated Jun. 17, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/472,759 dated Jun. 18, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jun. 19, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/480,920 dated Jun. 22, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/062116 dated Jun. 22, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/467,415 dated Jun. 30, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/063304 dated Jul. 8, 2015. |
Bandyopadhyay, S. et al., “An Adaptive MAC Protocol for Wireless Ad Hoc Community Network (WACNet) Using Electronically Steerable Passive Array Radiator Antenna”, Globecom '01 : IEEE Global Telecommunications Conference; San Antonio, Texas, USA, Nov. 25-29, 2001, IEEE Operations Center, Piscataway, NJ, vol. 5, Nov. 25, 2001, pp. 2896-2900. |
Du, Yongjiu et al., “iBeam: Intelligent Client-Side Multi-User Beamforming in Wireless Networks”, IEEE INFOCOM 2014—IEEE Conference on Computer Communications, IEEE, Apr. 27, 2014, pp. 817-825. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Jul. 16, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/517,144 dated Jul. 28, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/672,634 dated Aug. 12, 2015. |
Notice of Allowance issued by the Unites States Patent and Trademark Office for U.S. Appl. No. 14/543,357 dated Sep. 2, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/450,625 dated Sep. 10, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated Sep. 21, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Sep. 25, 2015. |
Number | Date | Country | |
---|---|---|---|
20140225776 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
61762486 | Feb 2013 | US | |
61811751 | Apr 2013 | US |