Multi-dimensional image reconstruction

Information

  • Patent Grant
  • 8676292
  • Patent Number
    8,676,292
  • Date Filed
    Tuesday, January 23, 2007
    17 years ago
  • Date Issued
    Tuesday, March 18, 2014
    10 years ago
Abstract
Apparatus for radiation based imaging of a non-homogenous target area having distinguishable regions therein, comprises: an imaging unit configured to obtain radiation intensity data from a target region in the spatial dimensions and at least one other dimension, and an image four-dimension analysis unit analyzes the intensity data in the spatial dimension and said at least one other dimension in order to map the distinguishable regions. The system typically detects rates of change over time in signals from radiopharmaceuticals and uses the rates of change to identify the tissues. In a preferred embodiment, two or more radiopharmaceuticals are used, the results of one being used as a constraint on the other.
Description
FIELD AND BACKGROUND OF THE INVENTION

The present invention relates to multi-dimensional image reconstruction and, more particularly, but not exclusively to such image reconstruction based on a diffuse radioactive source or sources.


Radiological imaging is generally carried out on a living target, which of course means a mix of tissues in close proximity, if not actually overlapping. The general procedure is to feed the patient with one or more radioactive markers prior to the imaging process. The radioactive markers are taken up by the digestive system and pass into the bloodstream. From the bloodstream the marker passes into the different tissues at varying rates depending on the tissue type. Some tissues absorb markers faster than others and some tissues absorb certain markers faster than others. Furthermore certain tissues flush out the markers faster than others, and again the rate of flushing out may also depend on the kind of marker being used.


As a result, radioactive marking in fact creates a dynamic system in the body in which the relative darkness of a given tissue is related to a time factor. The radiologist knows that if he wants a good image of say the liver following application of a given marker then he should wait a certain number of hours from application of the marker before taking the image. Even so, the liver is not differentiated clearly from the other tissues.


Examples of radiopharmaceuticals include monoclonal antibodies or other agents, e.g., fibrinogen or fluorodeoxyglucose, tagged with a radioactive isotope, e.g., 99Mtechnetium, 67gallium, 201thallium, 111indium, 123iodine, 125iodine and 18fluorine, which may be administered orally or intravenously. The radiopharmaceuticals are designed to concentrate in the area of a tumor, and the uptake of such radiopharmaceuticals in the active part of a tumor, or other pathologies such as an inflammation, is higher and more rapid than in the tissue that neighbors the tumor. Thereafter, a radiation-emission-measuring-probe, which may be configured for extracorporeal or intracorporeal use, is employed for locating the position of the active area. Another application is the detection of blood clots with radiopharmaceuticals such as ACUTECT from Nycomed Amersham for the detection of newly formed thrombosis in veins, or clots in arteries of the heart or brain, in an emergency or operating room. Yet other applications include radioimaging of myocardial infarct using agents such as radioactive anti-myosin antibodies, radioimaging specific cell types using radioactively tagged molecules (also known as molecular imaging), etc.


The usual preferred emission for such applications is that of gamma rays, which emission is in the energy range of approximately 11-511 KeV. Beta radiation and positrons may also be detected.


Radioactive-emission imaging is performed with a radioactive-emission-measuring detector, such as a room temperature, solid-state CdZnTe (CZT) detector, which is among the more promising that is currently available. It may be configured as a single-pixel or a multi-pixel detector, and may be obtained, for example, from eV Products, a division of II-VI Corporation, Saxonburg Pa., 16056, or from IMARAD IMAGING SYSTEMS LTD., of Rehovot, ISRAEL, 76124, www.imarad.com, or from another source. Alternatively, another solid-state detector such as CdTe, HgI, Si, Ge, or the like, or a combination of a scintillation detector (such as NaI(TI), LSO, GSO, CsI, CaF, or the like) and a photomultiplier, or another detector as known, may be used.


Considering the issue in greater detail, certain biological or chemical substances such as targeted peptides, monoclonal antibodies and others, are used for tagging specific living molecules for diagnostic purposes. Ideally, these antibodies are specific to the desired type of cells, based on adhering only to specific molecular structures in which the antigene matching the antibody is highly expressed. The use of imaging devices such as a nuclear gamma probe or a visual video probe can detect radiation emanating from taggants such as radionuclei or fluorescent dies that have been appended to the antibody before being delivered to the living body. An example is a cancerous cell of a prostate tumor on whose membrane there is an over expression of the Prostate Specific Membrane Antigen (PSMA). When a monoclonal antibody (Mab) such as Capromab Pendetide (commercially available as ProstaScint manufactured by Cytogen Corp.) is labeled with radioactive Indium (In 111) and is systemically delivered to the body, the Mab is carried by the blood stream and upon reaching the prostate tissue, adheres to the PSMA. The high energy radiation photons emitted by the radioactive Indium can be detected using a nuclear camera, indicating the presence and the specific location of the tumor.


Unfortunately, given the complexity of living organisms, in many instances the same antigen is also expressed in more than just the tissue under investigation. The antibody will thus also “paint” additional tissues such as infection areas, in addition to the tissue of interest. The radioactive readings taken from this additional tissue will be falsely interpreted as tumor areas, reducing the specificity of the test being performed.


The ‘Target to Background’ ratio that characterizes every such antibody for a given target cell type is one of the major issues that determine the ability to perform proper diagnosis, and guided procedures.


Since the uptake clearance of such a marker by the various tissues (target and background) varies over time, standard diagnosis protocols usually recommend taking an image at the time at which the ratio of Target emission vs. Background emission is the highest.


In an experimental system tried out by researchers, two markers were supplied to various patients and then images were taken at successive intervals for each of the markers. Certain features in the target areas showed up clearly in all images, other features were clear for all images of one marker but faded in and faded out for the other marker, and yet other features faded in and out for both markers but at different times. The researchers were able to use their knowledge of the behaviors of the two markers with different tissues in order to identify the features in the images.


The above system therefore relies on the knowledge of the researchers to put together information received from multiple images into an understanding of what the radio-imaging shows. In the general hospital environment it is not possible to guarantee that the necessary expertise is available, at least not for the amount of time that such a system would require.


There is thus a widely recognized need for, and it would be highly advantageous to have, a radiological imaging system devoid of the above limitations.


SUMMARY OF THE INVENTION

According to one aspect of the present invention there is provided apparatus for radiation based imaging and analysis of a non-homogenous target area having distinguishable regions therein, the apparatus comprising:


an imaging unit configured to obtain radiation emission data from said target region in the spatial dimensions and at least one other dimension, and


an image multi-dimensional analysis unit associated with said imaging unit for analyzing said obtained emission data in said spatial dimensions and said at least one other dimension in order to discern patterns across said dimensions.


According to a second aspect of the present invention there is provided apparatus for radiation based imaging of a non-homogenous target area having distinguishable regions therein, the apparatus comprising:


an imaging unit configured to obtain radiation emission data from said target region in the spatial dimensions and a time dimension, and


an image multi-dimensional analysis unit associated with said imaging unit for analyzing said obtained emission data in said spatial dimensions and said time dimension in order to discern at least one property from a time profile of a marker in said distinguishable regions of said target area.


According to a third aspect of the present invention there is provided apparatus for radiation based imaging and analysis of a target area, the apparatus comprising:


an imaging unit configured to obtain radiation emission data from said target region in the spatial dimensions and at least one other dimension, and


an image multi-dimensional analysis unit associated with said imaging unit for analyzing said obtained emission data in said spatial dimensions and said at least one other dimension in order to discern patterns within a respective target region.


According to a fourth aspect of the present invention there is provided a method of radiation based imaging, comprising:


acquiring data;


reconstructing an image from said data;


automatically detecting at least one region, in said image; and


automatic controlling at least one of said acquiring and said reconstructing to generate an improved image, based on said detecting.


According to a fifth aspect of the present invention there is provided a method for improved tomographic reconstruction of radiation intensities, comprising:


initially reconstructing at least one distinguishable region from said radiation intensities


extracting parameters associated with different properties of said reconstructed distinguishable region;


classifying said at least one reconstructed distinguishable region by the extracted parameters associated therewith;


iteratively using the classification of said extracted parameters to improve delimitation of said classified reconstructed distinguishable region, thereby to improve reconstruction thereof.


According to a sixth aspect of the present invention there is provided a method of optimization of therapy of the human or animal body, comprising:


identifying a target region for said therapy;


applying to a patient at least one radioactive marker;


obtaining radiation emission data from said target region in the spatial dimensions and at least one other dimension, and


analyzing said obtained emission data in spatial dimensions and at at least one other dimension in order to discern patterns across said dimensions, thereby to characterize said target region, and


optimizing said therapy based on said characterization.


According to a seventh aspect of the present invention there is provided apparatus for multi-dimensional image reconstruction based on data acquired from an imaging unit for obtaining radiation intensity data from a target region in the spatial dimensions and at least one other dimension, the apparatus comprising:


an image four-dimension analysis unit configured to analyze said obtained intensity data in said spatial dimension and said at least one other dimension in order to map at least one distinguishable region in terms of a property, said property being that of at least one member of the group comprising a tissue, a disease, a disease stage and a physiological process.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The materials, methods, and examples provided herein are illustrative only and not intended to be limiting.


Implementation of the method and system of the present invention involves performing or completing certain selected tasks or steps manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of preferred embodiments of the method and system of the present invention, several selected steps could be implemented by hardware or by software on any operating system of any firmware or a combination thereof. For example, as hardware, selected steps of the invention could be implemented as a chip or a circuit. As software, selected steps of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In any case, selected steps of the method and system of the invention could be described as being performed by a data processor, such as a computing platform for executing a plurality of instructions.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in order to provide what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.


In the drawings:



FIG. 1 is a simplified diagram showing a single detector detecting over a target region;



FIG. 2 is a simplified diagram showing two detector positions (not necessarily simultaneously) allowing three-dimensional information to be obtained from a target region;



FIGS. 3A-3D show a series of four time absorption characteristics for different radiopharmaceuticals within different tissues;



FIG. 4 is a simplified schematic diagram showing a device for driving an imaging head and allowing control of the imaging head by the image analyzer device;



FIG. 5 is a simplified flow chart illustrating the image analysis process carried out by the analyzer in FIG. 4 in the case of a single marker;



FIGS. 6A-6D illustrate two sets of successive images of the same target area taken using two different markers respectively, according to a preferred embodiment of the present invention;



FIG. 7A is a simplified flow chart illustrating a procedure according to a preferred embodiment of the present invention using two or more markers for first of all identifying an organ and then secondly determining the presence or otherwise of a pathology within that organ;



FIG. 7B is a simplified flow chart showing a generalization of FIG. 7A for the general case of two specific patterns;



FIG. 8 is a simplified flow chart illustrating a procedure according to a preferred embodiment of the present invention using two or more markers for identifying a region of low emissivity within a target area and using that identification to control imaging resources to better image the identified region; and



FIGS. 9A-9D illustrate two sets of successive images of the same target area taken using two different markers, in a similar way to that shown in FIG. 6, except that this time the regions of interest are one inside the other.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present embodiments comprise an apparatus and a method for radiation based imaging of a non-homogenous target area having regions of different material or tissue type or pathology. The imaging uses multi-dimensional data of the target area in order to distinguish the different regions. Typically the multi-dimensional data involves time as one of the dimensions. A radioactive marker has particular time-absorption characteristics which are specific for the different tissues, and the imaging device is programmed to constrain its imaging to a particular characteristic.


The result is not merely an image which concentrates on the tissue of interest but also, because it is constrained to the tissue of interest, is able to concentrate imaging resources on that tissue and thus produce a higher resolution image than the prior art systems which are completely tissue blind.


The principles and operation of a radiological imaging system according to the present invention may be better understood with reference to the drawings and accompanying description.


Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.


Reference is now made to FIG. 1, which illustrates a simple Geiger counter taking an image of a target according to the prior art. Geiger counter 10 is placed in association with target 12 and absorbs any radioactive particles that come its way. In general the radioactive particles arriving at the Geiger counter arrive from somewhere within cone 14. The Geiger counter has no information as to the depth from which the particle comes and cannot even distinguish between particles arriving from different directions within the cone. Thus in principle the prior art Geiger counter gives low resolution one dimensional information.


If the counter is now moved to different positions over the surface of the target then the data from the different positions can be built up into a low resolution two-dimensional image.


One way of increasing the resolution of the Geiger counter is to make it smaller. Then the cone, whilst retaining the same geometry, gives higher resolution data.


The detector takes (yt)t=1T samples to form a data set, which would typically be a two-dimensional image of the target from a given direction.


Reference is now made to FIG. 2, which is a simplified diagram showing how three-dimensional information can be obtained from the target. Parts that are the same as in previous figures are given the same reference numerals and are not referred to again except as necessary for understanding the present embodiment. A second Geiger counter 16 is placed essentially at right angles to the first Geiger counter and obtains a similar kind of image to the first Geiger counter. However, since the two cones overlap, the images produced can be cross-correlated to infer the presence of hot or cold radiation sources in three dimensions.


Reference is now made to FIG. 3, which is a sequence of graphs illustrating the different absorption characteristics for different tissues of a given radioactive marker. Typical markers that may be considered are Thalium 201 and Technitium 99. FIG. 3a indicates a typical absorption characteristic of thalium 201 for blood, thalium 201 being a particularly good marker for blood. The marker is generally absorbed by the blood fairly rapidly following digestion and then gradually disappears as it is taken up by the various tissues and organs including the kidneys. Marker material from the tissues eventually finds its way back into the blood for excretion. That which is absorbed by the kidneys is excreted directly and not seen again.



FIGS. 3B, 3C and 3D show time absorption characteristics for technitium 99 for different tissues, and it will be seen that the characteristic is generally curved but peaks at different times for the different tissues.


The principle on which the present embodiments are based is as follows: Considering the graphs in FIG. 3, it will be apparent that a region belonging to a single tissue will behave in a uniform manner as regards signal intensity. That is to say, a given marker will be taken up and then expelled at the same rate over a given tissue, whereas this rate will be different for other tissues. If therefore a series of successive images are taken of the target and the images are analyzed region by region for rates of change of intensity, a particular desired region can be identified by virtue of having rates of change in intensity that fit with a given characteristic. The regions are distinguishable in this way even if the region of interest is heavily overlapped with other regions.


Reference is now made to FIG. 4, which shows apparatus for radiation-based imaging of a non-homogenous target area. Apparatus 20 comprises an imaging unit 22 which itself consists of a series of small Geiger counters 24.1 . . . 24.n arranged on an imaging head. The imaging unit is controlled by motion controller 26 to take readings from different locations around the target area. Preferably, the motion of the imaging head is controlled by software via servo-motors. In addition the motions, either of the individual Geiger counters or of groupings of the Geiger counters, is also controlled by software via servo-motors.


In a preferred embodiment, the signals received from the individual Geiger counters are summed to form a three-dimensional image of the target area. The skilled person will appreciate that the system could also be based on a two-dimensional image. In either case, the signals are fed to an image analyzer 28, where the signals are analyzed to form images.


In the preferred embodiments, the image analyzer is able to use the marker take up characteristics to compare successive images and identify regions of particular interest, and then to concentrate imaging resources on those regions. That is to say the image analyzer is in fact able to control further operation of the imager.


Reference is now made to FIG. 5, which is a simplified flow chart illustrating the image analysis process carried out by analyzer 28 in the case of a single marker. Preferably a series of images of the same views are taken at different times, stage 30, and a three-dimensional overall image of the target is formed for each time. The analyzer then analyzes each of the three-dimensional overall images for local intensities at different locations around the target, stage 32. The local intensities are noted and the same locations on the different images are superimposed in stage 34. From the superpositioning, local rates of change of intensity between the images may be obtained in stage 36. The rates of change are compared with the pre-obtained characteristics for the marker with the different tissues in stage 38, and the data are then constrained to those localities which conform to the desired predetermined characteristics in stage 40. As a result the imaging process can be used to identify and concentrate on localities of interest and data from other localities can be jettisoned. Consequently, the image analysis is able to concentrate its resources on the tissues of interest and a higher resolution final image can be produced.


It will be appreciated that in many cases two types of tissue may be superimposed, of which only one of the tissues is of interest. In this case it is of equal importance both to exclude the one tissue that is not of interest and to include the tissue that is of interest. It may be that the best marker for one tissue may not be the best marker for the other tissue. The system as described with respect to FIGS. 4 and 5 may be adapted to use with two or more markers, as exemplified in FIG. 6. Each marker produces a radioactive particle of different energy level, and therefore the data from the different markers can be collected and summed separately to form different images. Mathematically the different data sets obtained from the different energy level signals may be treated as different dimensions of a multi-dimensional vector. For each of the marker-images the appropriate characteristics are used to identify the tissues of interest, and the results can be cross-checked between the different markers. The different tissues can be mapped and the image analysis can concentrate on the area of interest. As a result the system uses both time and particle energy as separate dimensions in addition to the spatial dimensions in order to characterize or map the tissues.


As a result the image analysis unit is able to produce a final result treating the various tissue regions as separate entities. Furthermore, as the system is aware of the regions as entities it is able to further direct the imaging process to concentrate on the regions of interest.


An example in which regions at least partially overlap is the heart. Generally, scans of the heart are interested in the muscular walls of the heart. Although the chambers of the heart are filled with blood, any signal coming from the blood is in fact noise to this kind of scan. It is therefore advantageous to carry out an imaging process which is able to positively identify signals from the muscular heart walls and at the same time exclude the blood.


Referring now to FIG. 6, and in a preferred embodiment, the patient ingests two markers, thalium 201 and technetium 99. The first of these is an effective blood marker and two successive thalium images are shown in FIGS. 6a and 6b, and the second is more effective at marking muscle tissue and two successive images thereof are shown in FIGS. 6c and 6d. The heart is imaged at intervals chosen both for the characteristic for thalium 201 in blood and for the characteristic of technetium 99 in muscle. The result is a series of images for each of the markers. The series for thalium 201 may be constrained to show the regions of blood quite clearly, and to filter out other regions. In here a blood vessel is shown clearly in 6a and more faintly in 6b where the thalium has mostly been flushed out. The series for technetium 99, FIGS. 6c and 6d show muscle wall structures. The first of the two images apparently shows larger structures but in fact all that it is showing is that much technetium has not yet been absorbed in the muscle. The second image 6d may therefore be used to constrain the first image 6c to show only the muscle walls regions. The two series of images may then be superimposed to filter out from the technetium 99 images 6c and 6d anything that appears strongly in the thalium images 6a and 6b. The filtering may additionally remove anything that appears strongly in both images as coming from outside the region.


In the above example, two regions were of respectively positive and negative interest, meaning one for concentrating on and the other for filtering out. It will be appreciated that several regions or several tissue types may be of positive interest or there may be any combination of regions with just one being of positive interest. Alternatively all regions may be of positive interest but importance may be attached to discriminating between the different signals from the different regions.


The system is able to use the mapping to generate an image comprising the different tissue regions as distinct entities. As a consequence of the mapping process, the system is able to be aware electronically of the different regions and thus control both the imaging head and the analysis unit to concentrate their resources on specific regions. The result is greater resolution for the regions of interest.


The preferred embodiments may be used to expand the information obtained from the markers, using either or both of examining the kinetics of the markers over time and using several markers concurrently.


In order to increase the specificity of the test, additional second substances (“secondary substances”), with reactivity and pharmaco-kinetics differing from those of the first substance can be used in order to enhance the differentiation between the different pathologies, as explained above with respect to FIG. 6. The secondary substance, in this case thalium, ideally marks only a subset of the population marked by the primary substance and does so at different rates. Such a difference exists because of different affinity to various cell types and different participation in metabolic reactions of different tissues. The difference is associated with the rate of marking and/or with the location of the marking.


Upon reading the radioactive signals emanating from the voxels stemming from different substances at different time instances, it is possible to build for every voxel a multi dimensional data matrix Sjk whose elements are intensity readings taken at instances K resulting from the interaction of Substance J. Examination of every voxel of tissue in this multidimensional space quantifies the temporal and specific reaction of the tissue to different substances and thus increases the probability of specific detection of different pathologies. Furthermore, standard image processing techniques can be used in order to more accurately define the spatial location of different pathologies.


In addition to the method above, spatial properties that reflect typical relationships between neighboring voxels may also be a criteria and represented as part of the pattern of the tissue type.


Reference is now made to FIG. 7, which illustrates an additional statistical approach. In FIG. 7, an automatic algorithm based on expected intensities may be used to determine if the entire organ or region is diseased or non-diseased. Once it is possible to become tissue-aware, as explained above, then it is no longer necessary to carry out such analysis on a voxel-by-voxel basis. Rather the system is able to determine where the organ lies say using a first marker and then a second marker may be imaged using the constraint of the organ location, the second marker being able to locate the presence of the pathology.


Reference is now made to FIG. 8 which illustrates a method for using the tissue aware properties of the present embodiments in order to tune detection to match tissue or organ emissivities. Generally, any region, no matter how much radiation it produces, can always be imaged sufficiently simply by leaving the measuring device in position for long enough. However, in many cases there may be limited time available. For such cases in which there is limited time for data acquisition, the present embodiments can be used to identify regions that may be expected to produce less emission. The system may then tune imaging resources or resolution onto those tissues according to the number of photons available. Clearly the more photons obtained the more reliable is the data, and therefore a tissue aware system is able to concentrate more detectors on the weaker signaling tissues.


If there are still not enough photons, or there are not enough detectors, then another way of pooling resources is to merge neighboring voxels (or regions). Such a procedure may reduce resolution, but will increase the overall number of photons for that merged region, and thus enable better classification of that region based on a more reliable photon count. Such a compromise enables analysis of the same collected data by ways that would allow high resolution where there are enough photons and lower resolutions where there are less while maintaining reliability of the analysis.


Again the tissue regions may be identified using multiple markers.


The above-described embodiment may lead to controlled sensitivity levels, currently not available with radioimaging.


The concept of using multiple antibodies can be used for therapy purposes, as in the following:


The specificity of a single antibody carrying a drug (or radioactive therapy) determines the chance for non-target tissue to receive the drug, and thus be subject to any toxicity of the drug. In cases where there are several antibodies, each with limited specificity, but with affinity to different ‘background’ tissue, a combination of antibodies may be used to improve the overall specificity, and thus to reduce overall toxicity and enable higher efficacy of treatment.


For example, if a first antibody (A1) based drug binds to the target N1 folds its affinity to the closest non-target tissue (B1), and a second antibody (A2) with similar drug has target affinity which is N2 folds higher than its closest non-target tissue (B2), then using a merged therapy will enable better target vs. non-target specificity, which is better than N1 and N2 (assuming B1 and B2 are different).


In a more generalized embodiment, the system may include a signal analysis module, including a library of patterns that are typical for every cell type. Each type of cells has one or more patterns associated with it, and the pattern determines how a set of markers injected according to a specific protocol (dosage, time, etc) may be expressed in that cell type. The analysis includes classification of the readings from each voxel based on correlation, or other statistical tools for assessing the most probable tissue classification for each voxel.


Since there may be several cell types for a given disease (e.g. cancer may show in several forms), the algorithm may be optimized to determine the exact tissue type per voxel or region. Alternatively, the algorithm may be optimized to determine the general property of diseased/non-diseased, while taking the specific classification only as a factor in the statistical analysis.


It should be noted that the system may allow for various protocols for administering the markers, where injection of the various markers may be simultaneous, or multiple injections at various times, as various markers have different lifetime in the circulation.


The issue of generating imaging using two or more markers is now considered mathematically.


An intensity distribution I, conventionally defined in terms of radioactive emissions per seconds, is now redefined as a vector of distributions over the volume U, forming our input space. Each dimension of the vector is a different one of the radiopharmaceuticals. The universal set U comprises a set of basic elements u (e.g., pixels in two dimensional spaces, voxels in three dimensional spaces), and I(u) is the intensity in a given basic element u ε U. For j radiopharmaceuticals this becomes I(u)(j,t) An inverse (or reconstruction) problem arises when one cannot sample directly from I, but can sample from a given set of views Φ. A projection φεΦ is defined by the set of probabilities {φ (u):uεU}, where φ (u) is the probability of detecting a radioactive emission from a voxel u, as defined by viewing parameters, such as the physical and geometrical properties of the detecting unit, as well as the attenuation parameters of the viewed volume U, and the time parameters. A measurement is obtained by choosing a view φεΦ, and then sampling according to the viewing parameters.


For j radiopharmaceuticals or markers and k detectors, the probability of seeing a particle becomes φjk (u)


In the following analysis, I is the intensity of a radioactive substance, and the viewing parameters include the geometrical properties of a collimated detecting unit and the detecting unit's position and orientation with respect to volume U. The number of radioactive emissions counted by the detecting unit within a time interval is a Poisson distribution, where φ (u) is the detection probability of a photon emitted from voxel uεU and the mean of the distribution is the weighted sum ΣuεU φ (u)I(u).


For the case of the kth detector a measurement Yk=ΣuεU Xt(u), where X(U) is a Poisson distribution.

X(j,k,t)(u)=I(i,t)(u)·φ(u)jk(u).


Where Y(j,k,t)=ΣX(j,k,t)(u).


Hence Y(j,k,t))=Poisson (Y(j,k,t))


The projection set is thus defined by a matrix Φ, whose rows are the projections of the chosen views. I is a vector of densities (specified per each element in U), and ΦI is a vector of respective effective intensity levels for the views in the set. A vector of measurements y is obtained by a random sample from each view (according to the associated Poisson distribution). As discussed above, there are various known reconstruction methods that provide estimators for I given the projections Φ and the measurements y.


Using the above mathematics the problem is solved (an image created) one of the vectors say once an hour. The rates of change are determined. Simultaneously the problem is solved for another of the vectors at similar time intervals and the rates of change are determined. Then a stage of cross-identification is carried out between the two images, so that wanted tissues as identified by each image minus unwanted tissues identified by each image are concentrated on to form a new image. Cross-identification may be an iterative process.


In the example given above of the imaging of the heart using one blood marker and one muscular tissue marker, the areas identified by the blood marker are subtracted. The areas identified by the muscle marker are added, and those tissues not identified by either are likewise ignored as being signals from outside the target region.


The non-homogenous target area is typically a region of living tissue, generally belonging to a patient. The distinguishable regions within can be different tissues, different organs, a mixture of blood and organ tissue as with the above example of the heart, or tissue regions exhibiting differential pathologies.


It is expected that during the life of this patent many relevant markers, radiological imaging devices and two and three dimensional imaging systems will be developed and the scopes of the corresponding terms herein, are intended to include all such new technologies a priori.


It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.


Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.

Claims
  • 1. Apparatus for gamma radiation based imaging and analysis of a non-homogenous three dimensional (3D) target area having distinguishable regions therein, the apparatus comprising: an imaging circuit configured to obtain gamma radiation emission data from said 3D target area in the spatial dimensions and at least one other dimension in a single imaging session, to obtain one or more images; andan image multi-dimensional analysis circuit associated with said imaging circuit for analyzing said obtained one or more images in said spatial dimensions and said at least one other dimension in order to discern patterns across said dimensions;wherein said at least one other dimension is indicative of radiation data of at least one radiopharmaceutical in said 3D target area during said single imaging session.
  • 2. The apparatus according to claim 1, further comprising using said discerning in order to map respective distinguishable regions.
  • 3. The apparatus of claim 1, wherein said obtaining said data of said spatial dimensions comprises obtaining three dimensional data by tomography.
  • 4. The apparatus of claim 1, wherein said discerning said patterns comprises discerning tissue properties.
  • 5. The apparatus of claim 4, wherein said tissue properties discerned comprise properties distinguishing between different types of tissue.
  • 6. The apparatus of claim 4, wherein said tissue properties discerned comprise properties distinguishing between different tissue states.
  • 7. The apparatus of claim 4, wherein said tissue properties discerned comprise properties distinguishing between active and nonactive tissue.
  • 8. The apparatus of claim 4, wherein said tissue properties discerned comprise properties distinguishing between healthy and diseased tissue.
  • 9. The apparatus of claim 4, wherein said tissue properties discerned comprise properties allowing classification of disease severity.
  • 10. The apparatus of claim 4, wherein said tissue properties discerned comprise physiological properties associated with marker kinetics.
  • 11. The apparatus of claim 4, wherein said tissue properties discerned comprise properties associated with rate of change of marker intensities.
  • 12. The apparatus of claim 1, wherein said discerning said patterns comprises discerning tissue properties according to a library of patterns.
  • 13. The apparatus according to claim 1, wherein said at least one other dimension is indicative of data of a plurality of radiopharmaceuticals in said 3D target area.
  • 14. The apparatus according to claim 1, wherein said data is kinetics data of at least one radiopharmaceutical.
  • 15. The apparatus according to claim 1, wherein said discerned patterns are used by said imaging circuit.
  • 16. The apparatus according to claim 15, wherein said discerned patterns are analyzed to identify tissue type to be used by said imaging circuit.
  • 17. The apparatus according to claim 1, wherein said discerned patterns are used by said imaging circuit to modify further acquisition by said imaging circuit.
  • 18. The apparatus according to claim 1, wherein said discerned patterns are used by said imaging circuit to modify reconstruction of said obtained one or more images by said imaging circuit.
  • 19. The apparatus according to claim 1, wherein said imaging circuit is a non-coincidence imaging circuit generating non-coincidence images.
  • 20. Apparatus for gamma radiation based imaging of a non-homogenous three dimensional (3D) target area having distinguishable voxels therein, the apparatus comprising: an imaging circuit configured to obtain gamma radiation emission data from said 3D target area in spatial dimensions and a time dimension in a single imaging session, as one or more images; andan image multi-dimensional analysis circuit associated with said imaging circuit for analyzing said obtained one or more images in said spatial dimensions and said time dimension in order to discern at least one property, during said single imaging session, from a time profile of a radiopharmaceutical marker in at least one of said distinguishable voxels.
  • 21. Apparatus for gamma radiation based imaging and analysis of a three dimensional (3D) target area, the apparatus comprising: an imaging circuit configured to obtain gamma radiation emission data from said 3D target area in spatial dimensions and at least one other dimension in a single imaging session, as one or more images; andan image multi-dimensional analysis circuit associated with said imaging circuit for analyzing said obtained one or more images in said spatial dimensions and said at least one other dimension in order to discern patterns within a respective target region;wherein said at least one other dimension is indicative of radiation data of at least one radiopharmaceutical in said respective target region during a single imaging session.
  • 22. Apparatus according to claim 21, wherein said 3D target area comprises at least two distinguishable regions and wherein said obtained emission data is from said distinguishable regions, and said analysis is to discern patterns with a respective one of said regions.
  • 23. Apparatus according to claim 22, wherein said analysis comprises obtaining kinetics data of said at least one radiopharmaceutical in a respective region.
  • 24. Apparatus according to claim 23, wherein said kinetics data is related to a combination of radiopharmaceuticals in said respective region.
  • 25. Apparatus according to claim 21, wherein said analysis is of a plurality of radiopharmaceuticals of which at least one is analyzed for its kinetic properties.
  • 26. Apparatus according to claim 21, wherein said obtained emission data comprises emission data of an isotope associated with said respective regions over a plurality of time points.
  • 27. Apparatus according to claim 21, wherein said obtained emission data comprises emission data of a plurality of isotopes associated with said respective regions.
  • 28. Apparatus according to claim 27, wherein said emission data of said plurality of isotopes comprises data obtained during at least one member of the group consisting of an uptake state of said isotopes, a lowering state of said isotopes, and a saturation state of said isotopes.
  • 29. Apparatus according to claim 21, wherein said analysis further comprises comparing between respective regions.
  • 30. Apparatus according to claim 29, wherein said comparing comprises further improving reconstruction by emphasizing features of interest.
  • 31. Apparatus according to claim 29, wherein said comparing comprises at least one member of the group consisting of: comparing ratio between regions, comparing ratio between isotopes, comparing by ratio between time points, comparing absolute difference between regions, comparing absolute difference between isotopes, comparing absolute difference between time points, and comparing using statistical tools.
  • 32. Apparatus according to claim 21, wherein respective regions are imaged at least twice, at least two tissue types being identified in each region, and comprising at least one member of the group consisting of: a) image data of one tissue type being added between said images, thereby to emphasize said tissue type, andb) image data of one tissue type being subtracted between said images thereby to de-emphasize said tissue type, thereby to produce a new image that emphasizes said added tissue type or de-emphasizes said subtracted tissue type.
  • 33. Apparatus according to claim 21, wherein said emission data comprises data from at least two radiopharmaceuticals, said at least two radiopharmaceuticals forming a cocktail, and wherein said analysis comprises a multi-dimensional reconstruction including treating emission data from respectively different pharmaceuticals as at least one other dimension.
  • 34. Apparatus according to claim 21, further comprising using said analysis for a three dimensional reconstruction.
  • 35. Apparatus according to claim 21, further comprising using said analysis for a 3 dimensional reconstruction with a time dimension.
  • 36. The apparatus according to claim 21, wherein said at least one other dimension is indicative of data of a plurality of radiopharmaceuticals in said 3D target area.
  • 37. A method of optimization of therapy of the human or animal body, comprising: identifying a three dimensional (3D) target region for said therapy;applying to a patient at least one radioactive marker;obtaining gamma radiation emission data from said 3D target region in spatial dimensions and at least one other dimension during a single imaging session, as one or more images; andanalyzing said obtained one or more images in spatial dimensions and at least one other dimension in order to discern patterns across said dimensions, thereby to characterize said 3D target region, andoptimizing said therapy based on said characterization.
  • 38. Apparatus for multi-dimensional image reconstruction based on data acquired from an imaging circuit for obtaining gamma radiation intensity data from a three dimensional (3D) target region in spatial dimensions and at least one other dimension, the apparatus comprising: an image four-dimension analysis circuit configured to analyze said obtained intensity data in said spatial dimension and said at least one other dimension during a single imaging session, as one or more images, in order to map at least one distinguishable region in terms of a property, said property being that of at least one member of the group consisting of a tissue, a disease, a disease stage and a physiological process;wherein said at least one other dimension is indicative of radiation data of at least one radiopharmaceutical in said target area during said single imaging session.
  • 39. Apparatus according to claim 38, wherein said analysis circuit is configured to infer said property through at least one member of the group consisting of a kinetic property of a marker, and a kinetic property of a group of markers.
  • 40. Apparatus according to claim 38, wherein said property is a type or a pattern of a given tissue.
RELATED APPLICATIONS

The present Application is a continuation of pending U.S. patent application Ser. No. 11/034,007, filed Jan. 13, 2005, which claims the benefit of U.S. Provisional Patent Application No. 60/535,830, filed Jan. 13, 2004, the contents of which are hereby incorporated by reference.

US Referenced Citations (742)
Number Name Date Kind
630611 Knapp et al. Aug 1899 A
2776377 Anger Jan 1957 A
3340866 Nöller Sep 1967 A
3446965 Ogier et al. May 1969 A
3535085 Shumate et al. Oct 1970 A
3684887 Hugonin Aug 1972 A
3690309 Pluzhnikov et al. Sep 1972 A
3719183 Schwartz Mar 1973 A
3739279 Hollis Jun 1973 A
3971362 Pope et al. Jul 1976 A
3978337 Nickles et al. Aug 1976 A
3988585 O'Neill et al. Oct 1976 A
4000502 Butler et al. Dec 1976 A
4015592 Bradley-Moore Apr 1977 A
4055765 Gerber et al. Oct 1977 A
4061919 Miller et al. Dec 1977 A
4095107 Genna et al. Jun 1978 A
4165462 Macovski et al. Aug 1979 A
4181856 Bone Jan 1980 A
4278077 Mizumoto Jul 1981 A
4289969 Cooperstein et al. Sep 1981 A
4291708 Frei et al. Sep 1981 A
4296785 Vitello et al. Oct 1981 A
4302675 Wake et al. Nov 1981 A
4364377 Smith Dec 1982 A
4383327 Kruger May 1983 A
4476381 Rubin Oct 1984 A
4503331 Kovacs, Jr. et al. Mar 1985 A
4521688 Yin Jun 1985 A
H12 Bennett et al. Jan 1986 H
H000012 Bennett et al. Jan 1986 H
4580054 Shimoni Apr 1986 A
4595014 Barrett et al. Jun 1986 A
4674107 Urban et al. Jun 1987 A
4679142 Lee Jul 1987 A
4689041 Corday et al. Aug 1987 A
4689621 Kleinberg Aug 1987 A
4709382 Sones Nov 1987 A
4710624 Alvarez et al. Dec 1987 A
4731536 Rische et al. Mar 1988 A
4773430 Porath Sep 1988 A
4782840 Martin, Jr. et al. Nov 1988 A
4791934 Brunnett Dec 1988 A
4801803 Denen et al. Jan 1989 A
4828841 Porter et al. May 1989 A
4834112 Machek et al. May 1989 A
4844067 Ikada et al. Jul 1989 A
4844076 Lesho et al. Jul 1989 A
4853546 Abe et al. Aug 1989 A
4854324 Hirschman et al. Aug 1989 A
4854330 Evans, III et al. Aug 1989 A
4867962 Abrams Sep 1989 A
4893013 Denen et al. Jan 1990 A
4893322 Hellmick et al. Jan 1990 A
4919146 Rhinehart et al. Apr 1990 A
4924486 Weber et al. May 1990 A
4928250 Greenberg et al. May 1990 A
4929832 Ledley May 1990 A
4938230 Machek et al. Jul 1990 A
4951653 Fry et al. Aug 1990 A
4959547 Carroll et al. Sep 1990 A
4970391 Uber, III Nov 1990 A
4995396 Inaba et al. Feb 1991 A
5014708 Hayashi et al. May 1991 A
5018182 Cowan et al. May 1991 A
5032729 Charpak Jul 1991 A
5033998 Corday et al. Jul 1991 A
5039863 Matsuno et al. Aug 1991 A
5042056 Hellmick et al. Aug 1991 A
5070877 Mohiuddin et al. Dec 1991 A
5070878 Denen Dec 1991 A
5088492 Takayama et al. Feb 1992 A
5115137 Andersson-Engels et al. May 1992 A
5119818 Carroll et al. Jun 1992 A
5132542 Bassalleck et al. Jul 1992 A
5145163 Cowan et al. Sep 1992 A
5151598 Denen Sep 1992 A
5170055 Carroll et al. Dec 1992 A
5170439 Zeng et al. Dec 1992 A
5170789 Narayan et al. Dec 1992 A
5196796 Misic et al. Mar 1993 A
5210421 Gullberg et al. May 1993 A
5243988 Sieben et al. Sep 1993 A
5246005 Carroll et al. Sep 1993 A
5249124 DeVito Sep 1993 A
5252830 Weinberg Oct 1993 A
5254101 Trombley, III Oct 1993 A
5258717 Misic et al. Nov 1993 A
5263077 Cowan et al. Nov 1993 A
5279607 Schentag et al. Jan 1994 A
5284147 Hanaoka et al. Feb 1994 A
5299253 Wessels Mar 1994 A
5304165 Haber et al. Apr 1994 A
5307808 Dumoulin et al. May 1994 A
5307814 Kressel et al. May 1994 A
5309959 Shaw et al. May 1994 A
5317506 Coutre et al. May 1994 A
5317619 Hellmick et al. May 1994 A
5323006 Thompson et al. Jun 1994 A
5329976 Haber et al. Jul 1994 A
5334141 Carr et al. Aug 1994 A
5349190 Hines et al. Sep 1994 A
5355087 Claiborne et al. Oct 1994 A
5365069 Eisen et al. Nov 1994 A
5365928 Rhinehart et al. Nov 1994 A
5367552 Peschmann Nov 1994 A
5377681 Drane Jan 1995 A
5381791 Qian Jan 1995 A
5383456 Arnold et al. Jan 1995 A
5383858 Reilly et al. Jan 1995 A
5386446 Fujimoto et al. Jan 1995 A
5387409 Nunn et al. Feb 1995 A
5391877 Marks Feb 1995 A
5395366 D'Andrea Mar 1995 A
5399868 Jones et al. Mar 1995 A
5404293 Weng et al. Apr 1995 A
5415181 Hofgrefe et al. May 1995 A
5431161 Ryals et al. Jul 1995 A
5435302 Lenkinski et al. Jul 1995 A
5436458 Tran et al. Jul 1995 A
5441050 Thurston et al. Aug 1995 A
5448073 Jeanguillaume Sep 1995 A
5451232 Rhinehart et al. Sep 1995 A
5472403 Cornacchia et al. Dec 1995 A
5475219 Olson Dec 1995 A
5475232 Powers et al. Dec 1995 A
5476095 Schnall et al. Dec 1995 A
5479969 Hardie et al. Jan 1996 A
5481115 Hsieh et al. Jan 1996 A
5484384 Fearnot Jan 1996 A
5489782 Wernikoff Feb 1996 A
5493595 Schoolman Feb 1996 A
5493805 Penuela et al. Feb 1996 A
5494036 Uber, III et al. Feb 1996 A
5501674 Trombley, III et al. Mar 1996 A
5517120 Misik et al. May 1996 A
5519221 Weinberg May 1996 A
5519222 Besett May 1996 A
5519931 Reich May 1996 A
5520182 Leighton et al. May 1996 A
5520653 Reilly et al. May 1996 A
5521506 Misic et al. May 1996 A
5536945 Reich Jul 1996 A
5545899 Tran et al. Aug 1996 A
5559335 Zeng et al. Sep 1996 A
5565684 Gullberg et al. Oct 1996 A
5569181 Heilman et al. Oct 1996 A
5572132 Pulyer et al. Nov 1996 A
5572999 Funda et al. Nov 1996 A
5579766 Gray Dec 1996 A
5580541 Wells et al. Dec 1996 A
5585637 Bertelsen et al. Dec 1996 A
5587585 Eisen et al. Dec 1996 A
5591143 Trombley, III et al. Jan 1997 A
5600145 Plummer Feb 1997 A
5604531 Iddan et al. Feb 1997 A
5610520 Misic Mar 1997 A
5617858 Taverna et al. Apr 1997 A
5629524 Stettner et al. May 1997 A
5635717 Popescu Jun 1997 A
5657759 Essen-Moller Aug 1997 A
5672877 Liebig et al. Sep 1997 A
5677539 Apotovsky et al. Oct 1997 A
5682888 Olson et al. Nov 1997 A
5687542 Lawecki et al. Nov 1997 A
5690691 Chen et al. Nov 1997 A
5692640 Caulfield et al. Dec 1997 A
5694933 Madden et al. Dec 1997 A
5716595 Goldenberg Feb 1998 A
5727554 Kalend et al. Mar 1998 A
5729129 Acker Mar 1998 A
5732704 Thurston et al. Mar 1998 A
5739508 Uber, III Apr 1998 A
5741232 Reilly et al. Apr 1998 A
5742060 Ashburn Apr 1998 A
5744805 Raylman et al. Apr 1998 A
5757006 De Vito et al. May 1998 A
5779675 Reilly et al. Jul 1998 A
5780855 Pare et al. Jul 1998 A
5781442 Engleson et al. Jul 1998 A
5784432 Kurtz et al. Jul 1998 A
5786597 Lingren et al. Jul 1998 A
5795333 Reilly et al. Aug 1998 A
5799111 Guissin Aug 1998 A
5800355 Hasegawa Sep 1998 A
5803914 Ryals et al. Sep 1998 A
5806519 Evans, III et al. Sep 1998 A
5808203 Nolan, Jr. et al. Sep 1998 A
5810742 Pearlman Sep 1998 A
5811814 Leone et al. Sep 1998 A
5813985 Carroll Sep 1998 A
5818050 Dilmanian et al. Oct 1998 A
5821541 Tümer Oct 1998 A
5825031 Wong et al. Oct 1998 A
5827219 Uber, III et al. Oct 1998 A
5828073 Zhu et al. Oct 1998 A
5833603 Kovacs et al. Nov 1998 A
5838009 Plummer et al. Nov 1998 A
5840026 Uber, III et al. Nov 1998 A
5841141 Gullberg et al. Nov 1998 A
5842977 Lesho et al. Dec 1998 A
5843037 Uber, III Dec 1998 A
5846513 Carroll et al. Dec 1998 A
5847396 Lingren et al. Dec 1998 A
5857463 Thurston et al. Jan 1999 A
5871013 Wainer et al. Feb 1999 A
5873861 Hitchins et al. Feb 1999 A
5880475 Oka et al. Mar 1999 A
5882338 Gray Mar 1999 A
5884457 Ortiz et al. Mar 1999 A
5885216 Evans, III et al. Mar 1999 A
5891030 Johnson et al. Apr 1999 A
5893397 Peterson et al. Apr 1999 A
5899885 Reilly et al. May 1999 A
5900533 Chou May 1999 A
5903008 Li May 1999 A
5910112 Judd et al. Jun 1999 A
5911252 Cassel Jun 1999 A
5916167 Kramer et al. Jun 1999 A
5916197 Reilly et al. Jun 1999 A
5920054 Uber, III Jul 1999 A
5927351 Zhu et al. Jul 1999 A
5928150 Call Jul 1999 A
5932879 Raylman et al. Aug 1999 A
5938639 Reilly et al. Aug 1999 A
5939724 Eisen et al. Aug 1999 A
5944190 Edelen Aug 1999 A
5944694 Hitchins et al. Aug 1999 A
5947935 Rhinehart et al. Sep 1999 A
5953884 Lawecki et al. Sep 1999 A
5954668 Uber, III et al. Sep 1999 A
5961457 Raylman et al. Oct 1999 A
5967983 Ashburn Oct 1999 A
5973598 Beigel Oct 1999 A
5974165 Giger et al. Oct 1999 A
5984860 Shan Nov 1999 A
5987350 Thurston Nov 1999 A
5993378 Lemelson Nov 1999 A
5997502 Reilly et al. Dec 1999 A
6002134 Lingren Dec 1999 A
6002480 Izatt et al. Dec 1999 A
6017330 Hitchins et al. Jan 2000 A
6019745 Gray Feb 2000 A
6021341 Scibilia et al. Feb 2000 A
6026317 Verani Feb 2000 A
6037595 Lingren Mar 2000 A
6040697 Misic Mar 2000 A
6042565 Hirschman et al. Mar 2000 A
RE36648 Uber, III et al. Apr 2000 E
6046454 Lingren et al. Apr 2000 A
6048334 Hirschman et al. Apr 2000 A
6052618 Dahlke et al. Apr 2000 A
6055450 Ashburn Apr 2000 A
6055452 Pearlman Apr 2000 A
RE36693 Reich May 2000 E
6063052 Uber et al. May 2000 A
D426891 Beale et al. Jun 2000 S
D426892 Beale et al. Jun 2000 S
6072177 McCroskey et al. Jun 2000 A
6076009 Raylman et al. Jun 2000 A
6080984 Friesenhahn Jun 2000 A
D428491 Beale et al. Jul 2000 S
6082366 Andra et al. Jul 2000 A
6090064 Reilly et al. Jul 2000 A
6091070 Lingren et al. Jul 2000 A
6096011 Trombley, III et al. Aug 2000 A
6107102 Ferrari Aug 2000 A
6115635 Bourgeois Sep 2000 A
6129670 Burdette et al. Oct 2000 A
6132372 Essen-Moller Oct 2000 A
6135955 Madden et al. Oct 2000 A
6135968 Brounstein Oct 2000 A
6137109 Hayes Oct 2000 A
6145277 Lawecki et al. Nov 2000 A
6147352 Ashburn Nov 2000 A
6147353 Gagnon et al. Nov 2000 A
6148229 Morris, Sr. et al. Nov 2000 A
6149627 Uber, III Nov 2000 A
6155485 Coughlin et al. Dec 2000 A
6160398 Walsh Dec 2000 A
6162198 Coffey et al. Dec 2000 A
6172362 Lingren et al. Jan 2001 B1
6173201 Front Jan 2001 B1
6184530 Hines et al. Feb 2001 B1
6189195 Reilly et al. Feb 2001 B1
6194715 Lingren et al. Feb 2001 B1
6194725 Colsher et al. Feb 2001 B1
6194726 Pi et al. Feb 2001 B1
6197000 Reilly et al. Mar 2001 B1
6202923 Boyer et al. Mar 2001 B1
6203775 Torchilin et al. Mar 2001 B1
6205347 Morgan et al. Mar 2001 B1
6212423 Krakovitz Apr 2001 B1
6223065 Misic et al. Apr 2001 B1
6224577 Dedola et al. May 2001 B1
6226350 Hsieh May 2001 B1
6229145 Weinberg May 2001 B1
6232605 Soluri et al. May 2001 B1
6233304 Hu et al. May 2001 B1
6236050 Tumer May 2001 B1
6236878 Taylor et al. May 2001 B1
6236880 Raylman et al. May 2001 B1
6240312 Alfano et al. May 2001 B1
6241708 Reilly et al. Jun 2001 B1
6242743 DeVito et al. Jun 2001 B1
6242744 Soluri et al. Jun 2001 B1
6242745 Berlad et al. Jun 2001 B1
6246901 Benaron Jun 2001 B1
6252924 Davantes et al. Jun 2001 B1
6258576 Richards-Kortum et al. Jul 2001 B1
6259095 Bouton et al. Jul 2001 B1
6261562 Xu et al. Jul 2001 B1
6263229 Atalar et al. Jul 2001 B1
6269340 Ford et al. Jul 2001 B1
6270463 Morris, Sr. et al. Aug 2001 B1
6271524 Wainer et al. Aug 2001 B1
6271525 Majewski et al. Aug 2001 B1
6280704 Schutt et al. Aug 2001 B1
6281505 Hines et al. Aug 2001 B1
6308097 Pearlman Oct 2001 B1
6310968 Hawkins et al. Oct 2001 B1
6315981 Unger Nov 2001 B1
6317623 Griffiths et al. Nov 2001 B1
6317648 Sleep et al. Nov 2001 B1
6318630 Coughlin et al. Nov 2001 B1
6322535 Hitchins et al. Nov 2001 B1
6323648 Belt et al. Nov 2001 B1
6324418 Crowley et al. Nov 2001 B1
RE37487 Reilly et al. Dec 2001 E
D452737 Nolan, Jr. et al. Jan 2002 S
6336913 Spohn et al. Jan 2002 B1
6339652 Hawkins et al. Jan 2002 B1
6339718 Zatezalo et al. Jan 2002 B1
6344745 Reisker et al. Feb 2002 B1
6346706 Rogers et al. Feb 2002 B1
6346886 de la Huerga Feb 2002 B1
RE37602 Uber, III et al. Mar 2002 E
6353227 Boxen Mar 2002 B1
6356081 Misic Mar 2002 B1
6368331 Front et al. Apr 2002 B1
6371938 Reilly et al. Apr 2002 B1
6375624 Uber, III et al. Apr 2002 B1
6377838 Iwanczyk et al. Apr 2002 B1
6381349 Zeng et al. Apr 2002 B1
6385483 Uber, III et al. May 2002 B1
6388244 Gagnon May 2002 B1
6388258 Berlad et al. May 2002 B1
6392235 Barrett et al. May 2002 B1
6396273 Misic May 2002 B2
6397098 Uber, III et al. May 2002 B1
6399951 Paulus et al. Jun 2002 B1
6402717 Reilly et al. Jun 2002 B1
6402718 Reilly et al. Jun 2002 B1
6407391 Mastrippolito et al. Jun 2002 B1
6408204 Hirschman Jun 2002 B1
6409987 Cardin et al. Jun 2002 B1
6415046 Kerut, Sr. Jul 2002 B1
6420711 Tuemer Jul 2002 B2
6425174 Reich Jul 2002 B1
6426917 Tabanou et al. Jul 2002 B1
6429431 Wilk Aug 2002 B1
6431175 Penner et al. Aug 2002 B1
6432089 Kakimi et al. Aug 2002 B1
6438401 Cheng et al. Aug 2002 B1
6439444 Shields, II Aug 2002 B1
6440107 Trombley, III et al. Aug 2002 B1
6442418 Evans, III et al. Aug 2002 B1
6448560 Tumer Sep 2002 B1
6453199 Kobozev Sep 2002 B1
6459925 Nields et al. Oct 2002 B1
6459931 Hirschman Oct 2002 B1
6468261 Small et al. Oct 2002 B1
6469306 Van Dulmen et al. Oct 2002 B1
6471674 Emig et al. Oct 2002 B1
6480732 Tanaka et al. Nov 2002 B1
6484051 Daniel Nov 2002 B1
6488661 Spohn et al. Dec 2002 B1
6490476 Townsend et al. Dec 2002 B1
6504157 Juhi Jan 2003 B2
6504178 Carlson et al. Jan 2003 B2
6504899 Pugachev et al. Jan 2003 B2
6506155 Sluis et al. Jan 2003 B2
6510336 Daghighian et al. Jan 2003 B1
6512374 Misic et al. Jan 2003 B1
6516213 Nevo Feb 2003 B1
6519569 White et al. Feb 2003 B1
6520930 Critchlow et al. Feb 2003 B2
6522945 Sleep et al. Feb 2003 B2
6525320 Juni Feb 2003 B1
6525321 Juni Feb 2003 B2
6541763 Lingren et al. Apr 2003 B2
6545280 Weinberg et al. Apr 2003 B2
6549646 Yeh et al. Apr 2003 B1
6560354 Maurer et al. May 2003 B1
6562008 Reilly et al. May 2003 B1
6563942 Takeo et al. May 2003 B2
6565502 Bede et al. May 2003 B1
6567687 Front et al. May 2003 B2
6575930 Trombley, III et al. Jun 2003 B1
6576918 Fu et al. Jun 2003 B1
6583420 Nelson et al. Jun 2003 B1
6584348 Glukhovsky Jun 2003 B2
6585700 Trocki et al. Jul 2003 B1
6587710 Wainer Jul 2003 B1
6589158 Winkler Jul 2003 B2
6591127 McKinnon Jul 2003 B1
6592520 Peszynski et al. Jul 2003 B1
6602488 Daghighian Aug 2003 B1
6607301 Glukhovsky et al. Aug 2003 B1
6611141 Schulz et al. Aug 2003 B1
6614453 Suri et al. Sep 2003 B1
6620134 Trombley, III et al. Sep 2003 B1
6627893 Zeng et al. Sep 2003 B1
6628983 Gagnon Sep 2003 B1
6628984 Weinberg Sep 2003 B2
6630735 Carlson et al. Oct 2003 B1
6631284 Nutt et al. Oct 2003 B2
6632216 Houzego et al. Oct 2003 B2
6633658 Dabney et al. Oct 2003 B1
6638752 Contag et al. Oct 2003 B2
6643537 Zatezalo et al. Nov 2003 B1
6643538 Majewski et al. Nov 2003 B1
6652489 Trocki et al. Nov 2003 B2
6657200 Nygard et al. Dec 2003 B2
6662036 Cosman Dec 2003 B2
6664542 Ye et al. Dec 2003 B2
6670258 Carlson et al. Dec 2003 B2
6671563 Engelson et al. Dec 2003 B1
6673033 Sciulli et al. Jan 2004 B1
6674834 Acharya et al. Jan 2004 B1
6676634 Spohn et al. Jan 2004 B1
6677182 Carlson et al. Jan 2004 B2
6677755 Belt et al. Jan 2004 B2
6680750 Tournier et al. Jan 2004 B1
6694172 Gagnon et al. Feb 2004 B1
6697660 Robinson Feb 2004 B1
6699219 Emig et al. Mar 2004 B2
6704592 Reynolds et al. Mar 2004 B1
6713766 Garrard et al. Mar 2004 B2
6714012 Belt et al. Mar 2004 B2
6714013 Misic Mar 2004 B2
6716195 Nolan, Jr. et al. Apr 2004 B2
6722499 Reich Apr 2004 B2
6723988 Wainer Apr 2004 B1
6726657 Dedig et al. Apr 2004 B1
6728583 Hallett Apr 2004 B2
6731971 Evans, III et al. May 2004 B2
6731989 Engleson et al. May 2004 B2
6733477 Cowan et al. May 2004 B2
6733478 Reilly et al. May 2004 B2
6734416 Carlson et al. May 2004 B2
6734430 Soluri et al. May 2004 B2
6737652 Lanza et al. May 2004 B2
6737866 Belt et al. May 2004 B2
6740882 Weinberg et al. May 2004 B2
6743202 Hirschman et al. Jun 2004 B2
6743205 Nolan, Jr. et al. Jun 2004 B2
6747454 Belt Jun 2004 B2
6748259 Benaron et al. Jun 2004 B1
6751500 Hirschman et al. Jun 2004 B2
6765981 Heumann Jul 2004 B2
6766048 Launay et al. Jul 2004 B1
6771802 Patt et al. Aug 2004 B1
6774358 Hamill et al. Aug 2004 B2
6776977 Liu Aug 2004 B2
6787777 Gagnon et al. Sep 2004 B1
6788758 De Villiers Sep 2004 B2
6798206 Misic Sep 2004 B2
6808513 Reilly et al. Oct 2004 B2
6809321 Rempel Oct 2004 B2
6813868 Baldwin et al. Nov 2004 B2
6821013 Reilly et al. Nov 2004 B2
6822237 Inoue et al. Nov 2004 B2
6833705 Misic Dec 2004 B2
6838672 Wagenaar et al. Jan 2005 B2
6841782 Balan et al. Jan 2005 B1
6843357 Bybee et al. Jan 2005 B2
6851615 Jones Feb 2005 B2
6866654 Callan et al. Mar 2005 B2
6870175 Dell et al. Mar 2005 B2
6881043 Barak Apr 2005 B2
6888351 Belt et al. May 2005 B2
6889074 Uber, III et al. May 2005 B2
6897658 Belt et al. May 2005 B2
6906330 Blevis et al. Jun 2005 B2
D507832 Yanniello et al. Jul 2005 S
6915170 Engleson et al. Jul 2005 B2
6915823 Osborne et al. Jul 2005 B2
6917828 Fukuda Jul 2005 B2
6921384 Reilly et al. Jul 2005 B2
6928142 Shao et al. Aug 2005 B2
6935560 Andreasson et al. Aug 2005 B2
6936030 Pavlik et al. Aug 2005 B1
6937750 Natanzon et al. Aug 2005 B2
6939302 Griffiths et al. Sep 2005 B2
6940070 Tumer Sep 2005 B2
6943355 Shwartz et al. Sep 2005 B2
6957522 Baldwin et al. Oct 2005 B2
6958053 Reilly Oct 2005 B1
6963770 Scarantino et al. Nov 2005 B2
6970735 Uber, III et al. Nov 2005 B2
6972001 Emig et al. Dec 2005 B2
6974443 Reilly et al. Dec 2005 B2
6976349 Baldwin et al. Dec 2005 B2
6984222 Hitchins et al. Jan 2006 B1
6985870 Martucci et al. Jan 2006 B2
6988981 Hamazaki Jan 2006 B2
6994249 Peterka et al. Feb 2006 B2
7009183 Wainer et al. Mar 2006 B2
7011814 Suddarth et al. Mar 2006 B2
7012430 Misic Mar 2006 B2
7017622 Osborne et al. Mar 2006 B2
7018363 Cowan et al. Mar 2006 B2
7019783 Kindem et al. Mar 2006 B2
7025757 Reilly et al. Apr 2006 B2
7026623 Oaknin et al. Apr 2006 B2
7043063 Noble et al. May 2006 B1
7102138 Belvis et al. Sep 2006 B2
7103204 Celler et al. Sep 2006 B1
7127026 Amemiya et al. Oct 2006 B2
7142634 Engler et al. Nov 2006 B2
7145986 Wear et al. Dec 2006 B2
7147372 Nelson et al. Dec 2006 B2
7164130 Welsh et al. Jan 2007 B2
7176466 Rousso et al. Feb 2007 B2
7187790 Sabol et al. Mar 2007 B2
7217953 Carlson May 2007 B2
7256386 Carlson et al. Aug 2007 B2
7291841 Nelson et al. Nov 2007 B2
7327822 Sauer et al. Feb 2008 B2
7359535 Salla et al. Apr 2008 B2
7373197 Daighighian et al. May 2008 B2
7394923 Zou et al. Jul 2008 B2
7444010 De Man Oct 2008 B2
7468513 Charron et al. Dec 2008 B2
7470896 Pawlak et al. Dec 2008 B2
7490085 Walker et al. Feb 2009 B2
7495225 Hefetz et al. Feb 2009 B2
7502499 Grady Mar 2009 B2
7570732 Stanton et al. Aug 2009 B2
7592597 Hefetz et al. Sep 2009 B2
7620444 Le et al. Nov 2009 B2
7627084 Jabri et al. Dec 2009 B2
7652259 Kimchy et al. Jan 2010 B2
7671331 Hefez Mar 2010 B2
7671340 Uribe et al. Mar 2010 B2
7672491 Krishnan et al. Mar 2010 B2
7680240 Manjeshwar et al. Mar 2010 B2
7705316 Rousso et al. Apr 2010 B2
7734331 Dhawale et al. Jun 2010 B2
7826889 David et al. Nov 2010 B2
7831024 Metzler et al. Nov 2010 B2
7835927 Schlotterbeck et al. Nov 2010 B2
7872235 Rousso et al. Jan 2011 B2
7894650 Weng et al. Feb 2011 B2
7968851 Rousso et al. Jun 2011 B2
8013308 Guerin et al. Sep 2011 B2
8055329 Kimchy et al. Nov 2011 B2
8111886 Rousso et al. Feb 2012 B2
8158951 Bal et al. Apr 2012 B2
8163661 Akiyoshi et al. Apr 2012 B2
8204500 Weintraub et al. Jun 2012 B2
8338788 Zilberstein et al. Dec 2012 B2
8440168 Yang et al. May 2013 B2
20010016029 Tumer Aug 2001 A1
20010020131 Kawagishi et al. Sep 2001 A1
20010035902 Iddan et al. Nov 2001 A1
20010049608 Iiochman Dec 2001 A1
20020068864 Bishop et al. Jun 2002 A1
20020072784 Sheppard, Jr. et al. Jun 2002 A1
20020085748 Baumberg Jul 2002 A1
20020087101 Barrick et al. Jul 2002 A1
20020099295 Gil et al. Jul 2002 A1
20020099310 Kimchy et al. Jul 2002 A1
20020099334 Hanson et al. Jul 2002 A1
20020103429 DeCharms Aug 2002 A1
20020103431 Toker et al. Aug 2002 A1
20020145114 Inoue et al. Oct 2002 A1
20020148970 Wong et al. Oct 2002 A1
20020165491 Reilly Nov 2002 A1
20020168094 Kaushikkar et al. Nov 2002 A1
20020168317 Daighighian et al. Nov 2002 A1
20020172405 Schultz Nov 2002 A1
20020179843 Tanaka et al. Dec 2002 A1
20020183645 Nachaliel Dec 2002 A1
20020188197 Bishop et al. Dec 2002 A1
20020198738 Osborne Dec 2002 A1
20030001098 Stoddart et al. Jan 2003 A1
20030001837 Baumberg Jan 2003 A1
20030006376 Tumer Jan 2003 A1
20030013950 Rollo et al. Jan 2003 A1
20030013966 Barnes et al. Jan 2003 A1
20030038240 Weinberg Feb 2003 A1
20030055685 Cobb et al. Mar 2003 A1
20030063787 Natanzon et al. Apr 2003 A1
20030071219 Motomura et al. Apr 2003 A1
20030081716 Tumer May 2003 A1
20030135388 Martucci et al. Jul 2003 A1
20030136912 Juni Jul 2003 A1
20030144322 Kozikowski et al. Jul 2003 A1
20030147887 Wang et al. Aug 2003 A1
20030158481 Stotzka et al. Aug 2003 A1
20030183226 Brand et al. Oct 2003 A1
20030189174 Tanaka et al. Oct 2003 A1
20030191430 D'Andrea et al. Oct 2003 A1
20030202629 Dunham et al. Oct 2003 A1
20030208117 Shwartz et al. Nov 2003 A1
20030215122 Tanaka Nov 2003 A1
20030215124 Li Nov 2003 A1
20030216631 Bloch et al. Nov 2003 A1
20030219149 Vailaya et al. Nov 2003 A1
20040003001 Shimura Jan 2004 A1
20040010397 Barbour et al. Jan 2004 A1
20040015075 Kimchy et al. Jan 2004 A1
20040021065 Weber Feb 2004 A1
20040044282 Mixon et al. Mar 2004 A1
20040051368 Caputo et al. Mar 2004 A1
20040054248 Kimchy et al. Mar 2004 A1
20040054278 Kimchy et al. Mar 2004 A1
20040065838 Tumer Apr 2004 A1
20040075058 Blevis et al. Apr 2004 A1
20040081623 Eriksen et al. Apr 2004 A1
20040082918 Evans et al. Apr 2004 A1
20040084340 Morelle et al. May 2004 A1
20040086437 Jackson et al. May 2004 A1
20040101176 Mendonca et al. May 2004 A1
20040101177 Zahlmann et al. May 2004 A1
20040116807 Amrami et al. Jun 2004 A1
20040120557 Sabol Jun 2004 A1
20040122311 Cosman Jun 2004 A1
20040125918 Shanmugaval et al. Jul 2004 A1
20040138557 Le et al. Jul 2004 A1
20040143449 Behrenbruch et al. Jul 2004 A1
20040144925 Stoddart et al. Jul 2004 A1
20040153128 Suresh et al. Aug 2004 A1
20040162492 Kobayashi Aug 2004 A1
20040171924 Mire et al. Sep 2004 A1
20040183022 Weinberg Sep 2004 A1
20040184644 Leichter et al. Sep 2004 A1
20040193453 Butterfield et al. Sep 2004 A1
20040195512 Crosetto Oct 2004 A1
20040204646 Nagler et al. Oct 2004 A1
20040205343 Forth et al. Oct 2004 A1
20040210126 Iiajaj et al. Oct 2004 A1
20040238743 Gravrand et al. Dec 2004 A1
20040251419 Nelson et al. Dec 2004 A1
20040253177 Elmaleh et al. Dec 2004 A1
20040263865 Pawlak et al. Dec 2004 A1
20050001170 Juni Jan 2005 A1
20050006589 Young et al. Jan 2005 A1
20050020898 Vosniak et al. Jan 2005 A1
20050020915 Bellardinelli et al. Jan 2005 A1
20050023474 Persyk et al. Feb 2005 A1
20050029277 Tachibana Feb 2005 A1
20050033157 Klein et al. Feb 2005 A1
20050049487 Johnson et al. Mar 2005 A1
20050055174 David et al. Mar 2005 A1
20050056788 Juni Mar 2005 A1
20050074402 Cagnolini et al. Apr 2005 A1
20050107698 Powers et al. May 2005 A1
20050107914 Engleson et al. May 2005 A1
20050108044 Koster May 2005 A1
20050113945 Engleson et al. May 2005 A1
20050121505 Metz et al. Jun 2005 A1
20050131270 Weil et al. Jun 2005 A1
20050145797 Oaknin et al. Jul 2005 A1
20050148869 Masuda Jul 2005 A1
20050149350 Kerr et al. Jul 2005 A1
20050156115 Kobayashi et al. Jul 2005 A1
20050173643 Tumer Aug 2005 A1
20050187465 Motomura et al. Aug 2005 A1
20050198800 Reich Sep 2005 A1
20050203389 Williams Sep 2005 A1
20050205792 Rousso et al. Sep 2005 A1
20050205796 Bryman Sep 2005 A1
20050207526 Altman Sep 2005 A1
20050211909 Smith Sep 2005 A1
20050215889 Patterson, II Sep 2005 A1
20050234424 Besing et al. Oct 2005 A1
20050247893 Fu et al. Nov 2005 A1
20050261936 Silverbrook et al. Nov 2005 A1
20050261937 Silverbrook et al. Nov 2005 A1
20050261938 Silverbrook et al. Nov 2005 A1
20050277833 Williams, Jr. Dec 2005 A1
20050277911 Stewart et al. Dec 2005 A1
20050278066 Graves et al. Dec 2005 A1
20050288869 Kroll et al. Dec 2005 A1
20060000983 Charron et al. Jan 2006 A1
20060033028 Juni Feb 2006 A1
20060036157 Tumer Feb 2006 A1
20060072799 McLain Apr 2006 A1
20060074290 Chen et al. Apr 2006 A1
20060104519 Stoeckel et al. May 2006 A1
20060109950 Arenson et al. May 2006 A1
20060122503 Burbank et al. Jun 2006 A1
20060145081 Hawman Jul 2006 A1
20060160157 Zuckerman Jul 2006 A1
20060188136 Ritt et al. Aug 2006 A1
20060214097 Wang et al. Sep 2006 A1
20060237652 Kimchy et al. Oct 2006 A1
20060257012 Kaufman et al. Nov 2006 A1
20070116170 De Man et al. May 2007 A1
20070133852 Collins et al. Jun 2007 A1
20070156047 Nagler et al. Jul 2007 A1
20070166227 Liu et al. Jul 2007 A1
20070189436 Goto et al. Aug 2007 A1
20070194241 Rousso et al. Aug 2007 A1
20070265230 Rousso et al. Nov 2007 A1
20080001090 Ben-Haim et al. Jan 2008 A1
20080029704 Hefetz et al. Feb 2008 A1
20080033291 Rousso et al. Feb 2008 A1
20080036882 Uemura et al. Feb 2008 A1
20080039721 Shai et al. Feb 2008 A1
20080137938 Zahniser Jun 2008 A1
20080230702 Rousso et al. Sep 2008 A1
20080230705 Rousso et al. Sep 2008 A1
20080237482 Shahar et al. Oct 2008 A1
20080260228 Dichterman et al. Oct 2008 A1
20080260580 Helle et al. Oct 2008 A1
20080260637 Dickman Oct 2008 A1
20080277591 Shahar et al. Nov 2008 A1
20090001273 Hawman Jan 2009 A1
20090018412 Schmitt Jan 2009 A1
20090078875 Rousso et al. Mar 2009 A1
20090112086 Melman Apr 2009 A1
20090152471 Rousso et al. Jun 2009 A1
20090201291 Ziv et al. Aug 2009 A1
20090236532 Frach et al. Sep 2009 A1
20090304582 Rousso et al. Dec 2009 A1
20100006770 Balakin Jan 2010 A1
20100021378 Rousso et al. Jan 2010 A1
20100102242 Burr et al. Apr 2010 A1
20100121184 Dhawale et al. May 2010 A1
20100140483 Rousso et al. Jun 2010 A1
20100202664 Busch et al. Aug 2010 A1
20100245354 Rousso et al. Sep 2010 A1
20120106820 Rousso et al. May 2012 A1
20120172699 Nagler et al. Jul 2012 A1
20120248320 Wangerin et al. Oct 2012 A1
20120326034 Sachs et al. Dec 2012 A1
20130114792 Zilberstein et al. May 2013 A1
20130308749 Zilberstein et al. Nov 2013 A1
Foreign Referenced Citations (63)
Number Date Country
1516429 Dec 1969 DE
19814199 Oct 1999 DE
19815362 Oct 1999 DE
0273257 Jul 1988 EP
0525954 Feb 1993 EP
0526970 Feb 1993 EP
0543626 May 1993 EP
0592093 Apr 1994 EP
0697193 Feb 1996 EP
0813692 Dec 1997 EP
1237013 Sep 2002 EP
2031142 Apr 1980 GB
59-141084 Aug 1984 JP
61-026879 Feb 1986 JP
01-324568 Jun 1986 JP
03-121549 May 1991 JP
04-151120 May 1992 JP
06-109848 Apr 1994 JP
6-109848 Apr 1994 JP
07-059763 Mar 1995 JP
07-141523 Jun 1995 JP
08-292268 Nov 1996 JP
10-260258 Sep 1998 JP
11-072564 Mar 1999 JP
WO 9200402 Jan 1992 WO
WO 9816852 Apr 1998 WO
WO 9903003 Jan 1999 WO
WO 9930610 Jun 1999 WO
WO 9939650 Aug 1999 WO
WO 0010034 Feb 2000 WO
WO 0018294 Apr 2000 WO
WO 0022975 Apr 2000 WO
WO 0025268 May 2000 WO
WO 0031522 Jun 2000 WO
WO 0038197 Jun 2000 WO
WO 0189384 Nov 2001 WO
WO 0216965 Feb 2002 WO
WO 02058531 Aug 2002 WO
WO 02075357 Sep 2002 WO
WO 03073938 Sep 2003 WO
WO 03086170 Oct 2003 WO
WO 2004004787 Jan 2004 WO
WO 2004032151 Apr 2004 WO
WO 2004042546 May 2004 WO
WO 2004113951 Dec 2004 WO
WO 2005002971 Jan 2005 WO
WO 2005059592 Jun 2005 WO
WO 2005059840 Jun 2005 WO
WO 2005067383 Jul 2005 WO
WO 2005104939 Nov 2005 WO
WO 2005118659 Dec 2005 WO
WO 2005119025 Dec 2005 WO
WO 2006042077 Apr 2006 WO
WO 2006051531 May 2006 WO
WO 2006054296 May 2006 WO
WO 2006075333 Jul 2006 WO
WO 2006129301 Dec 2006 WO
WO 2007010534 Jan 2007 WO
WO 2007010537 Jan 2007 WO
WO 2007054935 May 2007 WO
WO 2007074467 Jul 2007 WO
WO 2008010227 Jan 2008 WO
WO 2008075362 Jun 2008 WO
Non-Patent Literature Citations (412)
Entry
International Search Report Dated Jul. 11, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/01511.
International Search Report Dated Jul. 25, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2007/001588.
Official Action Dated Sep. 4, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568.
Official Action Dated Oct. 7, 2008 From the US Patent Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Jul. 12, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Dec. 13, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Jul. 15, 2008 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Mar. 21, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568.
Official Action Dated Jun. 25, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Sep. 25, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Sep. 30, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Supplementary Partial European Search Report Dated Nov. 11, 2008 From the European Patent Office Re.: Application No. 01951883.6.
Written Opinion Dated Jul. 25, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001173.
Stoddart et al. “New Multi-Dimensional Reconstructions for the 12-Detector, Scanned Focal Point, Single-Photon Tomograph”, Physics in Medicine and Biology, XP020021960, 37(3): 579-586, Mar. 1, 1992. p. 582, § 2-p. 585, § 1.
Aoi et al. “Absolute Quantitation of Regional Myocardial Blood Flow of Rats Using Dynamic Pinhole SPECT”, IEEE Nuclear Science Symposium and Medical Imaging Conference Record, 3: 1780-1783, 2002. Abstract, Figs.
Bromiley et al. “Attenuation Correction in PET Using Consistency Conditions and a Three-Dimensional Template”, IEEE Transactions on Nuclear Science, 48(4):1371-1377, 2001. p. 1376, col. 2, § 2.
Corstens et al. “Nuclear Medicine's Role in Infection and Inflammation”, The Lancet, 354: 765-770, 1999.
Day et al. “Localization of Radioiodinated Rat Fibrogen in Transplanted Rat Tumors”, Journal of the National Cancer Institute, 23(4): 799-812, 1959.
Erbil et al. “Use and Limitations of Serum Total and Lipid-Bound Sialic Acid Concentrations as Markers for Colorectal Cancer”, Cancer, 55: 404-409, 1985.
Garcia et al. “Accuracy of Dynamic SPECT Acquisition for Tc-99m Teboroxime Myocardinal Perfusion Imaging: Preliminary Results”, American College of Cardiology, 51st Annual Scientific Session, Atlanta, Georgia, USA, 8 P., 2002.
Hassan et al. “A Radiotelemetry Pill for the Measurement of Ionising Radiation Using a Mercuric Iodide Detector”, Phys. Med. Biol., 23(2): 302-308, 1978.
Hayakawa et al. “A PET-MRI Registration Technique for PET Studies of the Rat Brain”, Nuclear Medicine & Biology, 27: 121-125, 2000. p. 121, col. 1.
Hoffman et al. “Intraoperative Probes and Imaging Probes”, European Journal of Nuclear Medicine, 26(8): 913-935, 1999.
Huesman et al. “Kinetic Parameter Estimation From SPECT Cone-Beam Projection Measurements”, Physics in Medicine and Biology, 43(4): 973-982, 1998.
Jeanguillaume et al. “From the Whole-Body Counting to Imaging: The Computer Aided Collimation Gamma Camera Project (CACAO)”, Radiation Projection Dosimetry 89(3-4): 349-352, 2000.
Jessup “Tumor Markers—Prognostic and Therapeutic Implications for Colorectal Carcinoma”, Surgical Oncology, 7: 139-151, 1998.
Kojima et al. “Quantitative Planar Imaging Method for Measurement of Renal Activity by Using A Conjugate-Emission Image and Transmission Data”, Medical Physics, 27(3): 608-615, 2000. p. 608.
Lavallée et al. “Building a Hybrid Patient's Model for Augmented Reality in Surgery: A Registration Problem”, Computing in Biological Medicine, 25(2): 149-164, 1995. p. 149-150.
Molinolo et al. “Enhanced Tumor Binding Using Immunohistochemical Analyses by Second Generation Anti-Tumor-Associated Glycoprotein 72 Monoclonal Antibodies versus Monoclonal Antibody B72.3 in Human Tissue”, Cancer Research, 50: 1291-1298, 1990.
Mori et al. “Overexpression of Matrix Metalloproteinase-7mRNA in Human Colon Carcinomas”, Cancer, 75: 1516-1519, 1995.
Pardridge et al. “Tracer Kinetic Model of Blood-Brain Barrier Transport of Plasma Protein-Bound Ligands”, Journal of Clinical Investigation, 74: 745-752, 1984. Suppl. IDS in 27480.
Quartuccia et al. “Computer Assisted Collimation Gama Camera: A New Approach to Imaging Contaminated Tissues”, Radiation Projection Dosimetry, 89(3-4): 343-348, 2000.
Rajshekhar “Continuous Impedence Monitoring During CT-Guided Stereotactic Surgery: Relative Value in Cystic and Solid Lesions”, British Journal of Neurosurgery, 6: 439-444, 1992.
Reutter et al. “Direct Least Squares Estimation of Spatiotemporal Distributions From Dynamic SPECT Projections Using A Spatial Segmentation and Temporal B-Splines”, IEEE Transactions on Medical Imaging, 19(5): 434-450, 2000.
Reutter et al. “Kinetic Parameter Estimation From Attenuated SPECT Projection Measurements”, IEEE Transactions on Nuclear Science, 45(6): 307-3013, 1998.
Zhang et al. “An Innovative High Efficiency and High Resolution Probe for Prostate Imaging”, The Journal of Nuclear Medicine, 68: 18, 2000. Abstract.
Communication Pursuant to Article 94(3) EPC Dated Jul. 22, 2009 From the European Patent Office Re.: Application No. 06809851.6.
International Preliminary Report on Patentability Dated Apr. 16, 2009 From the International Bureau of WIPO Re.: Application No. PCT/IL2007/000918.
International Preliminary Report on Patentability Dated Jun. 21, 2007 From the International Bureau of WIPO Re.: Application No. PCT/IL2005/000575.
International Preliminary Report on Patentability Dated Jan. 22, 2009 From the International Bureau of WIPO Re.: Application No. PCT/IL2006/000834.
international Preliminary Report on Patentability Dated Jan. 22, 2009 From the International Bureau of WIPO Re.: Application No. PCT/IL2006/001511.
International Preliminary Report on Patentability Dated May 22, 2007 From the International Preliminary Examining Authority Re.: Application No. PCT/IL06/00059.
International Preliminary Report on Patentability Datcd May 22, 2008 From the International Bureau of WIPO Re.: Application No. PCT/1L2006/001291.
International Preliminary Report on Patentability Dated May 24, 2007 From the International Bureau of WIPO Re.: Application No. PCT/IL2005/001173.
International Preliminary Report on Patentability Dated Apr. 26, 2007 From the International Bureau of WIPO Re.: Application No. PCT/IL2005/000394.
International Preliminary Report on Patentability Dated Jan. 31, 2008 From the International Bureau of WIPO Re.: Application No. PCT/IL2006/000840.
International Search Report Dated Oct. 15, 2008 From the International Searching Authority Re.: Application No. PCT/IL07/00918.
Invitation to Pay Additional Fees Dated Jul. 10, 2008 From the International Searching Authority Re.: Application No. PCT/IL06/01511.
Invitation to Pay Additional Fees Dated Feb. 15, 2007 From the International Searching Authority Re.: Application No. PCT/IL05/00575.
Notice of Allowance Dated Jul. 16, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559.
Office Action Dated Jan. 2, 2006 From the Israeli Patent Office Re.: Application No. 154323.
Office Action Dated Sep. 4, 2007 From the Israeli Patent Office Re.: Application No. 157007.
Office Action Dated Jul. 17, 2007 From the Israeli Patent Office Re.: Application No. 154323.
Official Action Dated Jan. 7, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated Jul. 7, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568.
Official Action Dated May 13, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated Jul. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Dec. 16, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Jul. 20, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617.
Official Action Dated Dec. 23, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Official Action Dated Nov. 26, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Apr. 29, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated Mar. 13, 2008 to Official Action of Dec. 13, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Aug. 14, 2008 to Official Action of Apr. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Response Dated Mar. 15, 2007 to Official Action of Dec. 15, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Sep. 22, 2008 to Official Action of Jun. 25, 2008 From US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Nov. 25, 2005 to Office Action of May 13, 2005 From the Patent Office of the People's Republic of China Re.: Application No. 1817689.5.
Response Dated Oct. 31, 2007 to Official Action of Jul. 12, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response to the International Search Report and the Written Opinion of Oct. 10, 2006 From the International Searching Authority Re.: Appliction No. PCT/IL06/00059.
Second International Search Report Dated Jun. 1, 2009 From the International Searching Authority Re.: Application No. PCT/IL07/00918.
Second Written Opinion Dated Jun. 1, 2009 From the International Searching Authority Re.: Application No. PCT/IL07/00918.
Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC Jan. 16, 2009 From the European Patent Office Re.: Application No. 03810570.6.
Supplementary Partial European Search Report Dated Nov. 20, 2007 From the European Patent Office Re.: Application No. 02716285.8.
Translation of Office Action Dated May 13, 2005 From the Patent Office of the People's Republic of China Re.: Application No. 01817689.5.
Written Opinion Dated Oct. 15, 2008 From the International Searching Authority Re.: Application No. PCT/IL07/00918.
Bloch et al. “Application of Computerized Tomography to Radiation Therapy and Surgical Planning”, Proceedings of the IEEE, 71(3): 351-355, Mar. 1983.
Kinahan el al. “Attenuation Correction for a Combined 3D PET/CT Scanner”, Medical Physics, 25(10): 2046-2053, Oct. 1998.
Ogawa et al. “Ultra High Resoultion Pinhole SPECT”, IEEE Nuclear Science Symposium, 2: 1600-1604, 1998.
Pellegrini et al. “Design of Compact Pinhole SPECT System Based on Flat Panel PMT”, IEEE Nuclear Science Symposium Conference Record, 3: 1828-1832, 2003.
Takahashi et al. “Attenuation Correction of Myocardial SPECT Images With X-Ray CT: Effects of Registration Errors Between X-Ray CT and SPECT”, Annals of Nuclear Medicine, 16(6): 431-435, Sep. 2002.
Yu et al. “Using Correlated CT Images in Compensation for Attenuation in PET Image Reconstruction”, Proceedings of the SPIE, Applications of Optical Engineering: Proceedings of OE/Midwest '90, 1396: 56-58, 1991.
Zaidi et al. “Magenetic Resonance Imaging-Guided Attenuation and Scatter Corrections in Three-Dimensional Brain Positron Emission Tomography”, Medical Physics, 30(5): 937-948, May 2003.
Zaidi et al. “MRI-Guided Attenuation Correction in 3D Brain PET”, Neuroimage Human Brain Mapping 2002 Meeting, 16(2): Abstract 504, Jun. 2002.
Communication Pursuant to Article 93(3) EPC Dated Mar. 8, 2010 From the European Patent Office Re.: Application No. 06832278.3.
Appeal Brief Dated Jan. 19, 2010 to Notice of Appeal of Nov. 16, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Communication Pursuant to Article 94(3) EPC Dated Mar. 8, 2010 From the European Patent Office Re.: Application No. 06832278.3.
Notice of Allowance Dated Nov. 23, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559.
Notice of Appeal and Pre-Appeal Brief Dated Jan. 4, 2010 to Official Action of Sep. 2, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Notice of Appeal Dated Nov. 16, 2009 to Official Action of Jul. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Mar. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Official Action Dated Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617.
Official Action Dated Dec. 8, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/132,320.
Official Action Dated Jan. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Official Action Dated Mar. 11, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Official Action Dated Mar. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Feb. 23, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Response Dated Jan. 14, 2010 to Official Action of Sep. 15, 2009 From the US Patent and Trademark Office Re.: Application No. 10/616,307.
Response Dated Jan. 14, 2010 to Official Action of Sep. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Response Dated Oct. 14, 2009 to Official Action of May 14, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Response Dated Jan. 21, 2010 to Official Action of Sep. 21, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Response Dated Feb. 22, 2010 to Communication Pursuant to Article 94(3) EPC Oct. 21, 2009 From the European Patent Office Re.: Application No. 02716285.8.
Response Dated Dec. 28, 2009 to Official Action of Aug. 28, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Response Dated Dec. 30, 2009 to Official Action of Sep. 1, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Response Dated Dec. 30, 2009 to Official Action of Oct. 30, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Supplementary Partial European Search Report and the European Search Opinion Dated Dec. 15, 2009 From the European Patent Office Re.: Application No. 06832278.3.
Gilland et al. “A 3D Model of Non-Uniform Attenuation and Detector Response for Efficient Iterative Reconstruction in SPECT”, Physics in Medicine and Biology, XP002558623, 39(3): 547-561, Mar. 1994. p. 549-550, Section 2.3 ‘Active Voxel Reconstruction’, p. 551, Lines 4-8.
Gilland et al. “Simultaneous Reconstruction and Motion Estimation for Gated Cardiac ECT”, IEEE Transactions on Nuclear Science, XP011077797, 49(5): 2344-2349, Oct. 1, 2002. p. 2344, Section ‘Introduction’, First §.
Kadrmas et al. “Static Versus Dynamic Teboroxime Myocardial Perfusion SPECT in Canines”, IEEE Transactions on Nuclear Science, 47(3): 1112-1117, Jun. 2000.
Li et al. “A HOTLink/Networked PC Data Acquisition and Image Reconstruction System for a High Resolution Whole-Body PET With Respiratory or ECG-Gated Performance”, IEEE Nuclear Sience Symposium and Medical Imaging Conference, Norfolk, VA, USA, Nov. 10-16, 2002, XP010663724, 2: 1135-1139, p. 1137, First Col., 2nd §.
Wu et al. “ECG-Gated Pinhole SPECT in Mice With Millimeter Spatial Resolution”, IEEE Transactions on Nuclear Science, 47(3): 1218-1221, Jun. 2000.
Official Action Dated Apr. 9, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Communication Pursuant to Article 94(3) EPC Dated Apr. 16, 2010 From the European Patent Office Re. Application No. 01951883.6.
Response Dated Jun. 3, 2010 to Notice of Appeal and Pre-Appeal Brief of Jan. 4, 2010 to Official Action of Sep. 2, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Communication Pursuant to Article 96(2) EPC Dated Jan. 19, 2006 From the European Patent Office Re.: Application No. 03810570.6.
Communication Pursuant to Article 96(2) EPC Dated Aug. 30, 2007 From the European Patent Office Re.: Application No. 03810570.6.
Communication Relating to the Results of the Partial International Search Dated Apr. 18, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2006/001291.
Communication Relating to the Results of the Partial International Search Dated May 21, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2007/001588.
International Preliminary Report on Patentability Dated Apr. 16, 2009 From the International Bureau of WIPO Re.: Applicaiton No. PCT/IL2007/000918.
International Search Report Dated Oct. 10, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00059.
International Search Report Dated Feb. 1, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00048.
International Search Report Dated Jul. 1, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00834.
International Search Report Dated Nov. 1, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00840.
International Search Report Dated Jul. 2, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2006/001291.
international Search Report Dated Aug. 3, 2006 From the international Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001173.
International Search Report Dated May 11, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001215.
International Search Report Dated Sep. 11, 2002 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL01/00638.
International Search Report Dated Sep. 12, 2002 From the International Searching Authority of the Patent Cooperation Treaty Re: Application No. PCT/IL02/00057.
International Search Report Dated Mar. 18, 2004 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL03/00917.
International Search Report Dated Mar. 23, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00572.
International Search Report Dated May 24, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00575.
International Search Report Dated Mar. 26, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00394.
Office Action Dated Dec. 2, 2007 From the Israeli Patent Office Re.: Application No. 158442.
Official Action Dated Jun. 1, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/686,536.
Official Action Dated Jul. 2, 2004 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated May 3, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Sep. 5, 2002 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559.
Official Action Dated Aug. 10, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Apr. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Feb. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Jul. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Mar. 15, 2004 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/765,316.
Official Action Dated Jan. 17, 2006 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 11/034,007.
Official Action Dated Apr. 20, 2006 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Sep. 30, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated Nov. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/728,383.
Response dated Sep. 1, 2010 to Official Action of Aug. 3, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated Oct. 5, 2010 to Official Action of Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Response Dated May 10, 2010 to Official Action of Jan. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Response Dated May 11, 2010 to Official Action of Mar. 11, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Response Dated Aug. 25, 2010 to Official Action of Jul. 27, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Response Dated May 26, 2010 to Official Action of Mar. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Supplemental Response Under 37 C.F.R. § 1.125 Dated Aug. 12, 2010 to Telephonic Interview of Aug. 6, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617.
Supplementary European Search Report Dated Dec. 12, 2005 From the European Patent Office Re.: U.S. Appl. No. 03810570.6.
Supplementary Partial European Search Report Dated Sep. 4, 2007 From the European Patent Office Re.: Application No. 0 2716285.8.
Written Opinion Dated Feb. 1, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00048.
Written Opinion Dated Jul. 1, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00834.
Written Opinion Dated Jul. 2, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2006/001291.
Written Opinion Dated Aug. 3, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001173.
Written Opinion Dated Oct. 10, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00059.
Written Opinion Dated Mar. 23, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00572.
Written Opinion Dated May 24, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00575.
Written Opinion Dated Mar. 26, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00394.
Beekman et al. “Efficient Fully 3-D Iterative SPECT Reconstruction With Monte Carlo-Based Scatter Compensation”, IEEE Transactions on Medical Imaging, 21(8): 867-877, Aug. 2002.
Bromiley et al. “Attenuation Correction in PET Using Consistency Conditions and a Three-Dimensional Template”, IEEE Transactions on Nuclear Science, XP002352920, 48(4): 1371-1377, 2001. p. 1376, col. 2, § 2.
Brown et al. “Method for Segmenting Chest CT Image Data Using an Anatomical Model: Preliminary Results”, IEEE Transactions on Medical Imaging, 16(6): 828-839, Dec. 1997.
Del Guerra et al. “An Integrated PET-SPECT Small Animal Imager: Preliminary Results”, Nuclear Science Symposium, IEEE Records, 1: 541-544, 1999.
Gugnin et al “Radiocapsule for Recording the Ionizing Radiation in the Gastrointestinal Tract”, UDC 615. 417:616.34-005.1-073.916-71 (All-Union Scientific-Research Institute of medical Instrument Design, Moscow. Translated from Meditsinskaya Tekhnika, 1:21-25, Jan.-Feb. 1972).
Hassan et al. “A Radiotelemetry Pill for the Measurement of Ionising Radiation Using a Mercuric Iodide Detector”, Physics in Medicine and Biology, 23(2): 302-308, 1978.
Lavallée et al. “Building a Hybrid Patient's Model for Augmented Reality in Surgery: A Registration Problem”, Computing in Biological Medicine, 25(2): 149-164, 1995.
Piperno et al. “Breast Cancer Screening by Impedance Measurements”, Frontiers Med. Biol. Engng., 2(2): 11-17, 1990.
Pluim et al. “Image Registration by Maximization of Combined Mutual Information and Gradient Information”, IEEE Transactions on Medical Imaging, 19(8): 1-6, 2000.
Notice of Allowance Dated Dec. 17, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617.
Official Action Dated Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Dec. 28, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Official Action Dated Jan. 31, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Communication Pursuant to Rules 70(2) and 70a(2) EPC Dated Apr. 4, 2011 From the European Patent Office Re. Application No. 05803689.8.
Response Dated Mar. 31, 2011 to Official Action of Jan. 31, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
McJilton et al. “Protein Kinase C? Interacts With Bax and Promotes Survival of Human Prostate Cancer Cells”, Oncogene, 22; 7958-7968, 2003.
Communication Pursuant to Article 94(3) EPC Dated Mar. 2, 2011 From the European Patent Office Re.: Application No. 06756259.5.
Notice of Allowance Dated Nov. 15, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,301.
Notice of Non-Compliant Amendment Dated Feb. 14, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated Nov. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Oct. 7, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Dec. 15, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Jun. 23, 2006 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Response Dated Mar. 8, 2011 to Official Action of Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated Feb. 10, 2011 to Notice of Allowance of Nov. 15, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,301.
Response Dated Mar. 24, 2011 to Official Action of Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Response Dated Jan. 27, 2011 to Official Action of Nov. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/728,383.
Lavall?e et al. “Building a Hybrid Patient's Model for Augmented Reality in Surgery: A Registration Problem”, Computing in Biological Medicine, 25(2): 149-164, 1995.
Lin et al. “Improved Sensor Pills for Physiological Monitoring”, NASA Technical Brief, JPL New Technology Report, NPO-20652, 25(2), 2000.
Mettler et al. “Legal Requirements and Radiation Safety”, Essentials of Nuclear Medicine Imaging, 2nd Ed., Chap.13: 323-331, 1985.
Response Dated Apr. 5, 2011 to Official Action of Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Supplementary European Search Report and the European Search Opinion Dated Mar. 16, 2011 From the European Patent Office Re. Application No. 05803689.8.
Herrmann et al. “Mitochondrial Proteome: Altered Cytochtrome C Oxidase Subunit Levels in Prostate Cancer”, Proteomics, XP002625778, 3(9): 1801-1810, Sep. 2003.
Krieg et al. “Mitochondrial Proteome: Cancer-Altered Metabolism Associated With Cytochrome C Oxidase Subunit Level Variation”, Proteomics, XP002625779, 4(9):2789-2795, Sep. 2004.
Interview Summary Dated Mar. 25, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Mao et al. “Human Prostatic Carcinoma: An Electron Microscope Study”, Cancer Research, XP002625777, 26(5): 955-973, May 1966.
Storey et al. “Tc-99m Sestamibi Uptake in Metastatic Prostate Carcinoma”, Clinical Nuclear Medicine, XP009145398, 25(2): 133-134, Feb. 2000.
Response Dated Mar. 3, 2011 to Notice of Non-Compliant Amendment of Feb. 14, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Notice of Allowance Dated May 5, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Notice of Allowance Dated May 6, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617.
Official Action Dated Apr. 20, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated Apr. 27, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated May 23, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Official Action Dated May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
McJilton et al. “Protein Kinase Cε Interacts With Bax and Promotes Survival of Human Prostate Cancer Cells”, Oncogene, 22; 7958-7968, 2003.
Xu et al. “Quantitative Expression Profile of Androgen-Regulated Genes in Prostate Cancer Cells and Identification of Prostate-Specific Genes”, International Journal of Cancer, 92: 322-328, 2001.
Interview Summary Dated May 31, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,301.
Notice of Allowance Dated Feb. 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Mar. 15, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Jul. 12, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Amendment After Allowance Under 37 CFR 1.312 Dated Sep. 13, 2010 to Notice of Allowance of Jul. 22, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Examination Report Dated Jun. 22, 2011 From the Government of India, Patent Office, Intellectual Property Building Re. U.S. Appl. No. 2963/CHENP/2006.
Official Action Dated Mar. 9, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Jun. 7, 2011 to Official Action of Mar. 9, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Jun. 28, 2011 to Official Action of Dec. 28, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Official Action Dated Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Response Dated Jul. 1, 2010 to Official Action of Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Response Dated Jul. 8, 2010 to Official Action of Apr. 9, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Response Dated Jun. 23, 2010 to Official Action of Feb. 23, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Jul. 11, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683.
Response Dated Jul. 14, 2011 to Official Action of Mar. 15, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Response Dated Sep. 1, 2011 to Communication Pursuant to Article 94(3) EPC of Mar. 2, 2011 From the European Patent Office Re.: Application No. 06756259.5.
Response Dated Aug. 29, 2011 to Official Action of Apr. 27, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Communication Pursuant to Article 94(3) EPC Dated May 12, 2010 From the European Patent Office Re.: Application No. 06809851.6.
Notice of Allowance Dated Aug. 25, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617.
Response Dated Sep. 8, 2010 to Communication Pursuant to Article 94(3) EPC Dated May 12, 2010 From the European Patent Office Re.: Application No. 06809851.6.
Official Action Dated Jan. 28, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Response Dated Feb. 10, 2011 to Official Action of Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Response Dated Jan. 27, 2011 to Official Action of Nov. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated Jan. 31, 2011 to Official Action of Sep. 30, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Response Dated Jul. 1, 2010 to Official Action of Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617.
Official Action Dated Jul. 27, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Response Dated Jul. 26, 2010 to Official Action of Apr. 28, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Notice of Allowance Dated Jun. 30, 2010 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Official Action Dated Aug. 3, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Supplemental Response After Interview Dated Aug. 4, 2010 to Official Action of Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617.
Notice of Allowance Dated Jul. 22, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Response Dated Aug. 16, 2010 to Communication Pursuant to Article 94(3) EPC of Apr. 16, 2010 From the European Patent Office Re. Application No. 01951883.6.
Response Dated Jul. 8, 2010 to Communication Pursuant to Article 94(3) EPC of Mar. 8, 2010 From the European Patent Office Re.: Application No. 06832278.3.
Notice of Allowance Dated Jun. 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Jun. 28, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/628,074.
Official Action Dated Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Response Dated Nov. 18, 2010 to Official Action of Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Response Dated Jun. 1, 2010 to Official Action of Mar. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Brzymialkiewicz et al. “Evaluation of Fully 3-D Emission Mammotomography With a Compact Cadmium Zinc Telluride Detector”, IEEE Transactions on Medical Imaging, 24(7): 868-877, Jul. 2005.
Jan et al. “Preliminary Results From the AROPET”, IEEE Nuclear Science Symposium Conference Record, Nov. 4-10, 2001, 3: 1607-1610, 2001.
Ohno et al. “Selection of Optimum Projection Angles in Three Dimensional Myocardial SPECT”, IEEE Nuclear Science Symposium Conference Record 2001, 4: 2166-2169, 2001.
Seret et al. “Intrinsic Uniformity Requirements for Pinhole SPECT”, Journal of Nuclear Medicine Technology, 34(1): 43-47, Mar. 2006.
Smither “High Resolution Medical Imaging System for 3-D Imaging of Radioactive Sources With 1 mm FWHM Spatial Resolution”, Proceedings of the SPIE, Medical Imaging 2003: Physics of Medical Imaging, 5030: 1052-1060, Jun. 9, 2003.
Tornai et al. “A 3D Gantry Single Photon Emission Tomograph With Hemispherical Coverage for Dedicated Breast Imaging”, Nuclear Instruments & Methods in Physics Research, Section A, 157-167, 2003.
Response Dated Dec. 8, 2011 to Restriction Official Action of Nov. 8, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Official Action Dated Dec. 19, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/448,473.
Official Action Dated Dec. 15, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Dec. 20, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Response Dated Nov. 13, 2011 to Official Action of Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Response Dated Dec. 29, 2011 to Office Action of Jul. 17, 2007 From the Israeli Patent Office Re.: Application No. 154323.
Berman et al. “Dual-Isotope Myocardial Perfusion SPECT With Rest Thallium-201 and Stress Tc-99m Sestamibi”, Cardiology Clinics, 12(2): 261-270, May 1994.
DeGrado et al. “Topics in Integrated Systems Physiology. Tracer Kinetic Modeling in Nuclear Cardiology”, Journal of Nuclear Cardiology, 7: 686-700, 2000.
Links “Advances in SPECT and PET Imaging”, Annals in Nuclear Medical Science, 13(2): 107-120, Jun. 2000.
Notice of Allowance Dated Dec. 26, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Dec. 28, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Charland et al. “The Use of Deconvolution and Total Least Squares in Recovering A Radiation Detector Linc Spread Function”, Medical Physics, 25(2): 152-160, Feb. 1998. Abstract Only!.
Applicant-Initiated Interview Summary Dated Jan. 28, 2013 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated Feb. 7, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Notice of Allowance Dated Feb. 2, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/628,074.
Official Action Dated Jan. 19, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Official Action Dated Jan. 23, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Jin et al. “Reconstruction of Cardiac-Gated Dynamic SPECT Images”, IEEE International Conference on Image Processing 2005, ICIP 2005, Sep. 11-14, 2005, 3: 1-4, 2005.
Toennies et al. “Scatter Segmentation in Dynamic SPECT Images Using Principal Component Analysis”, Progress in Biomedical Optics and Imaging, 4(23): 507-516, 2003.
Advisory Action Before the Filing of an Appeal Brief Dated Feb. 26, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785.
Notice of Allowance Dated Feb. 21, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017.
Communication Under Rule 71(3) EPC Dated Feb. 26, 2013 From the European Patent Office Re. Application No. 06756259.5.
Official Action Dated Feb. 22, 2013 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Notice of Panel Decision From Pre-Appeal Brief Review Dated Feb. 29, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Mar. 1, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated Dec. 22, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785.
Official Action Dated Feb. 28, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Mar. 6, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/792,856.
Restriction Official Action Dated Mar. 9, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/976,852.
Office Action Dated Jul. 17, 2007 From the Israeli Patent Office Re.: Application No. 154323 and Its Translation Into English.
Notice of Allowance Dated Mar. 14, 2013 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated Mar. 11, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 13/345,719.
Studen “Compton Camera With Position-Sensitive Silicon Detectors”, Doctoral Thesis, University of Ljubljana, Faculty of Mathematics and Physics, 36 P.
Applicant-Initiated Interview Summary Dated May 1, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/343,792.
Applicant-Initiated Interview Summary Dated May 1, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Advisory Action before the Filing of an Appeal Brief Dated May 21, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Applicant-Initiated Interview Summary Dated May 9, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/448,473.
Advisory Action Before the Filing of an Appeal Brief Dated Feb. 26, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223.
Official Action Dated Nov. 30, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223.
Advisory Action Before the Filing of an Appeal Brief Dated Jul. 12, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Communication Pursuant to Article 94(3) EPC Dated Jun. 11, 2012 From the European Patent Office Re.: Application No. 06756259.5.
Communication Pursuant to Article 94(3) EPC Dated Sep. 23, 2011 From the European Patent Office Re.: Application No. 06832278.3.
Communication Pursuant to Article 94(3) EPC Dated May 29, 2012 From the European Patent Office Re. Application No. 05803689.8.
Communication Under Rule 71(3) EPC Dated May 30, 2012 From the European Patent Office Re.: Application No. 02716285.8.
International Preliminary Report on Patentability Dated Apr. 7, 2009 From the International Bureau of WIPO Re. Application No. PCT/IL2007/000918.
International Preliminary Report on Patentability Dated Jan. 13, 2009 From the International Bureau of WIPO Re. Application No. PCT/IL2006/000834.
International Preliminary Report on Patentability Dated May 14, 2008 From the International Bureau of WIPO Re. Application No. PCT/IL2006/001291.
International Preliminary Report on Patentability Dated May 15, 2007 From the International Bureau of WIPO Re. Application No. PCT/IL2005/001173.
International Search Report Dated Jul. 1, 2008 From the International Searching Authority Re. Application No. PCT/IL2006/000834.
International Search Report Dated Jul. 2, 2007 From the International Searching Authority Re. Application No. PCT/IL2006/001291.
International Search Report Dated Aug. 3, 2006 From the International Searching Authority Re. Application No. PCT/IL2005/001173.
International Search Report Dated Oct. 15, 2008 From the International Searching Authority Re. Application No. PCT/2007/000918.
Notice of Allowance Dated Feb. 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/728,383.
Official Action Dated Aug. 2, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Official Action Dated Oct. 7, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/750,057.
Official Action Dated Oct. 7, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/932,872.
Official Action Dated Aug. 13, 2008 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/769,826.
Official Action Dated Apr. 16, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Feb. 16, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/747,378.
Official Action Dated May 18, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223.
Official Action Dated May 18, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785.
Official Action Dated Apr. 19, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/750,057.
Official Action Dated Jun. 21, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Official Action Dated Apr. 23, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/932,987.
Official Action Dated Jul. 30, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683.
Response Dated Apr. 7, 2009 to Official Action of Oct. 7, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Restriction Official Action Dated Apr. 13, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223.
Restriction Official Action Dated Aug. 16, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/448,473.
Written Opinion Dated Nov. 1, 2007 from the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00840.
Written Opinion Dated Jul. 11, 2008 from the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/01511.
Berman et al. “Dual-Isotope Myocardial Perfusion SPECT With Rest Thallium-201 and Stress Tc-99m Sestamibi”, Nuclear Cardiology, 12(2): 261-270, May 1994.
Bowsher et al. “Treatment of Compton Scattering in Maximum-Likelihood, Expectation-Maximization Reconstructions of SPECT Images”, Journal of Nuclear Medicine, 32(6): 1285-1291, 1991.
Bracco Diagnostics “Cardiotec®: Kit for the Preparation of Technetium Tc 99m Teboroxime. For Diagnostic Use”, Bracco Diagnostics Inc., Product Sheet, 2 P., Jul. 2003.
Bracco Diagnostics “Techneplex®: Kit for the Preparation of Technetium Tc 99m Pentetate Injection. Diagnostic—for Intravenous Use”, Bracco Diagnostics™, Product Sheet, 5 P., Jun. 1995.
Chengazi et al. “Imaging Prostate Cancer With Technetium-99m-7E11-C5.3 (CYT-351)”, Journal of Nuclear Medicine, 38: 675-682, 1997.
Dewaraja et al. “Accurate Dosimetry in 131I Radionuclide Therapy Using Patient-Specific, 3-Dimensional Methods for SPECT Reconstruction and Basorbed Dose Calculation”, The Journal of Nuclear Medicine, 46(5): 840-849, May 2005.
Dillman “Radiolabeled Anti-CD20 Monoclonal Antibodies for the Treatment of B-Cell Lymphoma”, Journal of Clinical Oncology, 20(16): 3545-3557, Aug. 15, 2002.
GE Healthcare “Myoview™: Kit for the Preparation of Technetium Tc99m Tetrofosmin for Injection. Diagnostic Radiopharmaceutical. For Intravenous Use Only. Rx Only”, GE Healthcare, Product Sheet, 4 P., Aug. 2006.
Gilland et al. “Long Focal Length, Asymmetric Fan Beam Collimation for Transmission Acquisition With a Triple Camera SPECT System”, IEEE Transactions on Nuclear Science, XP011087666, 44(3): 1191-1196, Jun. 1, 1997.
Handrick et al. “Evaluation of Binning Strategies for Tissue Classification in Computed Tomography Images”, Medical Imaging 2006: Image Processing, Proceedings of the SPIE, 6144: 1476-1486, 2006.
Mallinckrodt “Kit for the Preparation of Technetium Tc 99m Sestamibi Injection”, Mallinckrodt Inc., Product Sheet, 2 P., Sep. 8, 2008.
Mallinckrodt “OctreoScan®: Kit for the Preparation of Indium In-111 Pentetreotide. Diagnostic—for Intravenous Use. Rx Only”, Mallinckrodt Inc., Product Sheet, 2 P., Oct. 25, 2006.
Pharmalucence “Kit for the Preparation of Technetium Tc99m Sulfur Colloid Injection for Subcutaneous, Intraperitoneal, Intravenous, and Oral Use”, Pharmalucence Inc., Reference ID: 2977567, Prescribing Information, 10 P., Jul. 2011.
Saltz et al. “Interim Report of Randomized Phase II Trial of Cetuximab/Bevacizumab/Irinotecan (CBI) Versus Cetuximab/Bevacizumab (CB) in Irinotecan-Refractory Colorectal Cancer”, Gastrointestinal Cancer Symposium, Hollywood, FL, USA, Jan. 27-29, 2005, American Society of Clinical Oncology, Abstract 169b, 4P., 2005.
Sands et al. “Methods for the Study of the Metabolism of Radiolabeled Monoclonal Antibodies by Liver and Tumor”, The Journal of Nuclear Medicine, 28: 390-398, 1987.
Thorndyke et al. “Reducing Respiratory Motion Artifacts in Positron Emission Tomography Through Retrospective Stacking”, Medical Physics, 33(7): 2632-2641, Jul. 2006.
Trikha et al. “Monoclonal Antibodies as Therapeutics in Oncology”, Current Opinion in Biotechnology, 13: 609-614, 2002.
Volkow et al. “Imaging the Living Human Brain: Magnetic Resonance Imaging and Positron Emission Tomography”, Proc. Natl. Acad. Sci. USA, 94: 2787-2788, Apr. 1997.
Official Action Dated Aug. 31, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Communication Pursuant to Article 94(3) EPC Dated Sep. 22, 2011 From the European Patent Office Re. Application No. 06756258.7.
Notice of Allowance Dated Sep. 16, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Official Action Dated Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Official Action Dated Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Official Action Dated Sep. 13, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/976,852.
Response Dated Sep. 12, 2011 to Official Action of Jul. 11, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683.
Response Dated Sep. 20, 2011 to Official Action of Apr. 20, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Ellestad “Stress Testing: Principles and Practice”, XP008143015, 5th Edition, p. 432, Jan. 1, 2003.
Gilland et al. “Long Focal Length, Asymmetric Fan Beam Collimation for Transmission Acquisition With A Triple Camera SPECT System”, IEEE Transactions on Nuclear Science, XP01107666, 44(3): 1191-1196, Jun. 1, 1997.
Meyers et al. “Age, Perfusion Test Results and Dipyridamole Reaction”, Radiologic Technology, XP008142909, 73(5): 409-414, May 1, 2002.
Zhang et al. “Potential of a Compton Camera for High Performance Scintimammography”, Physics in Medicine and Biology, XP020024019, 49(4): 617-638, Feb. 21, 2004.
Communication Pursuant to Article 94(3) EPC Dated Sep. 17, 2012 From the European Patent Office Re. Application No. 06832278.3.
Ouyang et al. “Incorporation of Correlated Structural Images in PET Image Reconstruction”, IEEE Transactions of Medical Imaging, 13(4): 627-640, Dec. 1994.
Cancer Medicine “Radiolabeled Monoclonal Antibodies. Historical Perspective”, Cancer Medicine, 5th Ed., Sec.16: Principles of Biotherapeutics, Chap.65: Monoclonal Serotherapy, 2000.
Lange et al. “EM Reconstruction Algorithms for Emission and Transmission Tomography”, Journal of Computer Assisted Tomography, 8(2): 306-316, Apr. 1984.
Ohrvall et al. “Intraoperative Gamma Detection Reveals Abdominal Endocrine Tumors More Efficiently Than Somatostatin Receptor Scintigraphy”, 6th Conference on Radioimmunodetection and Radioimmunotherapy of Cancer, Cancer, 80: 2490-2494, 1997.
Rockmore et al. “A Maximum Likelihood Approach to Emission Image Reconstruction From Projections”, IEEE Transactions on Nuclear Science, 23(4): 1428-1432, Aug. 1976.
Shepp el al. “Maximum Likelihood Reconstruction for Emission Tomography”, IEEE Transactions on Medical Imagaing, MI-1: 113-122, Oct. 1982.
Sitek et al. “Reconstruction of Dynamic Renal Tomographic Data Acquired by Slow Rotation”, The Journal of Nuclear Medicine, 42(11): 1704-1712, Nov. 2001.
Solanki “The Use of Automation in Radiopharmacy”, Hospital Pharmacist, 7(4): 94-98, Apr. 2000.
Weldon et al. “Quantification of Inflammatory Bowel Disease Activity Using Technetium-99m HMPAO Labelled Leucocyte Single Photon Emission Computerised Tomography (SPECT)”, Gut, 36: 243-250, 1995.
Response Dated Oct. 14, 2011 to Supplementary European Search Report and the European Search Opinion of Mar. 16, 2011 From the European Patent Office Re. Application No. 05803689.8.
Official Action Dated Oct. 11, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/976,852.
Official Action Dated Oct. 26, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Supplemental Notice of Allowability Dated Oct. 24, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Official Action Dated Oct. 10, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017.
Communication Pursuant to Article 94(3) EPC Dated Oct. 26, 2012 From the European Patent Office Re. Application No. 05803689.8.
Notice of Allowance Dated Oct. 11, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/988,926.
Response Dated Oct. 14, 2011 to Communication Pursuant to Rules 70(2) and 70a(2) EPC of Apr. 4, 2011 From the European Patent Office Re. Application No. 05803689.8.
Restriction Official Action Dated Nov. 8, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Communication Pursuant to Article 94(3) EPC Dated Nov. 12, 2012 From the European Patent Office Re. Application No. 06756258.7.
Notice of Allowance Dated Nov. 15, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683.
Response Dated Nov. 14, 2011 to Official Action of Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Response Dated Oct. 24, 2011 to Official Action of May 23, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Restriction Official Action Nov. 15, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,683.
Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC Dated Nov. 29, 2012 From the European Patent Office Re. Application No. 06756259.5.
Communication Pursuant to Article 94(3) EPC Dated Nov. 18, 2011 From the European Patent Office Re. Application No. 05803689.8.
Response Dated Nov. 14, 2011 to Official Action of Jul. 12, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Response Dated Nov. 23, 2011 to Official Action of May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Response Dated Nov. 23, 2011 to Official Action of May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated Nov. 28, 2011 to Official Action of Jun. 28, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/628,074.
Supplementary European Search Report and the European Search Opinion Dated Nov. 13, 2012 From the European Patent Office Re. Application No. 06728347.3.
Notice of Allowance Dated Oct. 26, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785.
Official Action Dated Nov. 30, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785.
Notice of Allowance Dated Jun. 21, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Notice of Allowance Dated Jun. 14, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,307.
Official Action Dated Jun. 12, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Bacharach et al. “Attenuation Correction in Cardiac Positron Emission Tomography and Single-Photon Emission Computed Tomography”, Journal of Nuclear Cardiology, 2(3): 246-255, 1995.
Uni Magdeburg “Attenuation Map”, University of Magdeburg, Germany, Retrieved From the Internet, Archived on Jul. 31, 2002.
Zaidi et al. “Determination of the Attenuation Map in Emission Tomography”, Journal of Nuclear Medicine, 44(2): 291-315, 2003.
Notice of Allowance Dated Jul. 19, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223.
Notice of Allowance Dated Jul. 25, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 13/345,719.
Official Action Dated Jul. 30, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/343,792.
Official Action Dated Jul. 31, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Official Action Dated Sep. 5, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 13/947,198.
Communication Pursuant to Article 94(3) EPC Dated Sep. 16, 2013 From the European Patent Office Re.: Application No. 06832278.3.
Official Action Dated Aug. 5, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Official Action Dated Aug. 14, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/448,473.
Berman et al. “D-SPECT: A Novel Camera for High Speed Quantitative Molecular Imaging: Initial Clinical Results”, The Journal of Nuclear Medicine, 47(Suppl.1): 131P, 2006.
Berman et al. “Myocardial Perfusion Imaging With Technetium-99m-Sestamibi: Comparative Analysis of Available Imaging Protocols”, The Journal of Nuclear Medicine, 35: 681-688, 1994.
Borges-Neto et al. “Perfusion and Function at Rest and Treadmill Exercise Using Technectium-99m-Sestamibi: Comparison of One- and Two-Day Protocols in Normal Volunteers”, The Journal of Nuclear Medicine, 31(7): 1128-1132, Jul. 1990.
Kwok et al. “Feasability of Simultaneous Dual-Isotope Myocardial Perfusion Acquisition Using a Lower Dose of Sestamibi”, European Journal of Nuclear Medicine, 24(3): 281-285, Mar. 1997.
Patton et al. “D-SPECT: A New Solid State Camera for High Speed Molecular Imaging”, The Journal of Nuclear Medicine, 47(Suppl.1): 189P, 2006.
Communication Pursuant to Article 94(3) EPC Dated 25 Nov. 2013 From the European Patent Office Re. Application No. 06756258.7.
Notice of Allowance Dated Dec. 17, 2013 From the US Patent and Trademark Office U.S. Appl. No. 13/913,804.
Official Action Dated Nov. 15, 2013 From the US Patent and Trademark Office U.S. Appl. No. 13/345,773.
Official Action Dated Dec. 16, 2013 From the US Patent and Trademark Office U.S. Appl. No. 12/087,150.
Related Publications (1)
Number Date Country
20070194241 A1 Aug 2007 US
Provisional Applications (1)
Number Date Country
60535830 Jan 2004 US
Continuations (1)
Number Date Country
Parent 11034007 Jan 2005 US
Child 11656548 US