The present invention relates to multi-dimensional image reconstruction and, more particularly, but not exclusively to such image reconstruction based on a diffuse radioactive source or sources.
Radiological imaging is generally carried out on a living target, which of course means a mix of tissues in close proximity, if not actually overlapping. The general procedure is to feed the patient with one or more radioactive markers prior to the imaging process. The radioactive markers are taken up by the digestive system and pass into the bloodstream. From the bloodstream the marker passes into the different tissues at varying rates depending on the tissue type. Some tissues absorb markers faster than others and some tissues absorb certain markers faster than others. Furthermore certain tissues flush out the markers faster than others, and again the rate of flushing out may also depend on the kind of marker being used.
As a result, radioactive marking in fact creates a dynamic system in the body in which the relative darkness of a given tissue is related to a time factor. The radiologist knows that if he wants a good image of say the liver following application of a given marker then he should wait a certain number of hours from application of the marker before taking the image. Even so, the liver is not differentiated clearly from the other tissues.
Examples of radiopharmaceuticals include monoclonal antibodies or other agents, e.g., fibrinogen or fluorodeoxyglucose, tagged with a radioactive isotope, e.g., 99Mtechnetium, 67gallium, 201thallium, 111indium, 123iodine, 125iodine and 18fluorine, which may be administered orally or intravenously. The radiopharmaceuticals are designed to concentrate in the area of a tumor, and the uptake of such radiopharmaceuticals in the active part of a tumor, or other pathologies such as an inflammation, is higher and more rapid than in the tissue that neighbors the tumor. Thereafter, a radiation-emission-measuring-probe, which may be configured for extracorporeal or intracorporeal use, is employed for locating the position of the active area. Another application is the detection of blood clots with radiopharmaceuticals such as ACUTECT from Nycomed Amersham for the detection of newly formed thrombosis in veins, or clots in arteries of the heart or brain, in an emergency or operating room. Yet other applications include radioimaging of myocardial infarct using agents such as radioactive anti-myosin antibodies, radioimaging specific cell types using radioactively tagged molecules (also known as molecular imaging), etc.
The usual preferred emission for such applications is that of gamma rays, which emission is in the energy range of approximately 11-511 KeV. Beta radiation and positrons may also be detected.
Radioactive-emission imaging is performed with a radioactive-emission-measuring detector, such as a room temperature, solid-state CdZnTe (CZT) detector, which is among the more promising that is currently available. It may be configured as a single-pixel or a multi-pixel detector, and may be obtained, for example, from eV Products, a division of II-VI Corporation, Saxonburg Pa., 16056, or from IMARAD IMAGING SYSTEMS LTD., of Rehovot, ISRAEL, 76124, www.imarad.com, or from another source. Alternatively, another solid-state detector such as CdTe, HgI, Si, Ge, or the like, or a combination of a scintillation detector (such as NaI(TI), LSO, GSO, CsI, CaF, or the like) and a photomultiplier, or another detector as known, may be used.
Considering the issue in greater detail, certain biological or chemical substances such as targeted peptides, monoclonal antibodies and others, are used for tagging specific living molecules for diagnostic purposes. Ideally, these antibodies are specific to the desired type of cells, based on adhering only to specific molecular structures in which the antigene matching the antibody is highly expressed. The use of imaging devices such as a nuclear gamma probe or a visual video probe can detect radiation emanating from taggants such as radionuclei or fluorescent dies that have been appended to the antibody before being delivered to the living body. An example is a cancerous cell of a prostate tumor on whose membrane there is an over expression of the Prostate Specific Membrane Antigen (PSMA). When a monoclonal antibody (Mab) such as Capromab Pendetide (commercially available as ProstaScint manufactured by Cytogen Corp.) is labeled with radioactive Indium (In 111) and is systemically delivered to the body, the Mab is carried by the blood stream and upon reaching the prostate tissue, adheres to the PSMA. The high energy radiation photons emitted by the radioactive Indium can be detected using a nuclear camera, indicating the presence and the specific location of the tumor.
Unfortunately, given the complexity of living organisms, in many instances the same antigen is also expressed in more than just the tissue under investigation. The antibody will thus also “paint” additional tissues such as infection areas, in addition to the tissue of interest. The radioactive readings taken from this additional tissue will be falsely interpreted as tumor areas, reducing the specificity of the test being performed.
The ‘Target to Background’ ratio that characterizes every such antibody for a given target cell type is one of the major issues that determine the ability to perform proper diagnosis, and guided procedures.
Since the uptake clearance of such a marker by the various tissues (target and background) varies over time, standard diagnosis protocols usually recommend taking an image at the time at which the ratio of Target emission vs. Background emission is the highest.
In an experimental system tried out by researchers, two markers were supplied to various patients and then images were taken at successive intervals for each of the markers. Certain features in the target areas showed up clearly in all images, other features were clear for all images of one marker but faded in and faded out for the other marker, and yet other features faded in and out for both markers but at different times. The researchers were able to use their knowledge of the behaviors of the two markers with different tissues in order to identify the features in the images.
The above system therefore relies on the knowledge of the researchers to put together information received from multiple images into an understanding of what the radio-imaging shows. In the general hospital environment it is not possible to guarantee that the necessary expertise is available, at least not for the amount of time that such a system would require.
There is thus a widely recognized need for, and it would be highly advantageous to have, a radiological imaging system devoid of the above limitations.
According to one aspect of the present invention there is provided apparatus for radiation based imaging and analysis of a non-homogenous target area having distinguishable regions therein, the apparatus comprising:
an imaging unit configured to obtain radiation emission data from said target region in the spatial dimensions and at least one other dimension, and
an image multi-dimensional analysis unit associated with said imaging unit for analyzing said obtained emission data in said spatial dimensions and said at least one other dimension in order to discern patterns across said dimensions.
According to a second aspect of the present invention there is provided apparatus for radiation based imaging of a non-homogenous target area having distinguishable regions therein, the apparatus comprising:
an imaging unit configured to obtain radiation emission data from said target region in the spatial dimensions and a time dimension, and
an image multi-dimensional analysis unit associated with said imaging unit for analyzing said obtained emission data in said spatial dimensions and said time dimension in order to discern at least one property from a time profile of a marker in said distinguishable regions of said target area.
According to a third aspect of the present invention there is provided apparatus for radiation based imaging and analysis of a target area, the apparatus comprising:
an imaging unit configured to obtain radiation emission data from said target region in the spatial dimensions and at least one other dimension, and
an image multi-dimensional analysis unit associated with said imaging unit for analyzing said obtained emission data in said spatial dimensions and said at least one other dimension in order to discern patterns within a respective target region.
According to a fourth aspect of the present invention there is provided a method of radiation based imaging, comprising:
acquiring data;
reconstructing an image from said data;
automatically detecting at least one region, in said image; and
automatic controlling at least one of said acquiring and said reconstructing to generate an improved image, based on said detecting.
According to a fifth aspect of the present invention there is provided a method for improved tomographic reconstruction of radiation intensities, comprising:
initially reconstructing at least one distinguishable region from said radiation intensities
extracting parameters associated with different properties of said reconstructed distinguishable region;
classifying said at least one reconstructed distinguishable region by the extracted parameters associated therewith;
iteratively using the classification of said extracted parameters to improve delimitation of said classified reconstructed distinguishable region, thereby to improve reconstruction thereof.
According to a sixth aspect of the present invention there is provided a method of optimization of therapy of the human or animal body, comprising:
identifying a target region for said therapy;
applying to a patient at least one radioactive marker;
obtaining radiation emission data from said target region in the spatial dimensions and at least one other dimension, and
analyzing said obtained emission data in spatial dimensions and at at least one other dimension in order to discern patterns across said dimensions, thereby to characterize said target region, and
optimizing said therapy based on said characterization.
According to a seventh aspect of the present invention there is provided apparatus for multi-dimensional image reconstruction based on data acquired from an imaging unit for obtaining radiation intensity data from a target region in the spatial dimensions and at least one other dimension, the apparatus comprising:
an image four-dimension analysis unit configured to analyze said obtained intensity data in said spatial dimension and said at least one other dimension in order to map at least one distinguishable region in terms of a property, said property being that of at least one member of the group comprising a tissue, a disease, a disease stage and a physiological process.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The materials, methods, and examples provided herein are illustrative only and not intended to be limiting.
Implementation of the method and system of the present invention involves performing or completing certain selected tasks or steps manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of preferred embodiments of the method and system of the present invention, several selected steps could be implemented by hardware or by software on any operating system of any firmware or a combination thereof. For example, as hardware, selected steps of the invention could be implemented as a chip or a circuit. As software, selected steps of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In any case, selected steps of the method and system of the invention could be described as being performed by a data processor, such as a computing platform for executing a plurality of instructions.
The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in order to provide what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
In the drawings:
The present embodiments comprise an apparatus and a method for radiation based imaging of a non-homogenous target area having regions of different material or tissue type or pathology. The imaging uses multi-dimensional data of the target area in order to distinguish the different regions. Typically the multi-dimensional data involves time as one of the dimensions. A radioactive marker has particular time-absorption characteristics which are specific for the different tissues, and the imaging device is programmed to constrain its imaging to a particular characteristic.
The result is not merely an image which concentrates on the tissue of interest but also, because it is constrained to the tissue of interest, is able to concentrate imaging resources on that tissue and thus produce a higher resolution image than the prior art systems which are completely tissue blind.
The principles and operation of a radiological imaging system according to the present invention may be better understood with reference to the drawings and accompanying description.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
Reference is now made to
If the counter is now moved to different positions over the surface of the target then the data from the different positions can be built up into a low resolution two-dimensional image.
One way of increasing the resolution of the Geiger counter is to make it smaller. Then the cone, whilst retaining the same geometry, gives higher resolution data.
The detector takes (yt)t=1T samples to form a data set, which would typically be a two-dimensional image of the target from a given direction.
Reference is now made to
Reference is now made to
The principle on which the present embodiments are based is as follows: Considering the graphs in
Reference is now made to
In a preferred embodiment, the signals received from the individual Geiger counters are summed to form a three-dimensional image of the target area. The skilled person will appreciate that the system could also be based on a two-dimensional image. In either case, the signals are fed to an image analyzer 28, where the signals are analyzed to form images.
In the preferred embodiments, the image analyzer is able to use the marker take up characteristics to compare successive images and identify regions of particular interest, and then to concentrate imaging resources on those regions. That is to say the image analyzer is in fact able to control further operation of the imager.
Reference is now made to
It will be appreciated that in many cases two types of tissue may be superimposed, of which only one of the tissues is of interest. In this case it is of equal importance both to exclude the one tissue that is not of interest and to include the tissue that is of interest. It may be that the best marker for one tissue may not be the best marker for the other tissue. The system as described with respect to
As a result the image analysis unit is able to produce a final result treating the various tissue regions as separate entities. Furthermore, as the system is aware of the regions as entities it is able to further direct the imaging process to concentrate on the regions of interest.
An example in which regions at least partially overlap is the heart. Generally, scans of the heart are interested in the muscular walls of the heart. Although the chambers of the heart are filled with blood, any signal coming from the blood is in fact noise to this kind of scan. It is therefore advantageous to carry out an imaging process which is able to positively identify signals from the muscular heart walls and at the same time exclude the blood.
Referring now to
In the above example, two regions were of respectively positive and negative interest, meaning one for concentrating on and the other for filtering out. It will be appreciated that several regions or several tissue types may be of positive interest or there may be any combination of regions with just one being of positive interest. Alternatively all regions may be of positive interest but importance may be attached to discriminating between the different signals from the different regions.
The system is able to use the mapping to generate an image comprising the different tissue regions as distinct entities. As a consequence of the mapping process, the system is able to be aware electronically of the different regions and thus control both the imaging head and the analysis unit to concentrate their resources on specific regions. The result is greater resolution for the regions of interest.
The preferred embodiments may be used to expand the information obtained from the markers, using either or both of examining the kinetics of the markers over time and using several markers concurrently.
In order to increase the specificity of the test, additional second substances (“secondary substances”), with reactivity and pharmaco-kinetics differing from those of the first substance can be used in order to enhance the differentiation between the different pathologies, as explained above with respect to
Upon reading the radioactive signals emanating from the voxels stemming from different substances at different time instances, it is possible to build for every voxel a multi dimensional data matrix Sjk whose elements are intensity readings taken at instances K resulting from the interaction of Substance J. Examination of every voxel of tissue in this multidimensional space quantifies the temporal and specific reaction of the tissue to different substances and thus increases the probability of specific detection of different pathologies. Furthermore, standard image processing techniques can be used in order to more accurately define the spatial location of different pathologies.
In addition to the method above, spatial properties that reflect typical relationships between neighboring voxels may also be a criteria and represented as part of the pattern of the tissue type.
Reference is now made to
Reference is now made to
If there are still not enough photons, or there are not enough detectors, then another way of pooling resources is to merge neighboring voxels (or regions). Such a procedure may reduce resolution, but will increase the overall number of photons for that merged region, and thus enable better classification of that region based on a more reliable photon count. Such a compromise enables analysis of the same collected data by ways that would allow high resolution where there are enough photons and lower resolutions where there are less while maintaining reliability of the analysis.
Again the tissue regions may be identified using multiple markers.
The above-described embodiment may lead to controlled sensitivity levels, currently not available with radioimaging.
The concept of using multiple antibodies can be used for therapy purposes, as in the following:
The specificity of a single antibody carrying a drug (or radioactive therapy) determines the chance for non-target tissue to receive the drug, and thus be subject to any toxicity of the drug. In cases where there are several antibodies, each with limited specificity, but with affinity to different ‘background’ tissue, a combination of antibodies may be used to improve the overall specificity, and thus to reduce overall toxicity and enable higher efficacy of treatment.
For example, if a first antibody (A1) based drug binds to the target N1 folds its affinity to the closest non-target tissue (B1), and a second antibody (A2) with similar drug has target affinity which is N2 folds higher than its closest non-target tissue (B2), then using a merged therapy will enable better target vs. non-target specificity, which is better than N1 and N2 (assuming B1 and B2 are different).
In a more generalized embodiment, the system may include a signal analysis module, including a library of patterns that are typical for every cell type. Each type of cells has one or more patterns associated with it, and the pattern determines how a set of markers injected according to a specific protocol (dosage, time, etc) may be expressed in that cell type. The analysis includes classification of the readings from each voxel based on correlation, or other statistical tools for assessing the most probable tissue classification for each voxel.
Since there may be several cell types for a given disease (e.g. cancer may show in several forms), the algorithm may be optimized to determine the exact tissue type per voxel or region. Alternatively, the algorithm may be optimized to determine the general property of diseased/non-diseased, while taking the specific classification only as a factor in the statistical analysis.
It should be noted that the system may allow for various protocols for administering the markers, where injection of the various markers may be simultaneous, or multiple injections at various times, as various markers have different lifetime in the circulation.
The issue of generating imaging using two or more markers is now considered mathematically.
An intensity distribution I, conventionally defined in terms of radioactive emissions per seconds, is now redefined as a vector of distributions over the volume U, forming our input space. Each dimension of the vector is a different one of the radiopharmaceuticals. The universal set U comprises a set of basic elements u (e.g., pixels in two dimensional spaces, voxels in three dimensional spaces), and I(u) is the intensity in a given basic element u ε U. For j radiopharmaceuticals this becomes I(u)(j,t) An inverse (or reconstruction) problem arises when one cannot sample directly from I, but can sample from a given set of views Φ. A projection φεΦ is defined by the set of probabilities {φ (u):uεU}, where φ (u) is the probability of detecting a radioactive emission from a voxel u, as defined by viewing parameters, such as the physical and geometrical properties of the detecting unit, as well as the attenuation parameters of the viewed volume U, and the time parameters. A measurement is obtained by choosing a view φεΦ, and then sampling according to the viewing parameters.
For j radiopharmaceuticals or markers and k detectors, the probability of seeing a particle becomes φjk (u)
In the following analysis, I is the intensity of a radioactive substance, and the viewing parameters include the geometrical properties of a collimated detecting unit and the detecting unit's position and orientation with respect to volume U. The number of radioactive emissions counted by the detecting unit within a time interval is a Poisson distribution, where φ (u) is the detection probability of a photon emitted from voxel uεU and the mean of the distribution is the weighted sum ΣuεU φ (u)I(u).
For the case of the kth detector a measurement Yk=ΣuεU Xt(u), where X(U) is a Poisson distribution.
X(j,k,t)(u)=I(i,t)(u)·φ(u)jk(u).
Where Y(j,k,t)=ΣX(j,k,t)(u).
Hence Y(j,k,t))=Poisson (Y(j,k,t))
The projection set is thus defined by a matrix Φ, whose rows are the projections of the chosen views. I is a vector of densities (specified per each element in U), and ΦI is a vector of respective effective intensity levels for the views in the set. A vector of measurements y is obtained by a random sample from each view (according to the associated Poisson distribution). As discussed above, there are various known reconstruction methods that provide estimators for I given the projections Φ and the measurements y.
Using the above mathematics the problem is solved (an image created) one of the vectors say once an hour. The rates of change are determined. Simultaneously the problem is solved for another of the vectors at similar time intervals and the rates of change are determined. Then a stage of cross-identification is carried out between the two images, so that wanted tissues as identified by each image minus unwanted tissues identified by each image are concentrated on to form a new image. Cross-identification may be an iterative process.
In the example given above of the imaging of the heart using one blood marker and one muscular tissue marker, the areas identified by the blood marker are subtracted. The areas identified by the muscle marker are added, and those tissues not identified by either are likewise ignored as being signals from outside the target region.
The non-homogenous target area is typically a region of living tissue, generally belonging to a patient. The distinguishable regions within can be different tissues, different organs, a mixture of blood and organ tissue as with the above example of the heart, or tissue regions exhibiting differential pathologies.
It is expected that during the life of this patent many relevant markers, radiological imaging devices and two and three dimensional imaging systems will be developed and the scopes of the corresponding terms herein, are intended to include all such new technologies a priori.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
The present Application is a continuation of pending U.S. patent application Ser. No. 11/034,007, filed Jan. 13, 2005, which claims the benefit of U.S. Provisional Patent Application No. 60/535,830, filed Jan. 13, 2004, the contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
630611 | Knapp et al. | Aug 1899 | A |
2776377 | Anger | Jan 1957 | A |
3340866 | Nöller | Sep 1967 | A |
3446965 | Ogier et al. | May 1969 | A |
3535085 | Shumate et al. | Oct 1970 | A |
3684887 | Hugonin | Aug 1972 | A |
3690309 | Pluzhnikov et al. | Sep 1972 | A |
3719183 | Schwartz | Mar 1973 | A |
3739279 | Hollis | Jun 1973 | A |
3971362 | Pope et al. | Jul 1976 | A |
3978337 | Nickles et al. | Aug 1976 | A |
3988585 | O'Neill et al. | Oct 1976 | A |
4000502 | Butler et al. | Dec 1976 | A |
4015592 | Bradley-Moore | Apr 1977 | A |
4055765 | Gerber et al. | Oct 1977 | A |
4061919 | Miller et al. | Dec 1977 | A |
4095107 | Genna et al. | Jun 1978 | A |
4165462 | Macovski et al. | Aug 1979 | A |
4181856 | Bone | Jan 1980 | A |
4278077 | Mizumoto | Jul 1981 | A |
4289969 | Cooperstein et al. | Sep 1981 | A |
4291708 | Frei et al. | Sep 1981 | A |
4296785 | Vitello et al. | Oct 1981 | A |
4302675 | Wake et al. | Nov 1981 | A |
4364377 | Smith | Dec 1982 | A |
4383327 | Kruger | May 1983 | A |
4476381 | Rubin | Oct 1984 | A |
4503331 | Kovacs, Jr. et al. | Mar 1985 | A |
4521688 | Yin | Jun 1985 | A |
H12 | Bennett et al. | Jan 1986 | H |
H000012 | Bennett et al. | Jan 1986 | H |
4580054 | Shimoni | Apr 1986 | A |
4595014 | Barrett et al. | Jun 1986 | A |
4674107 | Urban et al. | Jun 1987 | A |
4679142 | Lee | Jul 1987 | A |
4689041 | Corday et al. | Aug 1987 | A |
4689621 | Kleinberg | Aug 1987 | A |
4709382 | Sones | Nov 1987 | A |
4710624 | Alvarez et al. | Dec 1987 | A |
4731536 | Rische et al. | Mar 1988 | A |
4773430 | Porath | Sep 1988 | A |
4782840 | Martin, Jr. et al. | Nov 1988 | A |
4791934 | Brunnett | Dec 1988 | A |
4801803 | Denen et al. | Jan 1989 | A |
4828841 | Porter et al. | May 1989 | A |
4834112 | Machek et al. | May 1989 | A |
4844067 | Ikada et al. | Jul 1989 | A |
4844076 | Lesho et al. | Jul 1989 | A |
4853546 | Abe et al. | Aug 1989 | A |
4854324 | Hirschman et al. | Aug 1989 | A |
4854330 | Evans, III et al. | Aug 1989 | A |
4867962 | Abrams | Sep 1989 | A |
4893013 | Denen et al. | Jan 1990 | A |
4893322 | Hellmick et al. | Jan 1990 | A |
4919146 | Rhinehart et al. | Apr 1990 | A |
4924486 | Weber et al. | May 1990 | A |
4928250 | Greenberg et al. | May 1990 | A |
4929832 | Ledley | May 1990 | A |
4938230 | Machek et al. | Jul 1990 | A |
4951653 | Fry et al. | Aug 1990 | A |
4959547 | Carroll et al. | Sep 1990 | A |
4970391 | Uber, III | Nov 1990 | A |
4995396 | Inaba et al. | Feb 1991 | A |
5014708 | Hayashi et al. | May 1991 | A |
5018182 | Cowan et al. | May 1991 | A |
5032729 | Charpak | Jul 1991 | A |
5033998 | Corday et al. | Jul 1991 | A |
5039863 | Matsuno et al. | Aug 1991 | A |
5042056 | Hellmick et al. | Aug 1991 | A |
5070877 | Mohiuddin et al. | Dec 1991 | A |
5070878 | Denen | Dec 1991 | A |
5088492 | Takayama et al. | Feb 1992 | A |
5115137 | Andersson-Engels et al. | May 1992 | A |
5119818 | Carroll et al. | Jun 1992 | A |
5132542 | Bassalleck et al. | Jul 1992 | A |
5145163 | Cowan et al. | Sep 1992 | A |
5151598 | Denen | Sep 1992 | A |
5170055 | Carroll et al. | Dec 1992 | A |
5170439 | Zeng et al. | Dec 1992 | A |
5170789 | Narayan et al. | Dec 1992 | A |
5196796 | Misic et al. | Mar 1993 | A |
5210421 | Gullberg et al. | May 1993 | A |
5243988 | Sieben et al. | Sep 1993 | A |
5246005 | Carroll et al. | Sep 1993 | A |
5249124 | DeVito | Sep 1993 | A |
5252830 | Weinberg | Oct 1993 | A |
5254101 | Trombley, III | Oct 1993 | A |
5258717 | Misic et al. | Nov 1993 | A |
5263077 | Cowan et al. | Nov 1993 | A |
5279607 | Schentag et al. | Jan 1994 | A |
5284147 | Hanaoka et al. | Feb 1994 | A |
5299253 | Wessels | Mar 1994 | A |
5304165 | Haber et al. | Apr 1994 | A |
5307808 | Dumoulin et al. | May 1994 | A |
5307814 | Kressel et al. | May 1994 | A |
5309959 | Shaw et al. | May 1994 | A |
5317506 | Coutre et al. | May 1994 | A |
5317619 | Hellmick et al. | May 1994 | A |
5323006 | Thompson et al. | Jun 1994 | A |
5329976 | Haber et al. | Jul 1994 | A |
5334141 | Carr et al. | Aug 1994 | A |
5349190 | Hines et al. | Sep 1994 | A |
5355087 | Claiborne et al. | Oct 1994 | A |
5365069 | Eisen et al. | Nov 1994 | A |
5365928 | Rhinehart et al. | Nov 1994 | A |
5367552 | Peschmann | Nov 1994 | A |
5377681 | Drane | Jan 1995 | A |
5381791 | Qian | Jan 1995 | A |
5383456 | Arnold et al. | Jan 1995 | A |
5383858 | Reilly et al. | Jan 1995 | A |
5386446 | Fujimoto et al. | Jan 1995 | A |
5387409 | Nunn et al. | Feb 1995 | A |
5391877 | Marks | Feb 1995 | A |
5395366 | D'Andrea | Mar 1995 | A |
5399868 | Jones et al. | Mar 1995 | A |
5404293 | Weng et al. | Apr 1995 | A |
5415181 | Hofgrefe et al. | May 1995 | A |
5431161 | Ryals et al. | Jul 1995 | A |
5435302 | Lenkinski et al. | Jul 1995 | A |
5436458 | Tran et al. | Jul 1995 | A |
5441050 | Thurston et al. | Aug 1995 | A |
5448073 | Jeanguillaume | Sep 1995 | A |
5451232 | Rhinehart et al. | Sep 1995 | A |
5472403 | Cornacchia et al. | Dec 1995 | A |
5475219 | Olson | Dec 1995 | A |
5475232 | Powers et al. | Dec 1995 | A |
5476095 | Schnall et al. | Dec 1995 | A |
5479969 | Hardie et al. | Jan 1996 | A |
5481115 | Hsieh et al. | Jan 1996 | A |
5484384 | Fearnot | Jan 1996 | A |
5489782 | Wernikoff | Feb 1996 | A |
5493595 | Schoolman | Feb 1996 | A |
5493805 | Penuela et al. | Feb 1996 | A |
5494036 | Uber, III et al. | Feb 1996 | A |
5501674 | Trombley, III et al. | Mar 1996 | A |
5517120 | Misik et al. | May 1996 | A |
5519221 | Weinberg | May 1996 | A |
5519222 | Besett | May 1996 | A |
5519931 | Reich | May 1996 | A |
5520182 | Leighton et al. | May 1996 | A |
5520653 | Reilly et al. | May 1996 | A |
5521506 | Misic et al. | May 1996 | A |
5536945 | Reich | Jul 1996 | A |
5545899 | Tran et al. | Aug 1996 | A |
5559335 | Zeng et al. | Sep 1996 | A |
5565684 | Gullberg et al. | Oct 1996 | A |
5569181 | Heilman et al. | Oct 1996 | A |
5572132 | Pulyer et al. | Nov 1996 | A |
5572999 | Funda et al. | Nov 1996 | A |
5579766 | Gray | Dec 1996 | A |
5580541 | Wells et al. | Dec 1996 | A |
5585637 | Bertelsen et al. | Dec 1996 | A |
5587585 | Eisen et al. | Dec 1996 | A |
5591143 | Trombley, III et al. | Jan 1997 | A |
5600145 | Plummer | Feb 1997 | A |
5604531 | Iddan et al. | Feb 1997 | A |
5610520 | Misic | Mar 1997 | A |
5617858 | Taverna et al. | Apr 1997 | A |
5629524 | Stettner et al. | May 1997 | A |
5635717 | Popescu | Jun 1997 | A |
5657759 | Essen-Moller | Aug 1997 | A |
5672877 | Liebig et al. | Sep 1997 | A |
5677539 | Apotovsky et al. | Oct 1997 | A |
5682888 | Olson et al. | Nov 1997 | A |
5687542 | Lawecki et al. | Nov 1997 | A |
5690691 | Chen et al. | Nov 1997 | A |
5692640 | Caulfield et al. | Dec 1997 | A |
5694933 | Madden et al. | Dec 1997 | A |
5716595 | Goldenberg | Feb 1998 | A |
5727554 | Kalend et al. | Mar 1998 | A |
5729129 | Acker | Mar 1998 | A |
5732704 | Thurston et al. | Mar 1998 | A |
5739508 | Uber, III | Apr 1998 | A |
5741232 | Reilly et al. | Apr 1998 | A |
5742060 | Ashburn | Apr 1998 | A |
5744805 | Raylman et al. | Apr 1998 | A |
5757006 | De Vito et al. | May 1998 | A |
5779675 | Reilly et al. | Jul 1998 | A |
5780855 | Pare et al. | Jul 1998 | A |
5781442 | Engleson et al. | Jul 1998 | A |
5784432 | Kurtz et al. | Jul 1998 | A |
5786597 | Lingren et al. | Jul 1998 | A |
5795333 | Reilly et al. | Aug 1998 | A |
5799111 | Guissin | Aug 1998 | A |
5800355 | Hasegawa | Sep 1998 | A |
5803914 | Ryals et al. | Sep 1998 | A |
5806519 | Evans, III et al. | Sep 1998 | A |
5808203 | Nolan, Jr. et al. | Sep 1998 | A |
5810742 | Pearlman | Sep 1998 | A |
5811814 | Leone et al. | Sep 1998 | A |
5813985 | Carroll | Sep 1998 | A |
5818050 | Dilmanian et al. | Oct 1998 | A |
5821541 | Tümer | Oct 1998 | A |
5825031 | Wong et al. | Oct 1998 | A |
5827219 | Uber, III et al. | Oct 1998 | A |
5828073 | Zhu et al. | Oct 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5838009 | Plummer et al. | Nov 1998 | A |
5840026 | Uber, III et al. | Nov 1998 | A |
5841141 | Gullberg et al. | Nov 1998 | A |
5842977 | Lesho et al. | Dec 1998 | A |
5843037 | Uber, III | Dec 1998 | A |
5846513 | Carroll et al. | Dec 1998 | A |
5847396 | Lingren et al. | Dec 1998 | A |
5857463 | Thurston et al. | Jan 1999 | A |
5871013 | Wainer et al. | Feb 1999 | A |
5873861 | Hitchins et al. | Feb 1999 | A |
5880475 | Oka et al. | Mar 1999 | A |
5882338 | Gray | Mar 1999 | A |
5884457 | Ortiz et al. | Mar 1999 | A |
5885216 | Evans, III et al. | Mar 1999 | A |
5891030 | Johnson et al. | Apr 1999 | A |
5893397 | Peterson et al. | Apr 1999 | A |
5899885 | Reilly et al. | May 1999 | A |
5900533 | Chou | May 1999 | A |
5903008 | Li | May 1999 | A |
5910112 | Judd et al. | Jun 1999 | A |
5911252 | Cassel | Jun 1999 | A |
5916167 | Kramer et al. | Jun 1999 | A |
5916197 | Reilly et al. | Jun 1999 | A |
5920054 | Uber, III | Jul 1999 | A |
5927351 | Zhu et al. | Jul 1999 | A |
5928150 | Call | Jul 1999 | A |
5932879 | Raylman et al. | Aug 1999 | A |
5938639 | Reilly et al. | Aug 1999 | A |
5939724 | Eisen et al. | Aug 1999 | A |
5944190 | Edelen | Aug 1999 | A |
5944694 | Hitchins et al. | Aug 1999 | A |
5947935 | Rhinehart et al. | Sep 1999 | A |
5953884 | Lawecki et al. | Sep 1999 | A |
5954668 | Uber, III et al. | Sep 1999 | A |
5961457 | Raylman et al. | Oct 1999 | A |
5967983 | Ashburn | Oct 1999 | A |
5973598 | Beigel | Oct 1999 | A |
5974165 | Giger et al. | Oct 1999 | A |
5984860 | Shan | Nov 1999 | A |
5987350 | Thurston | Nov 1999 | A |
5993378 | Lemelson | Nov 1999 | A |
5997502 | Reilly et al. | Dec 1999 | A |
6002134 | Lingren | Dec 1999 | A |
6002480 | Izatt et al. | Dec 1999 | A |
6017330 | Hitchins et al. | Jan 2000 | A |
6019745 | Gray | Feb 2000 | A |
6021341 | Scibilia et al. | Feb 2000 | A |
6026317 | Verani | Feb 2000 | A |
6037595 | Lingren | Mar 2000 | A |
6040697 | Misic | Mar 2000 | A |
6042565 | Hirschman et al. | Mar 2000 | A |
RE36648 | Uber, III et al. | Apr 2000 | E |
6046454 | Lingren et al. | Apr 2000 | A |
6048334 | Hirschman et al. | Apr 2000 | A |
6052618 | Dahlke et al. | Apr 2000 | A |
6055450 | Ashburn | Apr 2000 | A |
6055452 | Pearlman | Apr 2000 | A |
RE36693 | Reich | May 2000 | E |
6063052 | Uber et al. | May 2000 | A |
D426891 | Beale et al. | Jun 2000 | S |
D426892 | Beale et al. | Jun 2000 | S |
6072177 | McCroskey et al. | Jun 2000 | A |
6076009 | Raylman et al. | Jun 2000 | A |
6080984 | Friesenhahn | Jun 2000 | A |
D428491 | Beale et al. | Jul 2000 | S |
6082366 | Andra et al. | Jul 2000 | A |
6090064 | Reilly et al. | Jul 2000 | A |
6091070 | Lingren et al. | Jul 2000 | A |
6096011 | Trombley, III et al. | Aug 2000 | A |
6107102 | Ferrari | Aug 2000 | A |
6115635 | Bourgeois | Sep 2000 | A |
6129670 | Burdette et al. | Oct 2000 | A |
6132372 | Essen-Moller | Oct 2000 | A |
6135955 | Madden et al. | Oct 2000 | A |
6135968 | Brounstein | Oct 2000 | A |
6137109 | Hayes | Oct 2000 | A |
6145277 | Lawecki et al. | Nov 2000 | A |
6147352 | Ashburn | Nov 2000 | A |
6147353 | Gagnon et al. | Nov 2000 | A |
6148229 | Morris, Sr. et al. | Nov 2000 | A |
6149627 | Uber, III | Nov 2000 | A |
6155485 | Coughlin et al. | Dec 2000 | A |
6160398 | Walsh | Dec 2000 | A |
6162198 | Coffey et al. | Dec 2000 | A |
6172362 | Lingren et al. | Jan 2001 | B1 |
6173201 | Front | Jan 2001 | B1 |
6184530 | Hines et al. | Feb 2001 | B1 |
6189195 | Reilly et al. | Feb 2001 | B1 |
6194715 | Lingren et al. | Feb 2001 | B1 |
6194725 | Colsher et al. | Feb 2001 | B1 |
6194726 | Pi et al. | Feb 2001 | B1 |
6197000 | Reilly et al. | Mar 2001 | B1 |
6202923 | Boyer et al. | Mar 2001 | B1 |
6203775 | Torchilin et al. | Mar 2001 | B1 |
6205347 | Morgan et al. | Mar 2001 | B1 |
6212423 | Krakovitz | Apr 2001 | B1 |
6223065 | Misic et al. | Apr 2001 | B1 |
6224577 | Dedola et al. | May 2001 | B1 |
6226350 | Hsieh | May 2001 | B1 |
6229145 | Weinberg | May 2001 | B1 |
6232605 | Soluri et al. | May 2001 | B1 |
6233304 | Hu et al. | May 2001 | B1 |
6236050 | Tumer | May 2001 | B1 |
6236878 | Taylor et al. | May 2001 | B1 |
6236880 | Raylman et al. | May 2001 | B1 |
6240312 | Alfano et al. | May 2001 | B1 |
6241708 | Reilly et al. | Jun 2001 | B1 |
6242743 | DeVito et al. | Jun 2001 | B1 |
6242744 | Soluri et al. | Jun 2001 | B1 |
6242745 | Berlad et al. | Jun 2001 | B1 |
6246901 | Benaron | Jun 2001 | B1 |
6252924 | Davantes et al. | Jun 2001 | B1 |
6258576 | Richards-Kortum et al. | Jul 2001 | B1 |
6259095 | Bouton et al. | Jul 2001 | B1 |
6261562 | Xu et al. | Jul 2001 | B1 |
6263229 | Atalar et al. | Jul 2001 | B1 |
6269340 | Ford et al. | Jul 2001 | B1 |
6270463 | Morris, Sr. et al. | Aug 2001 | B1 |
6271524 | Wainer et al. | Aug 2001 | B1 |
6271525 | Majewski et al. | Aug 2001 | B1 |
6280704 | Schutt et al. | Aug 2001 | B1 |
6281505 | Hines et al. | Aug 2001 | B1 |
6308097 | Pearlman | Oct 2001 | B1 |
6310968 | Hawkins et al. | Oct 2001 | B1 |
6315981 | Unger | Nov 2001 | B1 |
6317623 | Griffiths et al. | Nov 2001 | B1 |
6317648 | Sleep et al. | Nov 2001 | B1 |
6318630 | Coughlin et al. | Nov 2001 | B1 |
6322535 | Hitchins et al. | Nov 2001 | B1 |
6323648 | Belt et al. | Nov 2001 | B1 |
6324418 | Crowley et al. | Nov 2001 | B1 |
RE37487 | Reilly et al. | Dec 2001 | E |
D452737 | Nolan, Jr. et al. | Jan 2002 | S |
6336913 | Spohn et al. | Jan 2002 | B1 |
6339652 | Hawkins et al. | Jan 2002 | B1 |
6339718 | Zatezalo et al. | Jan 2002 | B1 |
6344745 | Reisker et al. | Feb 2002 | B1 |
6346706 | Rogers et al. | Feb 2002 | B1 |
6346886 | de la Huerga | Feb 2002 | B1 |
RE37602 | Uber, III et al. | Mar 2002 | E |
6353227 | Boxen | Mar 2002 | B1 |
6356081 | Misic | Mar 2002 | B1 |
6368331 | Front et al. | Apr 2002 | B1 |
6371938 | Reilly et al. | Apr 2002 | B1 |
6375624 | Uber, III et al. | Apr 2002 | B1 |
6377838 | Iwanczyk et al. | Apr 2002 | B1 |
6381349 | Zeng et al. | Apr 2002 | B1 |
6385483 | Uber, III et al. | May 2002 | B1 |
6388244 | Gagnon | May 2002 | B1 |
6388258 | Berlad et al. | May 2002 | B1 |
6392235 | Barrett et al. | May 2002 | B1 |
6396273 | Misic | May 2002 | B2 |
6397098 | Uber, III et al. | May 2002 | B1 |
6399951 | Paulus et al. | Jun 2002 | B1 |
6402717 | Reilly et al. | Jun 2002 | B1 |
6402718 | Reilly et al. | Jun 2002 | B1 |
6407391 | Mastrippolito et al. | Jun 2002 | B1 |
6408204 | Hirschman | Jun 2002 | B1 |
6409987 | Cardin et al. | Jun 2002 | B1 |
6415046 | Kerut, Sr. | Jul 2002 | B1 |
6420711 | Tuemer | Jul 2002 | B2 |
6425174 | Reich | Jul 2002 | B1 |
6426917 | Tabanou et al. | Jul 2002 | B1 |
6429431 | Wilk | Aug 2002 | B1 |
6431175 | Penner et al. | Aug 2002 | B1 |
6432089 | Kakimi et al. | Aug 2002 | B1 |
6438401 | Cheng et al. | Aug 2002 | B1 |
6439444 | Shields, II | Aug 2002 | B1 |
6440107 | Trombley, III et al. | Aug 2002 | B1 |
6442418 | Evans, III et al. | Aug 2002 | B1 |
6448560 | Tumer | Sep 2002 | B1 |
6453199 | Kobozev | Sep 2002 | B1 |
6459925 | Nields et al. | Oct 2002 | B1 |
6459931 | Hirschman | Oct 2002 | B1 |
6468261 | Small et al. | Oct 2002 | B1 |
6469306 | Van Dulmen et al. | Oct 2002 | B1 |
6471674 | Emig et al. | Oct 2002 | B1 |
6480732 | Tanaka et al. | Nov 2002 | B1 |
6484051 | Daniel | Nov 2002 | B1 |
6488661 | Spohn et al. | Dec 2002 | B1 |
6490476 | Townsend et al. | Dec 2002 | B1 |
6504157 | Juhi | Jan 2003 | B2 |
6504178 | Carlson et al. | Jan 2003 | B2 |
6504899 | Pugachev et al. | Jan 2003 | B2 |
6506155 | Sluis et al. | Jan 2003 | B2 |
6510336 | Daghighian et al. | Jan 2003 | B1 |
6512374 | Misic et al. | Jan 2003 | B1 |
6516213 | Nevo | Feb 2003 | B1 |
6519569 | White et al. | Feb 2003 | B1 |
6520930 | Critchlow et al. | Feb 2003 | B2 |
6522945 | Sleep et al. | Feb 2003 | B2 |
6525320 | Juni | Feb 2003 | B1 |
6525321 | Juni | Feb 2003 | B2 |
6541763 | Lingren et al. | Apr 2003 | B2 |
6545280 | Weinberg et al. | Apr 2003 | B2 |
6549646 | Yeh et al. | Apr 2003 | B1 |
6560354 | Maurer et al. | May 2003 | B1 |
6562008 | Reilly et al. | May 2003 | B1 |
6563942 | Takeo et al. | May 2003 | B2 |
6565502 | Bede et al. | May 2003 | B1 |
6567687 | Front et al. | May 2003 | B2 |
6575930 | Trombley, III et al. | Jun 2003 | B1 |
6576918 | Fu et al. | Jun 2003 | B1 |
6583420 | Nelson et al. | Jun 2003 | B1 |
6584348 | Glukhovsky | Jun 2003 | B2 |
6585700 | Trocki et al. | Jul 2003 | B1 |
6587710 | Wainer | Jul 2003 | B1 |
6589158 | Winkler | Jul 2003 | B2 |
6591127 | McKinnon | Jul 2003 | B1 |
6592520 | Peszynski et al. | Jul 2003 | B1 |
6602488 | Daghighian | Aug 2003 | B1 |
6607301 | Glukhovsky et al. | Aug 2003 | B1 |
6611141 | Schulz et al. | Aug 2003 | B1 |
6614453 | Suri et al. | Sep 2003 | B1 |
6620134 | Trombley, III et al. | Sep 2003 | B1 |
6627893 | Zeng et al. | Sep 2003 | B1 |
6628983 | Gagnon | Sep 2003 | B1 |
6628984 | Weinberg | Sep 2003 | B2 |
6630735 | Carlson et al. | Oct 2003 | B1 |
6631284 | Nutt et al. | Oct 2003 | B2 |
6632216 | Houzego et al. | Oct 2003 | B2 |
6633658 | Dabney et al. | Oct 2003 | B1 |
6638752 | Contag et al. | Oct 2003 | B2 |
6643537 | Zatezalo et al. | Nov 2003 | B1 |
6643538 | Majewski et al. | Nov 2003 | B1 |
6652489 | Trocki et al. | Nov 2003 | B2 |
6657200 | Nygard et al. | Dec 2003 | B2 |
6662036 | Cosman | Dec 2003 | B2 |
6664542 | Ye et al. | Dec 2003 | B2 |
6670258 | Carlson et al. | Dec 2003 | B2 |
6671563 | Engelson et al. | Dec 2003 | B1 |
6673033 | Sciulli et al. | Jan 2004 | B1 |
6674834 | Acharya et al. | Jan 2004 | B1 |
6676634 | Spohn et al. | Jan 2004 | B1 |
6677182 | Carlson et al. | Jan 2004 | B2 |
6677755 | Belt et al. | Jan 2004 | B2 |
6680750 | Tournier et al. | Jan 2004 | B1 |
6694172 | Gagnon et al. | Feb 2004 | B1 |
6697660 | Robinson | Feb 2004 | B1 |
6699219 | Emig et al. | Mar 2004 | B2 |
6704592 | Reynolds et al. | Mar 2004 | B1 |
6713766 | Garrard et al. | Mar 2004 | B2 |
6714012 | Belt et al. | Mar 2004 | B2 |
6714013 | Misic | Mar 2004 | B2 |
6716195 | Nolan, Jr. et al. | Apr 2004 | B2 |
6722499 | Reich | Apr 2004 | B2 |
6723988 | Wainer | Apr 2004 | B1 |
6726657 | Dedig et al. | Apr 2004 | B1 |
6728583 | Hallett | Apr 2004 | B2 |
6731971 | Evans, III et al. | May 2004 | B2 |
6731989 | Engleson et al. | May 2004 | B2 |
6733477 | Cowan et al. | May 2004 | B2 |
6733478 | Reilly et al. | May 2004 | B2 |
6734416 | Carlson et al. | May 2004 | B2 |
6734430 | Soluri et al. | May 2004 | B2 |
6737652 | Lanza et al. | May 2004 | B2 |
6737866 | Belt et al. | May 2004 | B2 |
6740882 | Weinberg et al. | May 2004 | B2 |
6743202 | Hirschman et al. | Jun 2004 | B2 |
6743205 | Nolan, Jr. et al. | Jun 2004 | B2 |
6747454 | Belt | Jun 2004 | B2 |
6748259 | Benaron et al. | Jun 2004 | B1 |
6751500 | Hirschman et al. | Jun 2004 | B2 |
6765981 | Heumann | Jul 2004 | B2 |
6766048 | Launay et al. | Jul 2004 | B1 |
6771802 | Patt et al. | Aug 2004 | B1 |
6774358 | Hamill et al. | Aug 2004 | B2 |
6776977 | Liu | Aug 2004 | B2 |
6787777 | Gagnon et al. | Sep 2004 | B1 |
6788758 | De Villiers | Sep 2004 | B2 |
6798206 | Misic | Sep 2004 | B2 |
6808513 | Reilly et al. | Oct 2004 | B2 |
6809321 | Rempel | Oct 2004 | B2 |
6813868 | Baldwin et al. | Nov 2004 | B2 |
6821013 | Reilly et al. | Nov 2004 | B2 |
6822237 | Inoue et al. | Nov 2004 | B2 |
6833705 | Misic | Dec 2004 | B2 |
6838672 | Wagenaar et al. | Jan 2005 | B2 |
6841782 | Balan et al. | Jan 2005 | B1 |
6843357 | Bybee et al. | Jan 2005 | B2 |
6851615 | Jones | Feb 2005 | B2 |
6866654 | Callan et al. | Mar 2005 | B2 |
6870175 | Dell et al. | Mar 2005 | B2 |
6881043 | Barak | Apr 2005 | B2 |
6888351 | Belt et al. | May 2005 | B2 |
6889074 | Uber, III et al. | May 2005 | B2 |
6897658 | Belt et al. | May 2005 | B2 |
6906330 | Blevis et al. | Jun 2005 | B2 |
D507832 | Yanniello et al. | Jul 2005 | S |
6915170 | Engleson et al. | Jul 2005 | B2 |
6915823 | Osborne et al. | Jul 2005 | B2 |
6917828 | Fukuda | Jul 2005 | B2 |
6921384 | Reilly et al. | Jul 2005 | B2 |
6928142 | Shao et al. | Aug 2005 | B2 |
6935560 | Andreasson et al. | Aug 2005 | B2 |
6936030 | Pavlik et al. | Aug 2005 | B1 |
6937750 | Natanzon et al. | Aug 2005 | B2 |
6939302 | Griffiths et al. | Sep 2005 | B2 |
6940070 | Tumer | Sep 2005 | B2 |
6943355 | Shwartz et al. | Sep 2005 | B2 |
6957522 | Baldwin et al. | Oct 2005 | B2 |
6958053 | Reilly | Oct 2005 | B1 |
6963770 | Scarantino et al. | Nov 2005 | B2 |
6970735 | Uber, III et al. | Nov 2005 | B2 |
6972001 | Emig et al. | Dec 2005 | B2 |
6974443 | Reilly et al. | Dec 2005 | B2 |
6976349 | Baldwin et al. | Dec 2005 | B2 |
6984222 | Hitchins et al. | Jan 2006 | B1 |
6985870 | Martucci et al. | Jan 2006 | B2 |
6988981 | Hamazaki | Jan 2006 | B2 |
6994249 | Peterka et al. | Feb 2006 | B2 |
7009183 | Wainer et al. | Mar 2006 | B2 |
7011814 | Suddarth et al. | Mar 2006 | B2 |
7012430 | Misic | Mar 2006 | B2 |
7017622 | Osborne et al. | Mar 2006 | B2 |
7018363 | Cowan et al. | Mar 2006 | B2 |
7019783 | Kindem et al. | Mar 2006 | B2 |
7025757 | Reilly et al. | Apr 2006 | B2 |
7026623 | Oaknin et al. | Apr 2006 | B2 |
7043063 | Noble et al. | May 2006 | B1 |
7102138 | Belvis et al. | Sep 2006 | B2 |
7103204 | Celler et al. | Sep 2006 | B1 |
7127026 | Amemiya et al. | Oct 2006 | B2 |
7142634 | Engler et al. | Nov 2006 | B2 |
7145986 | Wear et al. | Dec 2006 | B2 |
7147372 | Nelson et al. | Dec 2006 | B2 |
7164130 | Welsh et al. | Jan 2007 | B2 |
7176466 | Rousso et al. | Feb 2007 | B2 |
7187790 | Sabol et al. | Mar 2007 | B2 |
7217953 | Carlson | May 2007 | B2 |
7256386 | Carlson et al. | Aug 2007 | B2 |
7291841 | Nelson et al. | Nov 2007 | B2 |
7327822 | Sauer et al. | Feb 2008 | B2 |
7359535 | Salla et al. | Apr 2008 | B2 |
7373197 | Daighighian et al. | May 2008 | B2 |
7394923 | Zou et al. | Jul 2008 | B2 |
7444010 | De Man | Oct 2008 | B2 |
7468513 | Charron et al. | Dec 2008 | B2 |
7470896 | Pawlak et al. | Dec 2008 | B2 |
7490085 | Walker et al. | Feb 2009 | B2 |
7495225 | Hefetz et al. | Feb 2009 | B2 |
7502499 | Grady | Mar 2009 | B2 |
7570732 | Stanton et al. | Aug 2009 | B2 |
7592597 | Hefetz et al. | Sep 2009 | B2 |
7620444 | Le et al. | Nov 2009 | B2 |
7627084 | Jabri et al. | Dec 2009 | B2 |
7652259 | Kimchy et al. | Jan 2010 | B2 |
7671331 | Hefez | Mar 2010 | B2 |
7671340 | Uribe et al. | Mar 2010 | B2 |
7672491 | Krishnan et al. | Mar 2010 | B2 |
7680240 | Manjeshwar et al. | Mar 2010 | B2 |
7705316 | Rousso et al. | Apr 2010 | B2 |
7734331 | Dhawale et al. | Jun 2010 | B2 |
7826889 | David et al. | Nov 2010 | B2 |
7831024 | Metzler et al. | Nov 2010 | B2 |
7835927 | Schlotterbeck et al. | Nov 2010 | B2 |
7872235 | Rousso et al. | Jan 2011 | B2 |
7894650 | Weng et al. | Feb 2011 | B2 |
7968851 | Rousso et al. | Jun 2011 | B2 |
8013308 | Guerin et al. | Sep 2011 | B2 |
8055329 | Kimchy et al. | Nov 2011 | B2 |
8111886 | Rousso et al. | Feb 2012 | B2 |
8158951 | Bal et al. | Apr 2012 | B2 |
8163661 | Akiyoshi et al. | Apr 2012 | B2 |
8204500 | Weintraub et al. | Jun 2012 | B2 |
8338788 | Zilberstein et al. | Dec 2012 | B2 |
8440168 | Yang et al. | May 2013 | B2 |
20010016029 | Tumer | Aug 2001 | A1 |
20010020131 | Kawagishi et al. | Sep 2001 | A1 |
20010035902 | Iddan et al. | Nov 2001 | A1 |
20010049608 | Iiochman | Dec 2001 | A1 |
20020068864 | Bishop et al. | Jun 2002 | A1 |
20020072784 | Sheppard, Jr. et al. | Jun 2002 | A1 |
20020085748 | Baumberg | Jul 2002 | A1 |
20020087101 | Barrick et al. | Jul 2002 | A1 |
20020099295 | Gil et al. | Jul 2002 | A1 |
20020099310 | Kimchy et al. | Jul 2002 | A1 |
20020099334 | Hanson et al. | Jul 2002 | A1 |
20020103429 | DeCharms | Aug 2002 | A1 |
20020103431 | Toker et al. | Aug 2002 | A1 |
20020145114 | Inoue et al. | Oct 2002 | A1 |
20020148970 | Wong et al. | Oct 2002 | A1 |
20020165491 | Reilly | Nov 2002 | A1 |
20020168094 | Kaushikkar et al. | Nov 2002 | A1 |
20020168317 | Daighighian et al. | Nov 2002 | A1 |
20020172405 | Schultz | Nov 2002 | A1 |
20020179843 | Tanaka et al. | Dec 2002 | A1 |
20020183645 | Nachaliel | Dec 2002 | A1 |
20020188197 | Bishop et al. | Dec 2002 | A1 |
20020198738 | Osborne | Dec 2002 | A1 |
20030001098 | Stoddart et al. | Jan 2003 | A1 |
20030001837 | Baumberg | Jan 2003 | A1 |
20030006376 | Tumer | Jan 2003 | A1 |
20030013950 | Rollo et al. | Jan 2003 | A1 |
20030013966 | Barnes et al. | Jan 2003 | A1 |
20030038240 | Weinberg | Feb 2003 | A1 |
20030055685 | Cobb et al. | Mar 2003 | A1 |
20030063787 | Natanzon et al. | Apr 2003 | A1 |
20030071219 | Motomura et al. | Apr 2003 | A1 |
20030081716 | Tumer | May 2003 | A1 |
20030135388 | Martucci et al. | Jul 2003 | A1 |
20030136912 | Juni | Jul 2003 | A1 |
20030144322 | Kozikowski et al. | Jul 2003 | A1 |
20030147887 | Wang et al. | Aug 2003 | A1 |
20030158481 | Stotzka et al. | Aug 2003 | A1 |
20030183226 | Brand et al. | Oct 2003 | A1 |
20030189174 | Tanaka et al. | Oct 2003 | A1 |
20030191430 | D'Andrea et al. | Oct 2003 | A1 |
20030202629 | Dunham et al. | Oct 2003 | A1 |
20030208117 | Shwartz et al. | Nov 2003 | A1 |
20030215122 | Tanaka | Nov 2003 | A1 |
20030215124 | Li | Nov 2003 | A1 |
20030216631 | Bloch et al. | Nov 2003 | A1 |
20030219149 | Vailaya et al. | Nov 2003 | A1 |
20040003001 | Shimura | Jan 2004 | A1 |
20040010397 | Barbour et al. | Jan 2004 | A1 |
20040015075 | Kimchy et al. | Jan 2004 | A1 |
20040021065 | Weber | Feb 2004 | A1 |
20040044282 | Mixon et al. | Mar 2004 | A1 |
20040051368 | Caputo et al. | Mar 2004 | A1 |
20040054248 | Kimchy et al. | Mar 2004 | A1 |
20040054278 | Kimchy et al. | Mar 2004 | A1 |
20040065838 | Tumer | Apr 2004 | A1 |
20040075058 | Blevis et al. | Apr 2004 | A1 |
20040081623 | Eriksen et al. | Apr 2004 | A1 |
20040082918 | Evans et al. | Apr 2004 | A1 |
20040084340 | Morelle et al. | May 2004 | A1 |
20040086437 | Jackson et al. | May 2004 | A1 |
20040101176 | Mendonca et al. | May 2004 | A1 |
20040101177 | Zahlmann et al. | May 2004 | A1 |
20040116807 | Amrami et al. | Jun 2004 | A1 |
20040120557 | Sabol | Jun 2004 | A1 |
20040122311 | Cosman | Jun 2004 | A1 |
20040125918 | Shanmugaval et al. | Jul 2004 | A1 |
20040138557 | Le et al. | Jul 2004 | A1 |
20040143449 | Behrenbruch et al. | Jul 2004 | A1 |
20040144925 | Stoddart et al. | Jul 2004 | A1 |
20040153128 | Suresh et al. | Aug 2004 | A1 |
20040162492 | Kobayashi | Aug 2004 | A1 |
20040171924 | Mire et al. | Sep 2004 | A1 |
20040183022 | Weinberg | Sep 2004 | A1 |
20040184644 | Leichter et al. | Sep 2004 | A1 |
20040193453 | Butterfield et al. | Sep 2004 | A1 |
20040195512 | Crosetto | Oct 2004 | A1 |
20040204646 | Nagler et al. | Oct 2004 | A1 |
20040205343 | Forth et al. | Oct 2004 | A1 |
20040210126 | Iiajaj et al. | Oct 2004 | A1 |
20040238743 | Gravrand et al. | Dec 2004 | A1 |
20040251419 | Nelson et al. | Dec 2004 | A1 |
20040253177 | Elmaleh et al. | Dec 2004 | A1 |
20040263865 | Pawlak et al. | Dec 2004 | A1 |
20050001170 | Juni | Jan 2005 | A1 |
20050006589 | Young et al. | Jan 2005 | A1 |
20050020898 | Vosniak et al. | Jan 2005 | A1 |
20050020915 | Bellardinelli et al. | Jan 2005 | A1 |
20050023474 | Persyk et al. | Feb 2005 | A1 |
20050029277 | Tachibana | Feb 2005 | A1 |
20050033157 | Klein et al. | Feb 2005 | A1 |
20050049487 | Johnson et al. | Mar 2005 | A1 |
20050055174 | David et al. | Mar 2005 | A1 |
20050056788 | Juni | Mar 2005 | A1 |
20050074402 | Cagnolini et al. | Apr 2005 | A1 |
20050107698 | Powers et al. | May 2005 | A1 |
20050107914 | Engleson et al. | May 2005 | A1 |
20050108044 | Koster | May 2005 | A1 |
20050113945 | Engleson et al. | May 2005 | A1 |
20050121505 | Metz et al. | Jun 2005 | A1 |
20050131270 | Weil et al. | Jun 2005 | A1 |
20050145797 | Oaknin et al. | Jul 2005 | A1 |
20050148869 | Masuda | Jul 2005 | A1 |
20050149350 | Kerr et al. | Jul 2005 | A1 |
20050156115 | Kobayashi et al. | Jul 2005 | A1 |
20050173643 | Tumer | Aug 2005 | A1 |
20050187465 | Motomura et al. | Aug 2005 | A1 |
20050198800 | Reich | Sep 2005 | A1 |
20050203389 | Williams | Sep 2005 | A1 |
20050205792 | Rousso et al. | Sep 2005 | A1 |
20050205796 | Bryman | Sep 2005 | A1 |
20050207526 | Altman | Sep 2005 | A1 |
20050211909 | Smith | Sep 2005 | A1 |
20050215889 | Patterson, II | Sep 2005 | A1 |
20050234424 | Besing et al. | Oct 2005 | A1 |
20050247893 | Fu et al. | Nov 2005 | A1 |
20050261936 | Silverbrook et al. | Nov 2005 | A1 |
20050261937 | Silverbrook et al. | Nov 2005 | A1 |
20050261938 | Silverbrook et al. | Nov 2005 | A1 |
20050277833 | Williams, Jr. | Dec 2005 | A1 |
20050277911 | Stewart et al. | Dec 2005 | A1 |
20050278066 | Graves et al. | Dec 2005 | A1 |
20050288869 | Kroll et al. | Dec 2005 | A1 |
20060000983 | Charron et al. | Jan 2006 | A1 |
20060033028 | Juni | Feb 2006 | A1 |
20060036157 | Tumer | Feb 2006 | A1 |
20060072799 | McLain | Apr 2006 | A1 |
20060074290 | Chen et al. | Apr 2006 | A1 |
20060104519 | Stoeckel et al. | May 2006 | A1 |
20060109950 | Arenson et al. | May 2006 | A1 |
20060122503 | Burbank et al. | Jun 2006 | A1 |
20060145081 | Hawman | Jul 2006 | A1 |
20060160157 | Zuckerman | Jul 2006 | A1 |
20060188136 | Ritt et al. | Aug 2006 | A1 |
20060214097 | Wang et al. | Sep 2006 | A1 |
20060237652 | Kimchy et al. | Oct 2006 | A1 |
20060257012 | Kaufman et al. | Nov 2006 | A1 |
20070116170 | De Man et al. | May 2007 | A1 |
20070133852 | Collins et al. | Jun 2007 | A1 |
20070156047 | Nagler et al. | Jul 2007 | A1 |
20070166227 | Liu et al. | Jul 2007 | A1 |
20070189436 | Goto et al. | Aug 2007 | A1 |
20070194241 | Rousso et al. | Aug 2007 | A1 |
20070265230 | Rousso et al. | Nov 2007 | A1 |
20080001090 | Ben-Haim et al. | Jan 2008 | A1 |
20080029704 | Hefetz et al. | Feb 2008 | A1 |
20080033291 | Rousso et al. | Feb 2008 | A1 |
20080036882 | Uemura et al. | Feb 2008 | A1 |
20080039721 | Shai et al. | Feb 2008 | A1 |
20080137938 | Zahniser | Jun 2008 | A1 |
20080230702 | Rousso et al. | Sep 2008 | A1 |
20080230705 | Rousso et al. | Sep 2008 | A1 |
20080237482 | Shahar et al. | Oct 2008 | A1 |
20080260228 | Dichterman et al. | Oct 2008 | A1 |
20080260580 | Helle et al. | Oct 2008 | A1 |
20080260637 | Dickman | Oct 2008 | A1 |
20080277591 | Shahar et al. | Nov 2008 | A1 |
20090001273 | Hawman | Jan 2009 | A1 |
20090018412 | Schmitt | Jan 2009 | A1 |
20090078875 | Rousso et al. | Mar 2009 | A1 |
20090112086 | Melman | Apr 2009 | A1 |
20090152471 | Rousso et al. | Jun 2009 | A1 |
20090201291 | Ziv et al. | Aug 2009 | A1 |
20090236532 | Frach et al. | Sep 2009 | A1 |
20090304582 | Rousso et al. | Dec 2009 | A1 |
20100006770 | Balakin | Jan 2010 | A1 |
20100021378 | Rousso et al. | Jan 2010 | A1 |
20100102242 | Burr et al. | Apr 2010 | A1 |
20100121184 | Dhawale et al. | May 2010 | A1 |
20100140483 | Rousso et al. | Jun 2010 | A1 |
20100202664 | Busch et al. | Aug 2010 | A1 |
20100245354 | Rousso et al. | Sep 2010 | A1 |
20120106820 | Rousso et al. | May 2012 | A1 |
20120172699 | Nagler et al. | Jul 2012 | A1 |
20120248320 | Wangerin et al. | Oct 2012 | A1 |
20120326034 | Sachs et al. | Dec 2012 | A1 |
20130114792 | Zilberstein et al. | May 2013 | A1 |
20130308749 | Zilberstein et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
1516429 | Dec 1969 | DE |
19814199 | Oct 1999 | DE |
19815362 | Oct 1999 | DE |
0273257 | Jul 1988 | EP |
0525954 | Feb 1993 | EP |
0526970 | Feb 1993 | EP |
0543626 | May 1993 | EP |
0592093 | Apr 1994 | EP |
0697193 | Feb 1996 | EP |
0813692 | Dec 1997 | EP |
1237013 | Sep 2002 | EP |
2031142 | Apr 1980 | GB |
59-141084 | Aug 1984 | JP |
61-026879 | Feb 1986 | JP |
01-324568 | Jun 1986 | JP |
03-121549 | May 1991 | JP |
04-151120 | May 1992 | JP |
06-109848 | Apr 1994 | JP |
6-109848 | Apr 1994 | JP |
07-059763 | Mar 1995 | JP |
07-141523 | Jun 1995 | JP |
08-292268 | Nov 1996 | JP |
10-260258 | Sep 1998 | JP |
11-072564 | Mar 1999 | JP |
WO 9200402 | Jan 1992 | WO |
WO 9816852 | Apr 1998 | WO |
WO 9903003 | Jan 1999 | WO |
WO 9930610 | Jun 1999 | WO |
WO 9939650 | Aug 1999 | WO |
WO 0010034 | Feb 2000 | WO |
WO 0018294 | Apr 2000 | WO |
WO 0022975 | Apr 2000 | WO |
WO 0025268 | May 2000 | WO |
WO 0031522 | Jun 2000 | WO |
WO 0038197 | Jun 2000 | WO |
WO 0189384 | Nov 2001 | WO |
WO 0216965 | Feb 2002 | WO |
WO 02058531 | Aug 2002 | WO |
WO 02075357 | Sep 2002 | WO |
WO 03073938 | Sep 2003 | WO |
WO 03086170 | Oct 2003 | WO |
WO 2004004787 | Jan 2004 | WO |
WO 2004032151 | Apr 2004 | WO |
WO 2004042546 | May 2004 | WO |
WO 2004113951 | Dec 2004 | WO |
WO 2005002971 | Jan 2005 | WO |
WO 2005059592 | Jun 2005 | WO |
WO 2005059840 | Jun 2005 | WO |
WO 2005067383 | Jul 2005 | WO |
WO 2005104939 | Nov 2005 | WO |
WO 2005118659 | Dec 2005 | WO |
WO 2005119025 | Dec 2005 | WO |
WO 2006042077 | Apr 2006 | WO |
WO 2006051531 | May 2006 | WO |
WO 2006054296 | May 2006 | WO |
WO 2006075333 | Jul 2006 | WO |
WO 2006129301 | Dec 2006 | WO |
WO 2007010534 | Jan 2007 | WO |
WO 2007010537 | Jan 2007 | WO |
WO 2007054935 | May 2007 | WO |
WO 2007074467 | Jul 2007 | WO |
WO 2008010227 | Jan 2008 | WO |
WO 2008075362 | Jun 2008 | WO |
Entry |
---|
International Search Report Dated Jul. 11, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/01511. |
International Search Report Dated Jul. 25, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2007/001588. |
Official Action Dated Sep. 4, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568. |
Official Action Dated Oct. 7, 2008 From the US Patent Office Re.: U.S. Appl. No. 10/616,301. |
Official Action Dated Jul. 12, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Official Action Dated Dec. 13, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Official Action Dated Jul. 15, 2008 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973. |
Official Action Dated Mar. 21, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568. |
Official Action Dated Jun. 25, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Official Action Dated Sep. 25, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Official Action Dated Sep. 30, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Supplementary Partial European Search Report Dated Nov. 11, 2008 From the European Patent Office Re.: Application No. 01951883.6. |
Written Opinion Dated Jul. 25, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001173. |
Stoddart et al. “New Multi-Dimensional Reconstructions for the 12-Detector, Scanned Focal Point, Single-Photon Tomograph”, Physics in Medicine and Biology, XP020021960, 37(3): 579-586, Mar. 1, 1992. p. 582, § 2-p. 585, § 1. |
Aoi et al. “Absolute Quantitation of Regional Myocardial Blood Flow of Rats Using Dynamic Pinhole SPECT”, IEEE Nuclear Science Symposium and Medical Imaging Conference Record, 3: 1780-1783, 2002. Abstract, Figs. |
Bromiley et al. “Attenuation Correction in PET Using Consistency Conditions and a Three-Dimensional Template”, IEEE Transactions on Nuclear Science, 48(4):1371-1377, 2001. p. 1376, col. 2, § 2. |
Corstens et al. “Nuclear Medicine's Role in Infection and Inflammation”, The Lancet, 354: 765-770, 1999. |
Day et al. “Localization of Radioiodinated Rat Fibrogen in Transplanted Rat Tumors”, Journal of the National Cancer Institute, 23(4): 799-812, 1959. |
Erbil et al. “Use and Limitations of Serum Total and Lipid-Bound Sialic Acid Concentrations as Markers for Colorectal Cancer”, Cancer, 55: 404-409, 1985. |
Garcia et al. “Accuracy of Dynamic SPECT Acquisition for Tc-99m Teboroxime Myocardinal Perfusion Imaging: Preliminary Results”, American College of Cardiology, 51st Annual Scientific Session, Atlanta, Georgia, USA, 8 P., 2002. |
Hassan et al. “A Radiotelemetry Pill for the Measurement of Ionising Radiation Using a Mercuric Iodide Detector”, Phys. Med. Biol., 23(2): 302-308, 1978. |
Hayakawa et al. “A PET-MRI Registration Technique for PET Studies of the Rat Brain”, Nuclear Medicine & Biology, 27: 121-125, 2000. p. 121, col. 1. |
Hoffman et al. “Intraoperative Probes and Imaging Probes”, European Journal of Nuclear Medicine, 26(8): 913-935, 1999. |
Huesman et al. “Kinetic Parameter Estimation From SPECT Cone-Beam Projection Measurements”, Physics in Medicine and Biology, 43(4): 973-982, 1998. |
Jeanguillaume et al. “From the Whole-Body Counting to Imaging: The Computer Aided Collimation Gamma Camera Project (CACAO)”, Radiation Projection Dosimetry 89(3-4): 349-352, 2000. |
Jessup “Tumor Markers—Prognostic and Therapeutic Implications for Colorectal Carcinoma”, Surgical Oncology, 7: 139-151, 1998. |
Kojima et al. “Quantitative Planar Imaging Method for Measurement of Renal Activity by Using A Conjugate-Emission Image and Transmission Data”, Medical Physics, 27(3): 608-615, 2000. p. 608. |
Lavallée et al. “Building a Hybrid Patient's Model for Augmented Reality in Surgery: A Registration Problem”, Computing in Biological Medicine, 25(2): 149-164, 1995. p. 149-150. |
Molinolo et al. “Enhanced Tumor Binding Using Immunohistochemical Analyses by Second Generation Anti-Tumor-Associated Glycoprotein 72 Monoclonal Antibodies versus Monoclonal Antibody B72.3 in Human Tissue”, Cancer Research, 50: 1291-1298, 1990. |
Mori et al. “Overexpression of Matrix Metalloproteinase-7mRNA in Human Colon Carcinomas”, Cancer, 75: 1516-1519, 1995. |
Pardridge et al. “Tracer Kinetic Model of Blood-Brain Barrier Transport of Plasma Protein-Bound Ligands”, Journal of Clinical Investigation, 74: 745-752, 1984. Suppl. IDS in 27480. |
Quartuccia et al. “Computer Assisted Collimation Gama Camera: A New Approach to Imaging Contaminated Tissues”, Radiation Projection Dosimetry, 89(3-4): 343-348, 2000. |
Rajshekhar “Continuous Impedence Monitoring During CT-Guided Stereotactic Surgery: Relative Value in Cystic and Solid Lesions”, British Journal of Neurosurgery, 6: 439-444, 1992. |
Reutter et al. “Direct Least Squares Estimation of Spatiotemporal Distributions From Dynamic SPECT Projections Using A Spatial Segmentation and Temporal B-Splines”, IEEE Transactions on Medical Imaging, 19(5): 434-450, 2000. |
Reutter et al. “Kinetic Parameter Estimation From Attenuated SPECT Projection Measurements”, IEEE Transactions on Nuclear Science, 45(6): 307-3013, 1998. |
Zhang et al. “An Innovative High Efficiency and High Resolution Probe for Prostate Imaging”, The Journal of Nuclear Medicine, 68: 18, 2000. Abstract. |
Communication Pursuant to Article 94(3) EPC Dated Jul. 22, 2009 From the European Patent Office Re.: Application No. 06809851.6. |
International Preliminary Report on Patentability Dated Apr. 16, 2009 From the International Bureau of WIPO Re.: Application No. PCT/IL2007/000918. |
International Preliminary Report on Patentability Dated Jun. 21, 2007 From the International Bureau of WIPO Re.: Application No. PCT/IL2005/000575. |
International Preliminary Report on Patentability Dated Jan. 22, 2009 From the International Bureau of WIPO Re.: Application No. PCT/IL2006/000834. |
international Preliminary Report on Patentability Dated Jan. 22, 2009 From the International Bureau of WIPO Re.: Application No. PCT/IL2006/001511. |
International Preliminary Report on Patentability Dated May 22, 2007 From the International Preliminary Examining Authority Re.: Application No. PCT/IL06/00059. |
International Preliminary Report on Patentability Datcd May 22, 2008 From the International Bureau of WIPO Re.: Application No. PCT/1L2006/001291. |
International Preliminary Report on Patentability Dated May 24, 2007 From the International Bureau of WIPO Re.: Application No. PCT/IL2005/001173. |
International Preliminary Report on Patentability Dated Apr. 26, 2007 From the International Bureau of WIPO Re.: Application No. PCT/IL2005/000394. |
International Preliminary Report on Patentability Dated Jan. 31, 2008 From the International Bureau of WIPO Re.: Application No. PCT/IL2006/000840. |
International Search Report Dated Oct. 15, 2008 From the International Searching Authority Re.: Application No. PCT/IL07/00918. |
Invitation to Pay Additional Fees Dated Jul. 10, 2008 From the International Searching Authority Re.: Application No. PCT/IL06/01511. |
Invitation to Pay Additional Fees Dated Feb. 15, 2007 From the International Searching Authority Re.: Application No. PCT/IL05/00575. |
Notice of Allowance Dated Jul. 16, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559. |
Office Action Dated Jan. 2, 2006 From the Israeli Patent Office Re.: Application No. 154323. |
Office Action Dated Sep. 4, 2007 From the Israeli Patent Office Re.: Application No. 157007. |
Office Action Dated Jul. 17, 2007 From the Israeli Patent Office Re.: Application No. 154323. |
Official Action Dated Jan. 7, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307. |
Official Action Dated Jul. 7, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568. |
Official Action Dated May 13, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017. |
Official Action Dated Jul. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Official Action Dated Dec. 16, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792. |
Official Action Dated Jul. 20, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617. |
Official Action Dated Dec. 23, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464. |
Official Action Dated Nov. 26, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239. |
Official Action Dated Apr. 29, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690. |
Response Dated Mar. 13, 2008 to Official Action of Dec. 13, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Response Dated Aug. 14, 2008 to Official Action of Apr. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464. |
Response Dated Mar. 15, 2007 to Official Action of Dec. 15, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Response Dated Sep. 22, 2008 to Official Action of Jun. 25, 2008 From US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Response Dated Nov. 25, 2005 to Office Action of May 13, 2005 From the Patent Office of the People's Republic of China Re.: Application No. 1817689.5. |
Response Dated Oct. 31, 2007 to Official Action of Jul. 12, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Response to the International Search Report and the Written Opinion of Oct. 10, 2006 From the International Searching Authority Re.: Appliction No. PCT/IL06/00059. |
Second International Search Report Dated Jun. 1, 2009 From the International Searching Authority Re.: Application No. PCT/IL07/00918. |
Second Written Opinion Dated Jun. 1, 2009 From the International Searching Authority Re.: Application No. PCT/IL07/00918. |
Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC Jan. 16, 2009 From the European Patent Office Re.: Application No. 03810570.6. |
Supplementary Partial European Search Report Dated Nov. 20, 2007 From the European Patent Office Re.: Application No. 02716285.8. |
Translation of Office Action Dated May 13, 2005 From the Patent Office of the People's Republic of China Re.: Application No. 01817689.5. |
Written Opinion Dated Oct. 15, 2008 From the International Searching Authority Re.: Application No. PCT/IL07/00918. |
Bloch et al. “Application of Computerized Tomography to Radiation Therapy and Surgical Planning”, Proceedings of the IEEE, 71(3): 351-355, Mar. 1983. |
Kinahan el al. “Attenuation Correction for a Combined 3D PET/CT Scanner”, Medical Physics, 25(10): 2046-2053, Oct. 1998. |
Ogawa et al. “Ultra High Resoultion Pinhole SPECT”, IEEE Nuclear Science Symposium, 2: 1600-1604, 1998. |
Pellegrini et al. “Design of Compact Pinhole SPECT System Based on Flat Panel PMT”, IEEE Nuclear Science Symposium Conference Record, 3: 1828-1832, 2003. |
Takahashi et al. “Attenuation Correction of Myocardial SPECT Images With X-Ray CT: Effects of Registration Errors Between X-Ray CT and SPECT”, Annals of Nuclear Medicine, 16(6): 431-435, Sep. 2002. |
Yu et al. “Using Correlated CT Images in Compensation for Attenuation in PET Image Reconstruction”, Proceedings of the SPIE, Applications of Optical Engineering: Proceedings of OE/Midwest '90, 1396: 56-58, 1991. |
Zaidi et al. “Magenetic Resonance Imaging-Guided Attenuation and Scatter Corrections in Three-Dimensional Brain Positron Emission Tomography”, Medical Physics, 30(5): 937-948, May 2003. |
Zaidi et al. “MRI-Guided Attenuation Correction in 3D Brain PET”, Neuroimage Human Brain Mapping 2002 Meeting, 16(2): Abstract 504, Jun. 2002. |
Communication Pursuant to Article 93(3) EPC Dated Mar. 8, 2010 From the European Patent Office Re.: Application No. 06832278.3. |
Appeal Brief Dated Jan. 19, 2010 to Notice of Appeal of Nov. 16, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Communication Pursuant to Article 94(3) EPC Dated Mar. 8, 2010 From the European Patent Office Re.: Application No. 06832278.3. |
Notice of Allowance Dated Nov. 23, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559. |
Notice of Appeal and Pre-Appeal Brief Dated Jan. 4, 2010 to Official Action of Sep. 2, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792. |
Notice of Appeal Dated Nov. 16, 2009 to Official Action of Jul. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Official Action Dated Mar. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799. |
Official Action Dated Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223. |
Official Action Dated Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617. |
Official Action Dated Dec. 8, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/132,320. |
Official Action Dated Jan. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548. |
Official Action Dated Mar. 11, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075. |
Official Action Dated Mar. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239. |
Official Action Dated Feb. 23, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973. |
Response Dated Jan. 14, 2010 to Official Action of Sep. 15, 2009 From the US Patent and Trademark Office Re.: Application No. 10/616,307. |
Response Dated Jan. 14, 2010 to Official Action of Sep. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223. |
Response Dated Oct. 14, 2009 to Official Action of May 14, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548. |
Response Dated Jan. 21, 2010 to Official Action of Sep. 21, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017. |
Response Dated Feb. 22, 2010 to Communication Pursuant to Article 94(3) EPC Oct. 21, 2009 From the European Patent Office Re.: Application No. 02716285.8. |
Response Dated Dec. 28, 2009 to Official Action of Aug. 28, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239. |
Response Dated Dec. 30, 2009 to Official Action of Sep. 1, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799. |
Response Dated Dec. 30, 2009 to Official Action of Oct. 30, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690. |
Supplementary Partial European Search Report and the European Search Opinion Dated Dec. 15, 2009 From the European Patent Office Re.: Application No. 06832278.3. |
Gilland et al. “A 3D Model of Non-Uniform Attenuation and Detector Response for Efficient Iterative Reconstruction in SPECT”, Physics in Medicine and Biology, XP002558623, 39(3): 547-561, Mar. 1994. p. 549-550, Section 2.3 ‘Active Voxel Reconstruction’, p. 551, Lines 4-8. |
Gilland et al. “Simultaneous Reconstruction and Motion Estimation for Gated Cardiac ECT”, IEEE Transactions on Nuclear Science, XP011077797, 49(5): 2344-2349, Oct. 1, 2002. p. 2344, Section ‘Introduction’, First §. |
Kadrmas et al. “Static Versus Dynamic Teboroxime Myocardial Perfusion SPECT in Canines”, IEEE Transactions on Nuclear Science, 47(3): 1112-1117, Jun. 2000. |
Li et al. “A HOTLink/Networked PC Data Acquisition and Image Reconstruction System for a High Resolution Whole-Body PET With Respiratory or ECG-Gated Performance”, IEEE Nuclear Sience Symposium and Medical Imaging Conference, Norfolk, VA, USA, Nov. 10-16, 2002, XP010663724, 2: 1135-1139, p. 1137, First Col., 2nd §. |
Wu et al. “ECG-Gated Pinhole SPECT in Mice With Millimeter Spatial Resolution”, IEEE Transactions on Nuclear Science, 47(3): 1218-1221, Jun. 2000. |
Official Action Dated Apr. 9, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017. |
Communication Pursuant to Article 94(3) EPC Dated Apr. 16, 2010 From the European Patent Office Re. Application No. 01951883.6. |
Response Dated Jun. 3, 2010 to Notice of Appeal and Pre-Appeal Brief of Jan. 4, 2010 to Official Action of Sep. 2, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792. |
Communication Pursuant to Article 96(2) EPC Dated Jan. 19, 2006 From the European Patent Office Re.: Application No. 03810570.6. |
Communication Pursuant to Article 96(2) EPC Dated Aug. 30, 2007 From the European Patent Office Re.: Application No. 03810570.6. |
Communication Relating to the Results of the Partial International Search Dated Apr. 18, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2006/001291. |
Communication Relating to the Results of the Partial International Search Dated May 21, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2007/001588. |
International Preliminary Report on Patentability Dated Apr. 16, 2009 From the International Bureau of WIPO Re.: Applicaiton No. PCT/IL2007/000918. |
International Search Report Dated Oct. 10, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00059. |
International Search Report Dated Feb. 1, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00048. |
International Search Report Dated Jul. 1, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00834. |
International Search Report Dated Nov. 1, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00840. |
International Search Report Dated Jul. 2, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2006/001291. |
international Search Report Dated Aug. 3, 2006 From the international Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001173. |
International Search Report Dated May 11, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001215. |
International Search Report Dated Sep. 11, 2002 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL01/00638. |
International Search Report Dated Sep. 12, 2002 From the International Searching Authority of the Patent Cooperation Treaty Re: Application No. PCT/IL02/00057. |
International Search Report Dated Mar. 18, 2004 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL03/00917. |
International Search Report Dated Mar. 23, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00572. |
International Search Report Dated May 24, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00575. |
International Search Report Dated Mar. 26, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00394. |
Office Action Dated Dec. 2, 2007 From the Israeli Patent Office Re.: Application No. 158442. |
Official Action Dated Jun. 1, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/686,536. |
Official Action Dated Jul. 2, 2004 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973. |
Official Action Dated May 3, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239. |
Official Action Dated Sep. 5, 2002 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559. |
Official Action Dated Aug. 10, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223. |
Official Action Dated Apr. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973. |
Official Action Dated Feb. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792. |
Official Action Dated Jul. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973. |
Official Action Dated Mar. 15, 2004 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/765,316. |
Official Action Dated Jan. 17, 2006 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 11/034,007. |
Official Action Dated Apr. 20, 2006 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239. |
Official Action Dated Sep. 30, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017. |
Official Action Dated Nov. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/728,383. |
Response dated Sep. 1, 2010 to Official Action of Aug. 3, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690. |
Response Dated Oct. 5, 2010 to Official Action of Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548. |
Response Dated May 10, 2010 to Official Action of Jan. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548. |
Response Dated May 11, 2010 to Official Action of Mar. 11, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075. |
Response Dated Aug. 25, 2010 to Official Action of Jul. 27, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307. |
Response Dated May 26, 2010 to Official Action of Mar. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239. |
Supplemental Response Under 37 C.F.R. § 1.125 Dated Aug. 12, 2010 to Telephonic Interview of Aug. 6, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617. |
Supplementary European Search Report Dated Dec. 12, 2005 From the European Patent Office Re.: U.S. Appl. No. 03810570.6. |
Supplementary Partial European Search Report Dated Sep. 4, 2007 From the European Patent Office Re.: Application No. 0 2716285.8. |
Written Opinion Dated Feb. 1, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00048. |
Written Opinion Dated Jul. 1, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00834. |
Written Opinion Dated Jul. 2, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2006/001291. |
Written Opinion Dated Aug. 3, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001173. |
Written Opinion Dated Oct. 10, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00059. |
Written Opinion Dated Mar. 23, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00572. |
Written Opinion Dated May 24, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00575. |
Written Opinion Dated Mar. 26, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00394. |
Beekman et al. “Efficient Fully 3-D Iterative SPECT Reconstruction With Monte Carlo-Based Scatter Compensation”, IEEE Transactions on Medical Imaging, 21(8): 867-877, Aug. 2002. |
Bromiley et al. “Attenuation Correction in PET Using Consistency Conditions and a Three-Dimensional Template”, IEEE Transactions on Nuclear Science, XP002352920, 48(4): 1371-1377, 2001. p. 1376, col. 2, § 2. |
Brown et al. “Method for Segmenting Chest CT Image Data Using an Anatomical Model: Preliminary Results”, IEEE Transactions on Medical Imaging, 16(6): 828-839, Dec. 1997. |
Del Guerra et al. “An Integrated PET-SPECT Small Animal Imager: Preliminary Results”, Nuclear Science Symposium, IEEE Records, 1: 541-544, 1999. |
Gugnin et al “Radiocapsule for Recording the Ionizing Radiation in the Gastrointestinal Tract”, UDC 615. 417:616.34-005.1-073.916-71 (All-Union Scientific-Research Institute of medical Instrument Design, Moscow. Translated from Meditsinskaya Tekhnika, 1:21-25, Jan.-Feb. 1972). |
Hassan et al. “A Radiotelemetry Pill for the Measurement of Ionising Radiation Using a Mercuric Iodide Detector”, Physics in Medicine and Biology, 23(2): 302-308, 1978. |
Lavallée et al. “Building a Hybrid Patient's Model for Augmented Reality in Surgery: A Registration Problem”, Computing in Biological Medicine, 25(2): 149-164, 1995. |
Piperno et al. “Breast Cancer Screening by Impedance Measurements”, Frontiers Med. Biol. Engng., 2(2): 11-17, 1990. |
Pluim et al. “Image Registration by Maximization of Combined Mutual Information and Gradient Information”, IEEE Transactions on Medical Imaging, 19(8): 1-6, 2000. |
Notice of Allowance Dated Dec. 17, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617. |
Official Action Dated Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973. |
Official Action Dated Dec. 28, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075. |
Official Action Dated Jan. 31, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793. |
Communication Pursuant to Rules 70(2) and 70a(2) EPC Dated Apr. 4, 2011 From the European Patent Office Re. Application No. 05803689.8. |
Response Dated Mar. 31, 2011 to Official Action of Jan. 31, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793. |
McJilton et al. “Protein Kinase C? Interacts With Bax and Promotes Survival of Human Prostate Cancer Cells”, Oncogene, 22; 7958-7968, 2003. |
Communication Pursuant to Article 94(3) EPC Dated Mar. 2, 2011 From the European Patent Office Re.: Application No. 06756259.5. |
Notice of Allowance Dated Nov. 15, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,301. |
Notice of Non-Compliant Amendment Dated Feb. 14, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307. |
Official Action Dated Nov. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690. |
Official Action Dated Oct. 7, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Official Action Dated Dec. 15, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Official Action Dated Jun. 23, 2006 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464. |
Response Dated Mar. 8, 2011 to Official Action of Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690. |
Response Dated Feb. 10, 2011 to Notice of Allowance of Nov. 15, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,301. |
Response Dated Mar. 24, 2011 to Official Action of Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973. |
Response Dated Jan. 27, 2011 to Official Action of Nov. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/728,383. |
Lavall?e et al. “Building a Hybrid Patient's Model for Augmented Reality in Surgery: A Registration Problem”, Computing in Biological Medicine, 25(2): 149-164, 1995. |
Lin et al. “Improved Sensor Pills for Physiological Monitoring”, NASA Technical Brief, JPL New Technology Report, NPO-20652, 25(2), 2000. |
Mettler et al. “Legal Requirements and Radiation Safety”, Essentials of Nuclear Medicine Imaging, 2nd Ed., Chap.13: 323-331, 1985. |
Response Dated Apr. 5, 2011 to Official Action of Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223. |
Supplementary European Search Report and the European Search Opinion Dated Mar. 16, 2011 From the European Patent Office Re. Application No. 05803689.8. |
Herrmann et al. “Mitochondrial Proteome: Altered Cytochtrome C Oxidase Subunit Levels in Prostate Cancer”, Proteomics, XP002625778, 3(9): 1801-1810, Sep. 2003. |
Krieg et al. “Mitochondrial Proteome: Cancer-Altered Metabolism Associated With Cytochrome C Oxidase Subunit Level Variation”, Proteomics, XP002625779, 4(9):2789-2795, Sep. 2004. |
Interview Summary Dated Mar. 25, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223. |
Mao et al. “Human Prostatic Carcinoma: An Electron Microscope Study”, Cancer Research, XP002625777, 26(5): 955-973, May 1966. |
Storey et al. “Tc-99m Sestamibi Uptake in Metastatic Prostate Carcinoma”, Clinical Nuclear Medicine, XP009145398, 25(2): 133-134, Feb. 2000. |
Response Dated Mar. 3, 2011 to Notice of Non-Compliant Amendment of Feb. 14, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307. |
Notice of Allowance Dated May 5, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239. |
Notice of Allowance Dated May 6, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617. |
Official Action Dated Apr. 20, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017. |
Official Action Dated Apr. 27, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223. |
Official Action Dated May 23, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793. |
Official Action Dated May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307. |
Official Action Dated May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690. |
McJilton et al. “Protein Kinase Cε Interacts With Bax and Promotes Survival of Human Prostate Cancer Cells”, Oncogene, 22; 7958-7968, 2003. |
Xu et al. “Quantitative Expression Profile of Androgen-Regulated Genes in Prostate Cancer Cells and Identification of Prostate-Specific Genes”, International Journal of Cancer, 92: 322-328, 2001. |
Interview Summary Dated May 31, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,301. |
Notice of Allowance Dated Feb. 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690. |
Official Action Dated Mar. 15, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792. |
Official Action Dated Jul. 12, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973. |
Amendment After Allowance Under 37 CFR 1.312 Dated Sep. 13, 2010 to Notice of Allowance of Jul. 22, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799. |
Examination Report Dated Jun. 22, 2011 From the Government of India, Patent Office, Intellectual Property Building Re. U.S. Appl. No. 2963/CHENP/2006. |
Official Action Dated Mar. 9, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Response Dated Jun. 7, 2011 to Official Action of Mar. 9, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Response Dated Jun. 28, 2011 to Official Action of Dec. 28, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075. |
Official Action Dated Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075. |
Response Dated Jul. 1, 2010 to Official Action of Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223. |
Response Dated Jul. 8, 2010 to Official Action of Apr. 9, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017. |
Response Dated Jun. 23, 2010 to Official Action of Feb. 23, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973. |
Official Action Dated Jul. 11, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683. |
Response Dated Jul. 14, 2011 to Official Action of Mar. 15, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792. |
Response Dated Sep. 1, 2011 to Communication Pursuant to Article 94(3) EPC of Mar. 2, 2011 From the European Patent Office Re.: Application No. 06756259.5. |
Response Dated Aug. 29, 2011 to Official Action of Apr. 27, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223. |
Communication Pursuant to Article 94(3) EPC Dated May 12, 2010 From the European Patent Office Re.: Application No. 06809851.6. |
Notice of Allowance Dated Aug. 25, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617. |
Response Dated Sep. 8, 2010 to Communication Pursuant to Article 94(3) EPC Dated May 12, 2010 From the European Patent Office Re.: Application No. 06809851.6. |
Official Action Dated Jan. 28, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973. |
Response Dated Feb. 10, 2011 to Official Action of Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307. |
Response Dated Jan. 27, 2011 to Official Action of Nov. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690. |
Response Dated Jan. 31, 2011 to Official Action of Sep. 30, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017. |
Response Dated Jul. 1, 2010 to Official Action of Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617. |
Official Action Dated Jul. 27, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307. |
Response Dated Jul. 26, 2010 to Official Action of Apr. 28, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Notice of Allowance Dated Jun. 30, 2010 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464. |
Official Action Dated Aug. 3, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690. |
Supplemental Response After Interview Dated Aug. 4, 2010 to Official Action of Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617. |
Notice of Allowance Dated Jul. 22, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799. |
Response Dated Aug. 16, 2010 to Communication Pursuant to Article 94(3) EPC of Apr. 16, 2010 From the European Patent Office Re. Application No. 01951883.6. |
Response Dated Jul. 8, 2010 to Communication Pursuant to Article 94(3) EPC of Mar. 8, 2010 From the European Patent Office Re.: Application No. 06832278.3. |
Notice of Allowance Dated Jun. 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Official Action Dated Jun. 28, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/628,074. |
Official Action Dated Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690. |
Official Action Dated Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307. |
Official Action Dated Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223. |
Response Dated Nov. 18, 2010 to Official Action of Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075. |
Response Dated Jun. 1, 2010 to Official Action of Mar. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799. |
Brzymialkiewicz et al. “Evaluation of Fully 3-D Emission Mammotomography With a Compact Cadmium Zinc Telluride Detector”, IEEE Transactions on Medical Imaging, 24(7): 868-877, Jul. 2005. |
Jan et al. “Preliminary Results From the AROPET”, IEEE Nuclear Science Symposium Conference Record, Nov. 4-10, 2001, 3: 1607-1610, 2001. |
Ohno et al. “Selection of Optimum Projection Angles in Three Dimensional Myocardial SPECT”, IEEE Nuclear Science Symposium Conference Record 2001, 4: 2166-2169, 2001. |
Seret et al. “Intrinsic Uniformity Requirements for Pinhole SPECT”, Journal of Nuclear Medicine Technology, 34(1): 43-47, Mar. 2006. |
Smither “High Resolution Medical Imaging System for 3-D Imaging of Radioactive Sources With 1 mm FWHM Spatial Resolution”, Proceedings of the SPIE, Medical Imaging 2003: Physics of Medical Imaging, 5030: 1052-1060, Jun. 9, 2003. |
Tornai et al. “A 3D Gantry Single Photon Emission Tomograph With Hemispherical Coverage for Dedicated Breast Imaging”, Nuclear Instruments & Methods in Physics Research, Section A, 157-167, 2003. |
Response Dated Dec. 8, 2011 to Restriction Official Action of Nov. 8, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479. |
Official Action Dated Dec. 19, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/448,473. |
Official Action Dated Dec. 15, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792. |
Official Action Dated Dec. 20, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479. |
Response Dated Nov. 13, 2011 to Official Action of Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653. |
Response Dated Dec. 29, 2011 to Office Action of Jul. 17, 2007 From the Israeli Patent Office Re.: Application No. 154323. |
Berman et al. “Dual-Isotope Myocardial Perfusion SPECT With Rest Thallium-201 and Stress Tc-99m Sestamibi”, Cardiology Clinics, 12(2): 261-270, May 1994. |
DeGrado et al. “Topics in Integrated Systems Physiology. Tracer Kinetic Modeling in Nuclear Cardiology”, Journal of Nuclear Cardiology, 7: 686-700, 2000. |
Links “Advances in SPECT and PET Imaging”, Annals in Nuclear Medical Science, 13(2): 107-120, Jun. 2000. |
Notice of Allowance Dated Dec. 26, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690. |
Official Action Dated Dec. 28, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792. |
Charland et al. “The Use of Deconvolution and Total Least Squares in Recovering A Radiation Detector Linc Spread Function”, Medical Physics, 25(2): 152-160, Feb. 1998. Abstract Only!. |
Applicant-Initiated Interview Summary Dated Jan. 28, 2013 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017. |
Official Action Dated Feb. 7, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653. |
Notice of Allowance Dated Feb. 2, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/628,074. |
Official Action Dated Jan. 19, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793. |
Official Action Dated Jan. 23, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150. |
Jin et al. “Reconstruction of Cardiac-Gated Dynamic SPECT Images”, IEEE International Conference on Image Processing 2005, ICIP 2005, Sep. 11-14, 2005, 3: 1-4, 2005. |
Toennies et al. “Scatter Segmentation in Dynamic SPECT Images Using Principal Component Analysis”, Progress in Biomedical Optics and Imaging, 4(23): 507-516, 2003. |
Advisory Action Before the Filing of an Appeal Brief Dated Feb. 26, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785. |
Notice of Allowance Dated Feb. 21, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017. |
Communication Under Rule 71(3) EPC Dated Feb. 26, 2013 From the European Patent Office Re. Application No. 06756259.5. |
Official Action Dated Feb. 22, 2013 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307. |
Notice of Panel Decision From Pre-Appeal Brief Review Dated Feb. 29, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223. |
Official Action Dated Mar. 1, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307. |
Official Action Dated Dec. 22, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785. |
Official Action Dated Feb. 28, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973. |
Official Action Dated Mar. 6, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/792,856. |
Restriction Official Action Dated Mar. 9, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/976,852. |
Office Action Dated Jul. 17, 2007 From the Israeli Patent Office Re.: Application No. 154323 and Its Translation Into English. |
Notice of Allowance Dated Mar. 14, 2013 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017. |
Official Action Dated Mar. 11, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 13/345,719. |
Studen “Compton Camera With Position-Sensitive Silicon Detectors”, Doctoral Thesis, University of Ljubljana, Faculty of Mathematics and Physics, 36 P. |
Applicant-Initiated Interview Summary Dated May 1, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/343,792. |
Applicant-Initiated Interview Summary Dated May 1, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653. |
Advisory Action before the Filing of an Appeal Brief Dated May 21, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653. |
Applicant-Initiated Interview Summary Dated May 9, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/448,473. |
Advisory Action Before the Filing of an Appeal Brief Dated Feb. 26, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223. |
Official Action Dated Nov. 30, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223. |
Advisory Action Before the Filing of an Appeal Brief Dated Jul. 12, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793. |
Communication Pursuant to Article 94(3) EPC Dated Jun. 11, 2012 From the European Patent Office Re.: Application No. 06756259.5. |
Communication Pursuant to Article 94(3) EPC Dated Sep. 23, 2011 From the European Patent Office Re.: Application No. 06832278.3. |
Communication Pursuant to Article 94(3) EPC Dated May 29, 2012 From the European Patent Office Re. Application No. 05803689.8. |
Communication Under Rule 71(3) EPC Dated May 30, 2012 From the European Patent Office Re.: Application No. 02716285.8. |
International Preliminary Report on Patentability Dated Apr. 7, 2009 From the International Bureau of WIPO Re. Application No. PCT/IL2007/000918. |
International Preliminary Report on Patentability Dated Jan. 13, 2009 From the International Bureau of WIPO Re. Application No. PCT/IL2006/000834. |
International Preliminary Report on Patentability Dated May 14, 2008 From the International Bureau of WIPO Re. Application No. PCT/IL2006/001291. |
International Preliminary Report on Patentability Dated May 15, 2007 From the International Bureau of WIPO Re. Application No. PCT/IL2005/001173. |
International Search Report Dated Jul. 1, 2008 From the International Searching Authority Re. Application No. PCT/IL2006/000834. |
International Search Report Dated Jul. 2, 2007 From the International Searching Authority Re. Application No. PCT/IL2006/001291. |
International Search Report Dated Aug. 3, 2006 From the International Searching Authority Re. Application No. PCT/IL2005/001173. |
International Search Report Dated Oct. 15, 2008 From the International Searching Authority Re. Application No. PCT/2007/000918. |
Notice of Allowance Dated Feb. 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/728,383. |
Official Action Dated Aug. 2, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150. |
Official Action Dated Oct. 7, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/750,057. |
Official Action Dated Oct. 7, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/932,872. |
Official Action Dated Aug. 13, 2008 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/769,826. |
Official Action Dated Apr. 16, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223. |
Official Action Dated Feb. 16, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/747,378. |
Official Action Dated May 18, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223. |
Official Action Dated May 18, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785. |
Official Action Dated Apr. 19, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/750,057. |
Official Action Dated Jun. 21, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479. |
Official Action Dated Apr. 23, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/932,987. |
Official Action Dated Jul. 30, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683. |
Response Dated Apr. 7, 2009 to Official Action of Oct. 7, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301. |
Restriction Official Action Dated Apr. 13, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223. |
Restriction Official Action Dated Aug. 16, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/448,473. |
Written Opinion Dated Nov. 1, 2007 from the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00840. |
Written Opinion Dated Jul. 11, 2008 from the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/01511. |
Berman et al. “Dual-Isotope Myocardial Perfusion SPECT With Rest Thallium-201 and Stress Tc-99m Sestamibi”, Nuclear Cardiology, 12(2): 261-270, May 1994. |
Bowsher et al. “Treatment of Compton Scattering in Maximum-Likelihood, Expectation-Maximization Reconstructions of SPECT Images”, Journal of Nuclear Medicine, 32(6): 1285-1291, 1991. |
Bracco Diagnostics “Cardiotec®: Kit for the Preparation of Technetium Tc 99m Teboroxime. For Diagnostic Use”, Bracco Diagnostics Inc., Product Sheet, 2 P., Jul. 2003. |
Bracco Diagnostics “Techneplex®: Kit for the Preparation of Technetium Tc 99m Pentetate Injection. Diagnostic—for Intravenous Use”, Bracco Diagnostics™, Product Sheet, 5 P., Jun. 1995. |
Chengazi et al. “Imaging Prostate Cancer With Technetium-99m-7E11-C5.3 (CYT-351)”, Journal of Nuclear Medicine, 38: 675-682, 1997. |
Dewaraja et al. “Accurate Dosimetry in 131I Radionuclide Therapy Using Patient-Specific, 3-Dimensional Methods for SPECT Reconstruction and Basorbed Dose Calculation”, The Journal of Nuclear Medicine, 46(5): 840-849, May 2005. |
Dillman “Radiolabeled Anti-CD20 Monoclonal Antibodies for the Treatment of B-Cell Lymphoma”, Journal of Clinical Oncology, 20(16): 3545-3557, Aug. 15, 2002. |
GE Healthcare “Myoview™: Kit for the Preparation of Technetium Tc99m Tetrofosmin for Injection. Diagnostic Radiopharmaceutical. For Intravenous Use Only. Rx Only”, GE Healthcare, Product Sheet, 4 P., Aug. 2006. |
Gilland et al. “Long Focal Length, Asymmetric Fan Beam Collimation for Transmission Acquisition With a Triple Camera SPECT System”, IEEE Transactions on Nuclear Science, XP011087666, 44(3): 1191-1196, Jun. 1, 1997. |
Handrick et al. “Evaluation of Binning Strategies for Tissue Classification in Computed Tomography Images”, Medical Imaging 2006: Image Processing, Proceedings of the SPIE, 6144: 1476-1486, 2006. |
Mallinckrodt “Kit for the Preparation of Technetium Tc 99m Sestamibi Injection”, Mallinckrodt Inc., Product Sheet, 2 P., Sep. 8, 2008. |
Mallinckrodt “OctreoScan®: Kit for the Preparation of Indium In-111 Pentetreotide. Diagnostic—for Intravenous Use. Rx Only”, Mallinckrodt Inc., Product Sheet, 2 P., Oct. 25, 2006. |
Pharmalucence “Kit for the Preparation of Technetium Tc99m Sulfur Colloid Injection for Subcutaneous, Intraperitoneal, Intravenous, and Oral Use”, Pharmalucence Inc., Reference ID: 2977567, Prescribing Information, 10 P., Jul. 2011. |
Saltz et al. “Interim Report of Randomized Phase II Trial of Cetuximab/Bevacizumab/Irinotecan (CBI) Versus Cetuximab/Bevacizumab (CB) in Irinotecan-Refractory Colorectal Cancer”, Gastrointestinal Cancer Symposium, Hollywood, FL, USA, Jan. 27-29, 2005, American Society of Clinical Oncology, Abstract 169b, 4P., 2005. |
Sands et al. “Methods for the Study of the Metabolism of Radiolabeled Monoclonal Antibodies by Liver and Tumor”, The Journal of Nuclear Medicine, 28: 390-398, 1987. |
Thorndyke et al. “Reducing Respiratory Motion Artifacts in Positron Emission Tomography Through Retrospective Stacking”, Medical Physics, 33(7): 2632-2641, Jul. 2006. |
Trikha et al. “Monoclonal Antibodies as Therapeutics in Oncology”, Current Opinion in Biotechnology, 13: 609-614, 2002. |
Volkow et al. “Imaging the Living Human Brain: Magnetic Resonance Imaging and Positron Emission Tomography”, Proc. Natl. Acad. Sci. USA, 94: 2787-2788, Apr. 1997. |
Official Action Dated Aug. 31, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653. |
Communication Pursuant to Article 94(3) EPC Dated Sep. 22, 2011 From the European Patent Office Re. Application No. 06756258.7. |
Notice of Allowance Dated Sep. 16, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075. |
Official Action Dated Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653. |
Official Action Dated Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150. |
Official Action Dated Sep. 13, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/976,852. |
Response Dated Sep. 12, 2011 to Official Action of Jul. 11, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683. |
Response Dated Sep. 20, 2011 to Official Action of Apr. 20, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017. |
Ellestad “Stress Testing: Principles and Practice”, XP008143015, 5th Edition, p. 432, Jan. 1, 2003. |
Gilland et al. “Long Focal Length, Asymmetric Fan Beam Collimation for Transmission Acquisition With A Triple Camera SPECT System”, IEEE Transactions on Nuclear Science, XP01107666, 44(3): 1191-1196, Jun. 1, 1997. |
Meyers et al. “Age, Perfusion Test Results and Dipyridamole Reaction”, Radiologic Technology, XP008142909, 73(5): 409-414, May 1, 2002. |
Zhang et al. “Potential of a Compton Camera for High Performance Scintimammography”, Physics in Medicine and Biology, XP020024019, 49(4): 617-638, Feb. 21, 2004. |
Communication Pursuant to Article 94(3) EPC Dated Sep. 17, 2012 From the European Patent Office Re. Application No. 06832278.3. |
Ouyang et al. “Incorporation of Correlated Structural Images in PET Image Reconstruction”, IEEE Transactions of Medical Imaging, 13(4): 627-640, Dec. 1994. |
Cancer Medicine “Radiolabeled Monoclonal Antibodies. Historical Perspective”, Cancer Medicine, 5th Ed., Sec.16: Principles of Biotherapeutics, Chap.65: Monoclonal Serotherapy, 2000. |
Lange et al. “EM Reconstruction Algorithms for Emission and Transmission Tomography”, Journal of Computer Assisted Tomography, 8(2): 306-316, Apr. 1984. |
Ohrvall et al. “Intraoperative Gamma Detection Reveals Abdominal Endocrine Tumors More Efficiently Than Somatostatin Receptor Scintigraphy”, 6th Conference on Radioimmunodetection and Radioimmunotherapy of Cancer, Cancer, 80: 2490-2494, 1997. |
Rockmore et al. “A Maximum Likelihood Approach to Emission Image Reconstruction From Projections”, IEEE Transactions on Nuclear Science, 23(4): 1428-1432, Aug. 1976. |
Shepp el al. “Maximum Likelihood Reconstruction for Emission Tomography”, IEEE Transactions on Medical Imagaing, MI-1: 113-122, Oct. 1982. |
Sitek et al. “Reconstruction of Dynamic Renal Tomographic Data Acquired by Slow Rotation”, The Journal of Nuclear Medicine, 42(11): 1704-1712, Nov. 2001. |
Solanki “The Use of Automation in Radiopharmacy”, Hospital Pharmacist, 7(4): 94-98, Apr. 2000. |
Weldon et al. “Quantification of Inflammatory Bowel Disease Activity Using Technetium-99m HMPAO Labelled Leucocyte Single Photon Emission Computerised Tomography (SPECT)”, Gut, 36: 243-250, 1995. |
Response Dated Oct. 14, 2011 to Supplementary European Search Report and the European Search Opinion of Mar. 16, 2011 From the European Patent Office Re. Application No. 05803689.8. |
Official Action Dated Oct. 11, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/976,852. |
Official Action Dated Oct. 26, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223. |
Supplemental Notice of Allowability Dated Oct. 24, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075. |
Official Action Dated Oct. 10, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017. |
Communication Pursuant to Article 94(3) EPC Dated Oct. 26, 2012 From the European Patent Office Re. Application No. 05803689.8. |
Notice of Allowance Dated Oct. 11, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/988,926. |
Response Dated Oct. 14, 2011 to Communication Pursuant to Rules 70(2) and 70a(2) EPC of Apr. 4, 2011 From the European Patent Office Re. Application No. 05803689.8. |
Restriction Official Action Dated Nov. 8, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479. |
Communication Pursuant to Article 94(3) EPC Dated Nov. 12, 2012 From the European Patent Office Re. Application No. 06756258.7. |
Notice of Allowance Dated Nov. 15, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683. |
Response Dated Nov. 14, 2011 to Official Action of Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150. |
Response Dated Oct. 24, 2011 to Official Action of May 23, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793. |
Restriction Official Action Nov. 15, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,683. |
Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC Dated Nov. 29, 2012 From the European Patent Office Re. Application No. 06756259.5. |
Communication Pursuant to Article 94(3) EPC Dated Nov. 18, 2011 From the European Patent Office Re. Application No. 05803689.8. |
Response Dated Nov. 14, 2011 to Official Action of Jul. 12, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973. |
Response Dated Nov. 23, 2011 to Official Action of May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307. |
Response Dated Nov. 23, 2011 to Official Action of May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690. |
Response Dated Nov. 28, 2011 to Official Action of Jun. 28, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/628,074. |
Supplementary European Search Report and the European Search Opinion Dated Nov. 13, 2012 From the European Patent Office Re. Application No. 06728347.3. |
Notice of Allowance Dated Oct. 26, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785. |
Official Action Dated Nov. 30, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785. |
Notice of Allowance Dated Jun. 21, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653. |
Notice of Allowance Dated Jun. 14, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,307. |
Official Action Dated Jun. 12, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150. |
Bacharach et al. “Attenuation Correction in Cardiac Positron Emission Tomography and Single-Photon Emission Computed Tomography”, Journal of Nuclear Cardiology, 2(3): 246-255, 1995. |
Uni Magdeburg “Attenuation Map”, University of Magdeburg, Germany, Retrieved From the Internet, Archived on Jul. 31, 2002. |
Zaidi et al. “Determination of the Attenuation Map in Emission Tomography”, Journal of Nuclear Medicine, 44(2): 291-315, 2003. |
Notice of Allowance Dated Jul. 19, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223. |
Notice of Allowance Dated Jul. 25, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 13/345,719. |
Official Action Dated Jul. 30, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/343,792. |
Official Action Dated Jul. 31, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793. |
Official Action Dated Sep. 5, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 13/947,198. |
Communication Pursuant to Article 94(3) EPC Dated Sep. 16, 2013 From the European Patent Office Re.: Application No. 06832278.3. |
Official Action Dated Aug. 5, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479. |
Official Action Dated Aug. 14, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/448,473. |
Berman et al. “D-SPECT: A Novel Camera for High Speed Quantitative Molecular Imaging: Initial Clinical Results”, The Journal of Nuclear Medicine, 47(Suppl.1): 131P, 2006. |
Berman et al. “Myocardial Perfusion Imaging With Technetium-99m-Sestamibi: Comparative Analysis of Available Imaging Protocols”, The Journal of Nuclear Medicine, 35: 681-688, 1994. |
Borges-Neto et al. “Perfusion and Function at Rest and Treadmill Exercise Using Technectium-99m-Sestamibi: Comparison of One- and Two-Day Protocols in Normal Volunteers”, The Journal of Nuclear Medicine, 31(7): 1128-1132, Jul. 1990. |
Kwok et al. “Feasability of Simultaneous Dual-Isotope Myocardial Perfusion Acquisition Using a Lower Dose of Sestamibi”, European Journal of Nuclear Medicine, 24(3): 281-285, Mar. 1997. |
Patton et al. “D-SPECT: A New Solid State Camera for High Speed Molecular Imaging”, The Journal of Nuclear Medicine, 47(Suppl.1): 189P, 2006. |
Communication Pursuant to Article 94(3) EPC Dated 25 Nov. 2013 From the European Patent Office Re. Application No. 06756258.7. |
Notice of Allowance Dated Dec. 17, 2013 From the US Patent and Trademark Office U.S. Appl. No. 13/913,804. |
Official Action Dated Nov. 15, 2013 From the US Patent and Trademark Office U.S. Appl. No. 13/345,773. |
Official Action Dated Dec. 16, 2013 From the US Patent and Trademark Office U.S. Appl. No. 12/087,150. |
Number | Date | Country | |
---|---|---|---|
20070194241 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60535830 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11034007 | Jan 2005 | US |
Child | 11656548 | US |