This application is related to co-pending applications, U.S. patent application Ser. No. 15/003,590, filed Jan. 21, 2016, and International Patent Application No. PCT/US2016/014336, filed Jan. 21, 2016. The contents of these applications are incorporated herein by reference in their entireties.
The present disclosure generally relates to magnetic detection systems, and more particularly, to measurement collection schemes for a magnetic detection system.
A number of industrial applications including, but not limited to, medical devices, communication devices, and navigation systems, as well as scientific areas such as physics and chemistry can benefit from magnetic detection and imaging. Many advanced magnetic imaging systems can operate in limited conditions, for example, high vacuum and/or cryogenic temperatures, which can make them inapplicable for imaging applications that require ambient conditions. Furthermore, small size, weight and power (SWAP) magnetic sensors of moderate sensitivity, vector accuracy, and bandwidth are valuable in many applications.
Atomic-sized nitrogen-vacancy (NV) centers in diamond have been shown to have excellent sensitivity for magnetic field measurement and enable fabrication of small magnetic sensors that can readily replace existing-technology (e.g., Hall-effect) systems and devices. The sensing capabilities of diamond NV (DNV) sensors are maintained at room temperature and atmospheric pressure, and these sensors can be even used in liquid environments (e.g., for biological imaging). DNV sensing allows measurement of 3-D vector magnetic fields that is beneficial across a very broad range of applications, including communications, geological sensing, navigation, and attitude determination.
According to some embodiments, a system for magnetic detection may include a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, a magnetic field generator configured to generate a magnetic field applied to the NV diamond material, and a controller. The controller may be configured to control the optical excitation source to apply optical excitation to the NV diamond material, control the RF excitation source to apply a first RF excitation to the NV diamond material, the first RF excitation having a first frequency, and control the RF excitation source to apply a second RF excitation to the NV diamond material, the second RF excitation having a second frequency. The first frequency may be a frequency associated with a first slope point of a fluorescence intensity response of an NV center orientation of a first spin state due to the optical excitation, the first slope point being a positive slope point, and the second frequency may be a frequency associated with a second slope point of the fluorescence intensity response of the NV center orientation of the first spin state due to the optical excitation, the second slope point being a negative slope point.
In some aspects, the controller may be configured to control the RF excitation source to alternately apply the first RF excitation as a single RF pulse and apply the second RF excitation as a single RF pulse.
In some aspects, the controller may be configured to control the RF excitation source to alternately apply the first RF excitation as two or more RF pulses in sequence and apply the second RF excitation as two or more RF pulses in sequence.
In some aspects, the controller may be configured to measure a first fluorescence intensity based on an average of a fluorescence intensity associated with each of the two or more RF pulses of the first RF excitation and measure a second fluorescence intensity based on an average of a fluorescence intensity associated with each of the two or more RF pulses of the second RF excitation.
In some aspects, the controller may be configured to control the RF excitation source to alternately apply the first RF excitation as three or more RF pulses in sequence and apply the second RF excitation as three or more RF pulses in sequence, measure a first fluorescence intensity based on an average of a fluorescence intensity associated with each of two or more RF pulses of the three or more RF pulses of the first RF excitation, measure a second fluorescence intensity based on an average of a fluorescence intensity associated with each of two or more RF pulses of the three or more RF pulses of the second RF excitation.
In some aspects, the two or more RF pulses of the first RF excitation may be applied last in the sequence of the three or more pulses, and wherein the two or more RF pulses of the second RF excitation are applied last in the sequence of the three or more pulses.
In some aspects, the positive slope point may be a maximum positive slope point of the fluorescence intensity response of the NV center orientation of the first spin state and the negative slope point may be a maximum negative slope point of the fluorescence intensity response of the NV center orientation of the first spin state.
In some aspects, the positive slope point and the negative slope point may be set as an average of a maximum positive slope point and a maximum negative slope point of the fluorescence intensity response of the NV center orientation of the first spin state due to the optical excitation.
In some aspects, the controller may be configured to measure a first fluorescence intensity at the positive slope point, measure a second fluorescence intensity at the negative slope point, and calculate a compensated fluorescence intensity based on a difference between the measured first fluorescence intensity and the measured second fluorescence intensity divided by a difference between the slope of the positive slope point and the slope of the negative slope point.
In some aspects, the controller may be configured to control the RF excitation source to apply a third RF excitation to the NV diamond material, the third RF excitation having a third frequency. The third frequency may be a frequency associated with a third slope point of the fluorescence intensity response of the NV center orientation of a second spin state due to the optical excitation.
In some aspects, the third slope point may be a positive slope point.
In some aspects, the third slope point may be a negative slope point.
According to some embodiments, a system for magnetic detection may include a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, a magnetic field generator configured to generate a magnetic field applied to the NV diamond material, and a controller. The controller may be configured to control the optical excitation source to apply optical excitation to the NV diamond material, control the RF excitation source to apply a first RF excitation to the NV diamond material, the first RF excitation having a first frequency, and control the RF excitation source to apply a second RF excitation to the NV diamond material, the second RF excitation having a second frequency. The first frequency may be a frequency associated with a first slope point of a fluorescence intensity response of an NV center orientation of a first spin state due to the optical excitation, and the second frequency may be a frequency associated with a second slope point of the fluorescence intensity response of the NV center orientation of a second spin state due to the optical excitation.
In some aspects, the first slope point may be a positive slope point.
In some aspects, the second slope point may be a negative slope point.
In some aspects, the first slope point may be a negative slope point.
In some aspects, the second slope point may be a negative slope point.
In some aspects, the controller may be configured to control the RF excitation source to alternately apply the first RF excitation as two or more RF pulses in sequence and apply the second RF excitation as two or more RF pulses in sequence.
In some aspects, the controller may be configured to measure a first fluorescence intensity based on an average of a fluorescence intensity associated with each of the two or more RF pulses of the first RF excitation and measure a second fluorescence intensity based on an average of a fluorescence intensity associated with each of the two or more RF pulses of the second RF excitation.
In some aspects, the controller may be configured to control the RF excitation source to alternately apply the first RF excitation as three or more RF pulses in sequence and apply the second RF excitation as three or more RF pulses in sequence, measure a first fluorescence intensity based on an average of a fluorescence intensity associated with each of two or more RF pulses of the three or more RF pulses of the first RF excitation, and measure a second fluorescence intensity based on an average of a fluorescence intensity associated with each of two or more RF pulses of the three or more RF pulses of the second RF excitation.
In some aspects, the two or more RF pulses of the first RF excitation may be applied last in the sequence of the three or more pulses, and wherein the two or more RF pulses of the second RF excitation are applied last in the sequence of the three or more pulses.
In some aspects, the controller may be configured to control the RF excitation source to apply a third RF excitation to the NV diamond material, the third RF excitation having a third frequency, and control the RF excitation source to apply a fourth RF excitation to the NV diamond material, the fourth RF excitation having a fourth frequency. The third frequency may be a frequency associated with a third slope point of the fluorescence intensity response of the NV center orientation of the first spin state due to the optical excitation, and the fourth frequency may be a frequency associated with a fourth slope point of the fluorescence intensity response of the NV center orientation of the second spin state due to the optical excitation.
According to some embodiments, a method for compensating for drift error in a magnetic detection system may include applying optical excitation to a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, applying a first RF excitation to the NV diamond material, the first RF excitation having a first frequency, applying a second RF excitation to the NV diamond material, the second RF excitation having a second frequency, applying a third RF excitation to the NV diamond material, the third RF excitation having a third frequency, and applying a fourth RF excitation to the NV diamond material, the third RF excitation having a fourth frequency. The first frequency may be a frequency associated with a first slope point of a fluorescence intensity response of an NV center orientation of a first spin state due to the optical excitation, the first slope point being a positive slope point. The second frequency may be a frequency associated with a second slope point of the fluorescence intensity response of the NV center orientation of the first spin state due to the optical excitation, the second slope point being a negative slope point. The third frequency may be a frequency associated with a third slope point of the fluorescence intensity response of the NV center orientation of a second spin state due to the optical excitation. The fourth frequency may be a frequency associated with a fourth slope point of the fluorescence intensity response of the NV center orientation of the second spin state due to the optical excitation.
In some aspects, the method may further include applying each of the steps to each of four NV center orientations of the NV diamond material.
According to some embodiments, a system for magnetic detection may include a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, a magnetic field generator configured to generate a magnetic field applied to the NV diamond material, a means for controlling the optical excitation source to apply optical excitation to the NV diamond material, controlling the RF excitation source to apply a first RF excitation to the NV diamond material, the first RF excitation having a first frequency, and controlling the RF excitation source to apply a second RF excitation to the NV diamond material, the second RF excitation having a second frequency. The first frequency may be a frequency associated with a first slope point of a fluorescence intensity response of an NV center orientation of a first spin state due to the optical excitation, the first slope point being a positive slope point, and the second frequency may be a frequency associated with a second slope point of the fluorescence intensity response of the NV center orientation of the first spin state due to the optical excitation, the second slope point being a negative slope point.
Measurement errors due to vertical and horizontal fluctuations in fluorescence intensity caused by internal and external effects of the system (e.g., optical excitation, thermal and/or strain effects) may be addressed in a magnetic detection system including multi-RF excitation. Fluorescence intensity measurements may be obtained at resonant frequencies associated with the positive and negative maximum (including greatest and near greatest) slope points of a response curve of an NV center orientation and spin state (ms=+1) to account for vertical drift error. In addition, fluorescence intensity measurements may be obtained at resonant frequencies associated with the positive and/or negative maximum (including greatest and near greatest) slope points of the response curves of an NV center orientation at both spin states (ms=+1 and ms=−1) to account for horizontal drift error. By compensating for such errors, the system may realize increased sensitivity and stability when calculating an external magnetic field acting on the system. In certain embodiments, guard intervals, in the form of multi-pulse sets of RF excitation at a given resonant frequency, and/or guard pulses, in the form of initial pulses used to stabilize the system without providing measurement data, may also be utilized during the collection process to allow for sufficient repolarization of the system when switching between resonant frequencies. Such guard intervals and/or guard pulses may ensure that residual effects due to previous measurement collections are reduced or eliminated. Among other things, this allows the system to forego the use of high-powered optical excitation for repolarization, thus improving sensor performance and cost.
The NV Center, its Electronic Structure, and Optical and RF Interaction
The NV center in a diamond comprises a substitutional nitrogen atom in a lattice site adjacent a carbon vacancy as shown in
The NV center may exist in a neutral charge state or a negative charge state. The neutral charge state uses the nomenclature NV0, while the negative charge state uses the nomenclature NV.
The NV center has a number of electrons, including three unpaired electrons, each one from the vacancy to a respective of the three carbon atoms adjacent to the vacancy, and a pair of electrons between the nitrogen and the vacancy. The NV center, which is in the negatively charged state, also includes an extra electron.
The NV center has rotational symmetry, and as shown in
Introducing an external magnetic field with a component along the NV axis lifts the degeneracy of the ms=±1 energy levels, splitting the energy levels ms=±1 by an amount 2gμBBz, where g is the g-factor, μB is the Bohr magneton, and Bz is the component of the external magnetic field along the NV axis. This relationship is correct to a first order and inclusion of higher order corrections is a straightforward matter and will not materially affect the computational and logic steps.
The NV center electronic structure further includes an excited triplet state 3E with corresponding ms=0 and ms=±1 spin states. The optical transitions between the ground state 3A2 and the excited triplet 3E are predominantly spin conserving, meaning that the optical transitions are between initial and final states that have the same spin. For a direct transition between the excited triplet 3E and the ground state 3A2, a photon of red light is emitted with a photon energy corresponding to the energy difference between the energy levels of the transitions.
An alternative non-radiative decay route from the triplet 3E to the ground state 3A2 via intermediate electron states exists, in which the intermediate states are thought to be intermediate singlet states A, E with intermediate energy levels. The transition rate from the ms=±1 spin states of the excited triplet 3E to the intermediate energy levels is significantly greater than the transition rate from the ms=0 spin state of the excited triplet 3E to the intermediate energy levels. The transition from the singlet states A, E to the ground state triplet 3A2 predominantly decays to the ms=0 spin state over the ms=±1 spins states. These features of the decay from the excited triplet 3E state via the intermediate singlet states A, E to the ground state triplet 3A allows that, if optical excitation is provided to the system, the optical excitation will eventually pump the NV center into the ms=0 spin state of the ground state 3A2. In this way, the population of the ms=0 spin state of the ground state 3A2 may be reset to a maximum polarization determined by the decay rates from the triplet 3E to the intermediate singlet states.
Another feature of the decay is that the fluorescence intensity due to optically stimulating the excited triplet 3E state is less for the ms=±1 states than for the ms=0 spin state. This is so because the decay via the intermediate states does not result in a photon emitted in the fluorescence band, and because of the greater probability that the ms=±1 states of the excited triplet 3E state will decay via the non-radiative decay path. The lower fluorescence intensity for the ms=±1 states than for the ms=0 spin state allows the fluorescence intensity to be used to determine the spin state. As the population of the ms=±1 states increases relative to the ms=0 spin, the overall fluorescence intensity will be reduced.
The NV Center, or Magneto-Optical Defect Center, Magnetic Sensor System
The RF excitation source 330 may be a microwave coil, for example. The RF excitation source 330, when emitting RF radiation with a photon energy resonant with the transition energy between ground ms=0 spin state and the ms=+1 spin state, excites a transition between those spin states. For such a resonance, the spin state cycles between ground ms=0 spin state and the ms=+1 spin state, reducing the population in the ms=0 spin state and reducing the overall fluorescence at resonances. Similarly, resonance occurs between the ms=0 spin state and the ms=−1 spin state of the ground state when the photon energy of the RF radiation emitted by the RF excitation source is the difference in energies of the ms=0 spin state and the ms=−1 spin state, or between the ms=0 spin state and the ms=+1 spin state, there is a decrease in the fluorescence intensity.
The optical excitation source 310 may be a laser or a light emitting diode, for example, which emits light in the green, for example. The optical excitation source 310 induces fluorescence in the red, which corresponds to an electronic transition from the excited state to the ground state. Light from the NV diamond material 320 is directed through the optical filter 350 to filter out light in the excitation band (in the green, for example), and to pass light in the red fluorescence band, which in turn is detected by the detector 340. The optical excitation light source 310, in addition to exciting fluorescence in the diamond material 320, also serves to reset the population of the ms=0 spin state of the ground state 3A2 to a maximum polarization, or other desired polarization.
For continuous wave excitation, the optical excitation source 310 continuously pumps the NV centers, and the RF excitation source 330 sweeps across a frequency range that includes the zero splitting (when the ms=±1 spin states have the same energy) photon energy of 2.87 GHz. The fluorescence for an RF sweep corresponding to a diamond material 320 with NV centers aligned along a single direction is shown in
In general, the diamond material 320 will have NV centers aligned along directions of four different orientation classes.
While
The magnetic field generator 670 may generate magnetic fields with orthogonal polarizations, for example. In this regard, the magnetic field generator 670 may include two or more magnetic field generators, such as two or more Helmholtz coils or other magnetic electronic devices. The two or more magnetic field generators may be configured to provide a magnetic field having a predetermined direction, each of which provide a relatively uniform magnetic field at the NV diamond material 620. The predetermined directions may be orthogonal to one another. In addition, the two or more magnetic field generators of the magnetic field generator 670 may be disposed at the same position, or may be separated from each other. In the case that the two or more magnetic field generators are separated from each other, the two or more magnetic field generators may be arranged in an array, such as a one-dimensional or two-dimensional array, for example.
The system 600 may be arranged to include one or more optical detection systems 605, where each of the optical detection systems 605 includes the optical detector 640, optical excitation source 610, and NV diamond material 620. Furthermore, the magnetic field generator 670 may have a relatively high power as compared to the optical detection systems 605. In this way, the optical systems 605 may be deployed in an environment that requires a relatively lower power for the optical systems 605, while the magnetic field generator 670 may be deployed in an environment that has a relatively high power available for the magnetic field generator 670 so as to apply a relatively strong magnetic field.
The system 600 further includes a controller 680 arranged to receive a light detection signal from the optical detector 640 and to control the optical excitation source 610, the RF excitation source 630, and the second magnetic field generator 675. The controller may be a single controller, or multiple controllers. For a controller including multiple controllers, each of the controllers may perform different functions, such as controlling different components of the system 600. The second magnetic field generator 675 may be controlled by the controller 680 via an amplifier 660, for example.
The RF excitation source 630 may be a microwave coil, for example. The RF excitation source 630 is controlled to emit RF radiation with a photon energy resonant with the transition energy between the ground ms=0 spin state and the ms=±1 spin states as discussed above with respect to
The optical excitation source 610 may be a laser or a light emitting diode, for example, which emits light in the green, for example. The optical excitation source 610 induces fluorescence in the red from the NV diamond material 620, where the fluorescence corresponds to an electronic transition from the excited state to the ground state. Light from the NV diamond material 620 is directed through the optical filter 650 to filter out light in the excitation band (in the green, for example), and to pass light in the red fluorescence band, which in turn is detected by the optical detector 640. The optical excitation light source 610, in addition to exciting fluorescence in the NV diamond material 620, also serves to reset the population of the ms=0 spin state of the ground state 3A2 to a maximum polarization, or other desired polarization.
The controller 680 is arranged to receive a light detection signal from the optical detector 640 and to control the optical excitation source 610, the RF excitation source 630, and the second magnetic field generator 675. The controller may include a processor 682 and a memory 684, in order to control the operation of the optical excitation source 610, the RF excitation source 630, and the second magnetic field generator 675. The memory 684, which may include a nontransitory computer readable medium, may store instructions to allow the operation of the optical excitation source 610, the RF excitation source 630, and the second magnetic field generator 675 to be controlled. That is, the controller 680 may be programmed to provide control.
Measurement Collection Process
According to certain embodiments, the controller 680 controls the operation of the optical excitation source 610, the RF excitation source 630, and the magnetic field generator 670 to perform Optically Detected Magnetic Resonance (ODMR). Specifically, the magnetic field generator 670 may be used to apply a bias magnetic field that sufficiently separates the intensity responses for each of the four NV center orientations. The controller 680 then controls the optical excitation source 610 to provide optical excitation to the NV diamond material 620 and the RF excitation source 630 to provide RF excitation to the NV diamond material 620. The resulting fluorescence intensity responses for each of the NV axes are collected over time to determine the components of the external magnetic field Bz aligned along directions of the four NV center orientations of the NV diamond material 620, which may then be used to calculate the estimated vector magnetic field acting on the system 600. The excitation scheme utilized during the measurement collection process (i.e., the applied optical excitation and the applied RF excitation) may be any appropriate excitation scheme. For example, the excitation scheme may utilize continuous wave (CW) magnetometry, pulsed magnetometry, and variations on CW and pulsed magnetometry (e.g., pulsed RF excitation with CW optical excitation). In cases where Ramsey pulse RF sequences are used, pulse parameters π and τ may be optimized using Rabi analysis and FID-Tau sweeps prior to the collection process, as described in, for example, U.S. patent application Ser. No. 15/003,590.
During the measurement collection process, fluctuations may occur in the measured intensity response due to effects caused by components of the system 600, rather than due to true changes in the external magnetic field. For example, prolonged optical excitation of the NV diamond material by the optical excitation source 610 may cause vertical (e.g., red photoluminescence intensity) fluctuations, or vertical drift, in the intensity response, causing the response curve to shift upward or downward over time. In addition, thermal effects within the system 600 may result in horizontal (e.g., frequency) fluctuations, or horizontal drift, in the measured intensity response, causing the response curve to translate left or right over time.
In some systems, the excitation scheme is configured such that the measurement collection process occurs at a single resonant frequency associated with a given spin state (e.g., ms=+1) of an NV center orientation. This resonant frequency may be either the frequency associated with the positive maximum slope point or the frequency associated with the negative maximum slope point of the response curve. Intensity response changes that occur at the particular frequency are tracked and used to determine changes in the external magnetic field Bz. However, because these measurement techniques utilize data at only a single point of the response curve (e.g., the positive maximum slope point or the negative maximum slope point), it can be difficult to account for those changes in the intensity response that are not due to the external magnetic field Bz, but are rather due to internal or external system effects. For example, when only a single RF frequency is tracked for measurement purposes, vertical drift due to prolonged optical excitation and horizontal drift due to thermal effects may be perceived as changes in the external magnetic field Bz, thus introducing error into the estimated vector magnetic field. Thus, compensation for these internal errors during the measurement collection process is desirable to maximize sensitivity and stability of the magnetic detection system 600.
Vertical Drift and Horizontal Drift Error Compensation
To compensate for vertical drift error, data is collected on both the positive maximum slope point 12A and the negative maximum slope point 12B during a collection process for a given magnetometry response curve. In some embodiments, however, data may be collected on a positive slope point 12A and a negative slope point 12B that is the average between the positive maximum slope and the negative maximum slope for a given response curve to allow for faster switching between relative frequencies during measurement collection.
By collecting data on both the positive slope point 12A and the negative slope point 12B for a response curve, changes due to vertical drift may be detected and accounted for during the external magnetic field calculation process. For example, if a shift in the response curve is due to a true change in the external magnetic field, the intensity response associated with the slope point 12A and the intensity response associated with the slope point 12B should shift in opposite directions (e.g., the intensity response associated with the slope point 12A increases, while the intensity response associated with the slope point 12B decreases, or vice versa). On the other hand, if a shift in the response curve is due to internal system factors that may cause vertical fluctuations, the intensity response associated with the slope points 12A, 12B should shift in equal directions (e.g., the intensity responses for slope points 12A, 12B both increase). Thus, by determining the relative shift in intensity response of slope points 12A, 12B of the response curve, error due to vertical drift may be detected. The resulting intensity measurements of the positive slope point 12A and the negative slope point 12B are then subtracted and divided by the difference of the slopes 12A, 12B (i.e., positive slope 12A−negative slope 12B≈2*positive slope 12A), allowing for compensation of vertical fluctuations associated with vertical drift. In some embodiments, the vertical compensation process provides similar sensitivity as compared to a single RF frequency data collection process, described above, but reduces the bandwidth of the collection process by a factor of two.
In certain embodiments, the measurement collection process may include both vertical drift error compensation and horizontal drift error compensation by switching between frequencies associated with the positive and negative slopes of a response curve for the first spin state and a frequency associated with a slope point of a response curve for the second spin state of an NV center orientation, allowing for magnetometry calculations that account for both vertical drift and horizontal drift due to internal components of the system 600. In addition, while processing for the compensation of vertical drift and/or horizontal drift may occur at the relative fluorescence intensity level, as described above, error due to both effects may be compensated during processing associated with the external magnetic field Bz estimation.
Measurement Collection Schemes
When switching between frequencies of a given NV center orientation and/or spin state, fluorescence dimming from a previous frequency may impact the measurement data collected on a subsequent frequency. Optical excitation power is often increased to reduce the time required to allow the system to repolarize to mitigate this effect. However, such a solution increases costs in terms of sensor SWAP, RF power, thermal stability, sensor complexity, and achievable sensitivity. As such, to ensure sufficient repolarization of the system 600 when shifting measurement collection to a different frequency without significantly increasing the costs associated with the system 600, guard intervals and/or guard pulses may be utilized during the measurement collection process, as shown in
In certain embodiments, to further reduce the impact of residual noise, longer data collection intervals may be used, such as the measurement collection scheme shown in
While five pulses are shown for each data collection interval in
In some cases, the need for guard intervals and/or guard pulses to ensure sufficient repolarization of the system 600 may be eliminated through the use of two optical light sources, one with a relatively high power to provide reset of spin polarization and another to induce fluorescence for the readout. Such a system is described in U.S. Provisional Patent Application No. 62/343,600, filed May 31, 2016, which is incorporated herein by reference in its entirety.
In addition to guard intervals and/or guard pulses, in cases of RF excitation applied as Ramsey RF pulse sequences, the pulse sequence parameters may be re-optimized (i.e., pulse parameters π and τ) when switching from a response curve associated with one NV center orientation and/or spin state to a response curve associated with another NV center orientation and/or spin state. For example, when switching from a response curve associated with a first spin state of an NV center orientation to a response curve associated with a second spin state of the same NV center orientation, such as during horizontal drift error compensation, the Ramsey pulse sequence parameters may be re-optimized for the response curve associated with the second spin state. By doing so, the fluorescence intensity values and the contrast values may better match between the two response curves, thereby ensuring maximum sensitivity during the measurement collection process.
Some concepts presented herein provide for a magnetic detection system that provides for a multi-RF excitation scheme capable of compensating for measurement errors due to vertical and horizontal fluctuations in fluorescence intensity during the collection process, allowing for increased sensitivity and stability of the detection system. In addition, by utilizing guard intervals (i.e., multi-pulse sets) while switching between frequencies and guard pulses within pulse sets ensures that residual effects due to previous measurement collections are reduced or eliminated. This allows a system to forego the use of high-powered optical excitation for the required repolarization of the system, thus improving sensor performance and cost.
Embodiments have been described in detail with particular reference to preferred embodiments, but it will be understood by those skilled in the art that variations and modifications can be effected within the spirit and scope of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
2746027 | Murray | May 1956 | A |
3359812 | Everitt | Dec 1967 | A |
3389333 | Wolff et al. | Jun 1968 | A |
3490032 | Zurflueh | Jan 1970 | A |
3514723 | Cutler | May 1970 | A |
3518531 | Huggett | Jun 1970 | A |
3621380 | Barlow, Jr. | Nov 1971 | A |
3745452 | Osburn et al. | Jul 1973 | A |
3899758 | Maier et al. | Aug 1975 | A |
4025873 | Chilluffo | May 1977 | A |
4047805 | Sekimura | Sep 1977 | A |
4078247 | Albrecht | Mar 1978 | A |
4084215 | Willenbrock | Apr 1978 | A |
4322769 | Cooper | Mar 1982 | A |
4329173 | Culling | May 1982 | A |
4359673 | Bross et al. | Nov 1982 | A |
4368430 | Dale et al. | Jan 1983 | A |
4410926 | Hafner et al. | Oct 1983 | A |
4437533 | Bierkarre et al. | Mar 1984 | A |
4514083 | Fukuoka | Apr 1985 | A |
4588993 | Babij et al. | May 1986 | A |
4636612 | Cullen | Jan 1987 | A |
4638324 | Hannan | Jan 1987 | A |
4675522 | Arunkumar | Jun 1987 | A |
4768962 | Kupfer et al. | Sep 1988 | A |
4818990 | Fernandes | Apr 1989 | A |
4820986 | Mansfield et al. | Apr 1989 | A |
4945305 | Blood | Jul 1990 | A |
4958328 | Stubblefield | Sep 1990 | A |
4982158 | Nakata et al. | Jan 1991 | A |
5019721 | Martens et al. | May 1991 | A |
5038103 | Scarzello et al. | Aug 1991 | A |
5113136 | Hayashi et al. | May 1992 | A |
5134369 | Lo et al. | Jul 1992 | A |
5189368 | Chase | Feb 1993 | A |
5200855 | Meredith et al. | Apr 1993 | A |
5210650 | O'Brien et al. | May 1993 | A |
5245347 | Bonta et al. | Sep 1993 | A |
5252912 | Merritt et al. | Oct 1993 | A |
5301096 | Klontz et al. | Apr 1994 | A |
5384109 | Klaveness et al. | Jan 1995 | A |
5396802 | Moss | Mar 1995 | A |
5420549 | Prestage | May 1995 | A |
5425179 | Nickel et al. | Jun 1995 | A |
5427915 | Ribi et al. | Jun 1995 | A |
5548279 | Gaines | Aug 1996 | A |
5568516 | Strohallen et al. | Oct 1996 | A |
5586069 | Dockser | Dec 1996 | A |
5597762 | Popovici et al. | Jan 1997 | A |
5638472 | Van Delden | Jun 1997 | A |
5694375 | Woodall | Dec 1997 | A |
5719497 | Veeser et al. | Feb 1998 | A |
5731996 | Gilbert | Mar 1998 | A |
5764061 | Asakawa et al. | Jun 1998 | A |
5818352 | McClure | Oct 1998 | A |
5846708 | Hollis et al. | Dec 1998 | A |
5888925 | Smith et al. | Mar 1999 | A |
5894220 | Wellstood et al. | Apr 1999 | A |
5907420 | Chraplyvy et al. | May 1999 | A |
5907907 | Ohtomo et al. | Jun 1999 | A |
5915061 | Vanoli | Jun 1999 | A |
5995696 | Miyagi et al. | Nov 1999 | A |
6042249 | Spangenberg | Mar 2000 | A |
6057684 | Murakami et al. | May 2000 | A |
6064210 | Sinclair | May 2000 | A |
6121053 | Kolber et al. | Sep 2000 | A |
6124862 | Boyken et al. | Sep 2000 | A |
6130753 | Hopkins et al. | Oct 2000 | A |
6144204 | Sementchenko | Nov 2000 | A |
6195231 | Sedlmayr et al. | Feb 2001 | B1 |
6215303 | Weinstock et al. | Apr 2001 | B1 |
6262574 | Cho et al. | Jul 2001 | B1 |
6360173 | Fullerton | Mar 2002 | B1 |
6398155 | Hepner et al. | Jun 2002 | B1 |
6433944 | Nagao et al. | Aug 2002 | B1 |
6437563 | Simmonds et al. | Aug 2002 | B1 |
6472651 | Ukai | Oct 2002 | B1 |
6472869 | Upschulte et al. | Oct 2002 | B1 |
6504365 | Kitamura | Jan 2003 | B2 |
6518747 | Sager et al. | Feb 2003 | B2 |
6542242 | Yost et al. | Apr 2003 | B1 |
6621377 | Osadchy et al. | Sep 2003 | B2 |
6621578 | Mizoguchi | Sep 2003 | B1 |
6636146 | Wehoski | Oct 2003 | B1 |
6686696 | Mearini et al. | Feb 2004 | B2 |
6690162 | Schopohl et al. | Feb 2004 | B1 |
6765487 | Holmes et al. | Jul 2004 | B1 |
6788722 | Kennedy et al. | Sep 2004 | B1 |
6809829 | Takata et al. | Oct 2004 | B1 |
7118657 | Golovchenko et al. | Oct 2006 | B2 |
7221164 | Barringer | May 2007 | B1 |
7277161 | Claus | Oct 2007 | B2 |
7305869 | Berman et al. | Dec 2007 | B1 |
7307416 | Islam et al. | Dec 2007 | B2 |
7342399 | Wiegert | Mar 2008 | B1 |
RE40343 | Anderson | May 2008 | E |
7400142 | Greelish | Jul 2008 | B2 |
7413011 | Chee et al. | Aug 2008 | B1 |
7427525 | Santori et al. | Sep 2008 | B2 |
7448548 | Compton | Nov 2008 | B1 |
7471805 | Goldberg | Dec 2008 | B2 |
7474090 | Islam et al. | Jan 2009 | B2 |
7543780 | Marshall et al. | Jun 2009 | B1 |
7546000 | Spillane et al. | Jun 2009 | B2 |
7570050 | Sugiura | Aug 2009 | B2 |
7608820 | Berman et al. | Oct 2009 | B1 |
7705599 | Strack et al. | Apr 2010 | B2 |
7741936 | Weller et al. | Jun 2010 | B1 |
7805030 | Bratkovski et al. | Sep 2010 | B2 |
7868702 | Ohnishi | Jan 2011 | B2 |
7889484 | Choi | Feb 2011 | B2 |
7916489 | Okuya | Mar 2011 | B2 |
7932718 | Wiegert | Apr 2011 | B1 |
7983812 | Potter | Jul 2011 | B2 |
8022693 | Meyersweissflog | Sep 2011 | B2 |
8120351 | Rettig et al. | Feb 2012 | B2 |
8120355 | Stetson | Feb 2012 | B1 |
8124296 | Fischel | Feb 2012 | B1 |
8138756 | Barclay et al. | Mar 2012 | B2 |
8193808 | Fu et al. | Jun 2012 | B2 |
8294306 | Kumar et al. | Oct 2012 | B2 |
8310251 | Orazem | Nov 2012 | B2 |
8311767 | Stetson | Nov 2012 | B1 |
8334690 | Kitching et al. | Dec 2012 | B2 |
8415640 | Babinec et al. | Apr 2013 | B2 |
8471137 | Adair et al. | Jun 2013 | B2 |
8480653 | Birchard et al. | Jul 2013 | B2 |
8525516 | Le Prado et al. | Sep 2013 | B2 |
8547090 | Lukin et al. | Oct 2013 | B2 |
8574536 | Boudou et al. | Nov 2013 | B2 |
8575929 | Wiegert | Nov 2013 | B1 |
8686377 | Twitchen et al. | Apr 2014 | B2 |
8704546 | Konstantinov | Apr 2014 | B2 |
8758509 | Twitchen et al. | Jun 2014 | B2 |
8803513 | Hosek et al. | Aug 2014 | B2 |
8854839 | Cheng et al. | Oct 2014 | B2 |
8885301 | Heidmann | Nov 2014 | B1 |
8913900 | Lukin et al. | Dec 2014 | B2 |
8933594 | Kurs | Jan 2015 | B2 |
8947080 | Lukin et al. | Feb 2015 | B2 |
8963488 | Campanella et al. | Feb 2015 | B2 |
9103873 | Martens et al. | Aug 2015 | B1 |
9157859 | Walsworth et al. | Oct 2015 | B2 |
9245551 | El Hallak et al. | Jan 2016 | B2 |
9249526 | Twitchen et al. | Feb 2016 | B2 |
9270387 | Wolfe et al. | Feb 2016 | B2 |
9291508 | Biedermann et al. | Mar 2016 | B1 |
9317811 | Scarsbrook | Apr 2016 | B2 |
9369182 | Kurs et al. | Jun 2016 | B2 |
9442205 | Geiser et al. | Sep 2016 | B2 |
9541610 | Kaup et al. | Jan 2017 | B2 |
9551763 | Hahn et al. | Jan 2017 | B1 |
9557391 | Egan et al. | Jan 2017 | B2 |
9570793 | Borodulin | Feb 2017 | B2 |
9590601 | Krause et al. | Mar 2017 | B2 |
9614589 | Russo et al. | Apr 2017 | B1 |
9632045 | Englund et al. | Apr 2017 | B2 |
9645223 | Megdal et al. | May 2017 | B2 |
9680338 | Malpas et al. | Jun 2017 | B2 |
9689679 | Budker et al. | Jun 2017 | B2 |
9720055 | Hahn et al. | Aug 2017 | B1 |
9778329 | Heidmann | Oct 2017 | B2 |
9779769 | Heidmann | Oct 2017 | B2 |
9891297 | Sushkov et al. | Feb 2018 | B2 |
20020144093 | Inoue et al. | Oct 2002 | A1 |
20020167306 | Zalunardo et al. | Nov 2002 | A1 |
20030058346 | Bechtel et al. | Mar 2003 | A1 |
20030076229 | Blanpain et al. | Apr 2003 | A1 |
20030094942 | Friend et al. | May 2003 | A1 |
20030098455 | Amin et al. | May 2003 | A1 |
20030235136 | Akselrod et al. | Dec 2003 | A1 |
20040013180 | Giannakis et al. | Jan 2004 | A1 |
20040022179 | Giannakis et al. | Feb 2004 | A1 |
20040042150 | Swinbanks et al. | Mar 2004 | A1 |
20040081033 | Arieli et al. | Apr 2004 | A1 |
20040095133 | Nikitin et al. | May 2004 | A1 |
20040109328 | Dahl et al. | Jun 2004 | A1 |
20040247145 | Luo et al. | Dec 2004 | A1 |
20050031840 | Swift et al. | Feb 2005 | A1 |
20050068249 | Frederick du Toit et al. | Mar 2005 | A1 |
20050099177 | Greelish | May 2005 | A1 |
20050112594 | Grossman | May 2005 | A1 |
20050126905 | Golovchenko et al. | Jun 2005 | A1 |
20050130601 | Palermo et al. | Jun 2005 | A1 |
20050134257 | Etherington et al. | Jun 2005 | A1 |
20050138330 | Owens et al. | Jun 2005 | A1 |
20050146327 | Jakab | Jul 2005 | A1 |
20060012385 | Tsao et al. | Jan 2006 | A1 |
20060054789 | Miyamoto et al. | Mar 2006 | A1 |
20060055584 | Waite et al. | Mar 2006 | A1 |
20060062084 | Drew | Mar 2006 | A1 |
20060071709 | Maloberti et al. | Apr 2006 | A1 |
20060245078 | Kawamura | Nov 2006 | A1 |
20060247847 | Carter et al. | Nov 2006 | A1 |
20060255801 | Ikeda | Nov 2006 | A1 |
20060291771 | Braunisch et al. | Dec 2006 | A1 |
20070004371 | Okanobu | Jan 2007 | A1 |
20070120563 | Kawabata et al. | May 2007 | A1 |
20070247147 | Xiang et al. | Oct 2007 | A1 |
20070273877 | Kawano et al. | Nov 2007 | A1 |
20080016677 | Creighton, IV | Jan 2008 | A1 |
20080048640 | Hull et al. | Feb 2008 | A1 |
20080078233 | Larson et al. | Apr 2008 | A1 |
20080089367 | Srinivasan et al. | Apr 2008 | A1 |
20080204004 | Anderson | Aug 2008 | A1 |
20080217516 | Suzuki et al. | Sep 2008 | A1 |
20080239265 | Den Boef | Oct 2008 | A1 |
20080253264 | Nagatomi et al. | Oct 2008 | A1 |
20080265895 | Strack et al. | Oct 2008 | A1 |
20080266050 | Crouse et al. | Oct 2008 | A1 |
20080279047 | An et al. | Nov 2008 | A1 |
20080299904 | Yi et al. | Dec 2008 | A1 |
20090001979 | Kawabata | Jan 2009 | A1 |
20090015262 | Strack et al. | Jan 2009 | A1 |
20090042592 | Cho et al. | Feb 2009 | A1 |
20090058697 | Aas et al. | Mar 2009 | A1 |
20090060790 | Okaguchi et al. | Mar 2009 | A1 |
20090079417 | Mort et al. | Mar 2009 | A1 |
20090079426 | Anderson | Mar 2009 | A1 |
20090132100 | Shibata | May 2009 | A1 |
20090157331 | Van Netten | Jun 2009 | A1 |
20090161264 | Meyersweissflog | Jun 2009 | A1 |
20090195244 | Mouget et al. | Aug 2009 | A1 |
20090222208 | Speck | Sep 2009 | A1 |
20090243616 | Loehken et al. | Oct 2009 | A1 |
20090244857 | Tanaka | Oct 2009 | A1 |
20090277702 | Kanada et al. | Nov 2009 | A1 |
20090310650 | Chester et al. | Dec 2009 | A1 |
20100004802 | Bodin et al. | Jan 2010 | A1 |
20100015438 | Williams et al. | Jan 2010 | A1 |
20100015918 | Liu et al. | Jan 2010 | A1 |
20100045269 | Lafranchise et al. | Feb 2010 | A1 |
20100071904 | Burns et al. | Mar 2010 | A1 |
20100102809 | May | Apr 2010 | A1 |
20100102820 | Martinez et al. | Apr 2010 | A1 |
20100134922 | Yamada et al. | Jun 2010 | A1 |
20100157305 | Henderson | Jun 2010 | A1 |
20100188081 | Lammegger | Jul 2010 | A1 |
20100237149 | Olmstead | Sep 2010 | A1 |
20100271016 | Barclay | Oct 2010 | A1 |
20100271032 | Helwig | Oct 2010 | A1 |
20100277121 | Hall et al. | Nov 2010 | A1 |
20100308813 | Lukin et al. | Dec 2010 | A1 |
20100315079 | Lukin et al. | Dec 2010 | A1 |
20100321117 | Gan | Dec 2010 | A1 |
20100326042 | McLean et al. | Dec 2010 | A1 |
20110031969 | Kitching et al. | Feb 2011 | A1 |
20110034393 | Justen et al. | Feb 2011 | A1 |
20110059704 | Norimatsu et al. | Mar 2011 | A1 |
20110062957 | Fu | Mar 2011 | A1 |
20110062967 | Mohaupt | Mar 2011 | A1 |
20110063957 | Isshiki et al. | Mar 2011 | A1 |
20110066379 | Mes | Mar 2011 | A1 |
20110120890 | MacPherson et al. | May 2011 | A1 |
20110127999 | Lott et al. | Jun 2011 | A1 |
20110165862 | Yu et al. | Jul 2011 | A1 |
20110175604 | Polzer et al. | Jul 2011 | A1 |
20110176563 | Friel et al. | Jul 2011 | A1 |
20110243267 | Won et al. | Oct 2011 | A1 |
20110270078 | Wagenaar et al. | Nov 2011 | A1 |
20110279120 | Sudow et al. | Nov 2011 | A1 |
20110315988 | Yu et al. | Dec 2011 | A1 |
20120016538 | Waite et al. | Jan 2012 | A1 |
20120019242 | Hollenberg et al. | Jan 2012 | A1 |
20120037803 | Strickland | Feb 2012 | A1 |
20120044014 | Stratakos et al. | Feb 2012 | A1 |
20120051996 | Scarsbrook et al. | Mar 2012 | A1 |
20120063505 | Okamura et al. | Mar 2012 | A1 |
20120087449 | Ling et al. | Apr 2012 | A1 |
20120089299 | Breed | Apr 2012 | A1 |
20120140219 | Cleary | Jun 2012 | A1 |
20120181020 | Barron et al. | Jul 2012 | A1 |
20120194068 | Cheng et al. | Aug 2012 | A1 |
20120203086 | Rorabaugh et al. | Aug 2012 | A1 |
20120232838 | Kemppi et al. | Sep 2012 | A1 |
20120235633 | Kesler et al. | Sep 2012 | A1 |
20120235634 | Hall et al. | Sep 2012 | A1 |
20120245885 | Kimishima | Sep 2012 | A1 |
20120257683 | Schwager et al. | Oct 2012 | A1 |
20120281843 | Christensen et al. | Nov 2012 | A1 |
20120326793 | Gan | Dec 2012 | A1 |
20130043863 | Ausserlechner et al. | Feb 2013 | A1 |
20130070252 | Feth | Mar 2013 | A1 |
20130093424 | Blank et al. | Apr 2013 | A1 |
20130107253 | Santori | May 2013 | A1 |
20130127518 | Nakao | May 2013 | A1 |
20130179074 | Haverinen | Jul 2013 | A1 |
20130215712 | Geiser et al. | Aug 2013 | A1 |
20130223805 | Ouyang et al. | Aug 2013 | A1 |
20130265042 | Kawabata et al. | Oct 2013 | A1 |
20130265782 | Barrena et al. | Oct 2013 | A1 |
20130270991 | Twitchen et al. | Oct 2013 | A1 |
20130279319 | Matozaki et al. | Oct 2013 | A1 |
20130292472 | Guha | Nov 2013 | A1 |
20140012505 | Smith et al. | Jan 2014 | A1 |
20140015522 | Widmer et al. | Jan 2014 | A1 |
20140037932 | Twitchen et al. | Feb 2014 | A1 |
20140044208 | Woodsum | Feb 2014 | A1 |
20140061510 | Twitchen et al. | Mar 2014 | A1 |
20140070622 | Keeling et al. | Mar 2014 | A1 |
20140072008 | Faraon et al. | Mar 2014 | A1 |
20140077231 | Twitchen et al. | Mar 2014 | A1 |
20140081592 | Bellusci et al. | Mar 2014 | A1 |
20140104008 | Gan | Apr 2014 | A1 |
20140126334 | Megdal et al. | May 2014 | A1 |
20140139322 | Wang et al. | May 2014 | A1 |
20140153363 | Juhasz et al. | Jun 2014 | A1 |
20140154792 | Moynihan et al. | Jun 2014 | A1 |
20140159652 | Hall et al. | Jun 2014 | A1 |
20140166904 | Walsworth et al. | Jun 2014 | A1 |
20140167759 | Pines et al. | Jun 2014 | A1 |
20140168174 | Idzik et al. | Jun 2014 | A1 |
20140180627 | Naguib et al. | Jun 2014 | A1 |
20140191139 | Englund | Jul 2014 | A1 |
20140191752 | Walsworth et al. | Jul 2014 | A1 |
20140197831 | Walsworth | Jul 2014 | A1 |
20140198463 | Klein | Jul 2014 | A1 |
20140210473 | Campbell et al. | Jul 2014 | A1 |
20140215985 | Pollklas | Aug 2014 | A1 |
20140225606 | Endo et al. | Aug 2014 | A1 |
20140247094 | Englund et al. | Sep 2014 | A1 |
20140264723 | Liang et al. | Sep 2014 | A1 |
20140265555 | Hall et al. | Sep 2014 | A1 |
20140272119 | Kushalappa et al. | Sep 2014 | A1 |
20140273826 | Want et al. | Sep 2014 | A1 |
20140291490 | Hanson et al. | Oct 2014 | A1 |
20140297067 | Malay | Oct 2014 | A1 |
20140306707 | Walsworth et al. | Oct 2014 | A1 |
20140327439 | Cappellaro et al. | Nov 2014 | A1 |
20140335339 | Dhillon et al. | Nov 2014 | A1 |
20140340085 | Cappellaro et al. | Nov 2014 | A1 |
20140368191 | Goroshevskiy et al. | Dec 2014 | A1 |
20150001422 | Englund et al. | Jan 2015 | A1 |
20150009746 | Kucsko et al. | Jan 2015 | A1 |
20150015247 | Goodwill et al. | Jan 2015 | A1 |
20150018018 | Shen et al. | Jan 2015 | A1 |
20150022404 | Chen et al. | Jan 2015 | A1 |
20150048822 | Walsworth et al. | Feb 2015 | A1 |
20150054355 | Ben-Shalom et al. | Feb 2015 | A1 |
20150061590 | Widmer et al. | Mar 2015 | A1 |
20150061670 | Fordham et al. | Mar 2015 | A1 |
20150090033 | Budker | Apr 2015 | A1 |
20150128431 | Kuo | May 2015 | A1 |
20150137793 | Englund et al. | May 2015 | A1 |
20150153151 | Kochanski | Jun 2015 | A1 |
20150192532 | Clevenson et al. | Jul 2015 | A1 |
20150192596 | Englund et al. | Jul 2015 | A1 |
20150225052 | Cordell | Aug 2015 | A1 |
20150235661 | Heidmann | Aug 2015 | A1 |
20150253355 | Grinolds et al. | Sep 2015 | A1 |
20150268373 | Meyer | Sep 2015 | A1 |
20150269957 | El Hallak et al. | Sep 2015 | A1 |
20150276897 | Leussler et al. | Oct 2015 | A1 |
20150288352 | Krause et al. | Oct 2015 | A1 |
20150299894 | Markham et al. | Oct 2015 | A1 |
20150303333 | Yu et al. | Oct 2015 | A1 |
20150314870 | Davies | Nov 2015 | A1 |
20150326030 | Malpas et al. | Nov 2015 | A1 |
20150326410 | Krause et al. | Nov 2015 | A1 |
20150354985 | Judkins et al. | Dec 2015 | A1 |
20150358026 | Gan | Dec 2015 | A1 |
20150374250 | Hatano | Dec 2015 | A1 |
20150377865 | Acosta et al. | Dec 2015 | A1 |
20150377987 | Menon et al. | Dec 2015 | A1 |
20160018269 | Maurer et al. | Jan 2016 | A1 |
20160031339 | Geo | Feb 2016 | A1 |
20160036529 | Griffith et al. | Feb 2016 | A1 |
20160052789 | Gaathon et al. | Feb 2016 | A1 |
20160054402 | Meriles | Feb 2016 | A1 |
20160061914 | Jelezko | Mar 2016 | A1 |
20160071532 | Heidmann | Mar 2016 | A9 |
20160077167 | Heidmann | Mar 2016 | A1 |
20160097702 | Zhao et al. | Apr 2016 | A1 |
20160113507 | Reza et al. | Apr 2016 | A1 |
20160131723 | Nagasaka | May 2016 | A1 |
20160139048 | Heidmann | May 2016 | A1 |
20160146904 | Stetson et al. | May 2016 | A1 |
20160161429 | Englund et al. | Jun 2016 | A1 |
20160161583 | Meriles et al. | Jun 2016 | A1 |
20160174867 | Hatano | Jun 2016 | A1 |
20160214714 | Sekelsky | Jul 2016 | A1 |
20160216304 | Sekelsky | Jul 2016 | A1 |
20160216340 | Egan et al. | Jul 2016 | A1 |
20160216341 | Boesch et al. | Jul 2016 | A1 |
20160221441 | Hall et al. | Aug 2016 | A1 |
20160223621 | Kaup et al. | Aug 2016 | A1 |
20160231394 | Manickam et al. | Aug 2016 | A1 |
20160266220 | Sushkov et al. | Sep 2016 | A1 |
20160282427 | Heidmann | Sep 2016 | A1 |
20160291191 | Fukushima et al. | Oct 2016 | A1 |
20160313408 | Hatano et al. | Oct 2016 | A1 |
20160348277 | Markham et al. | Dec 2016 | A1 |
20160356863 | Boesch et al. | Dec 2016 | A1 |
20170010214 | Osawa et al. | Jan 2017 | A1 |
20170010334 | Krause et al. | Jan 2017 | A1 |
20170010338 | Bayat et al. | Jan 2017 | A1 |
20170010594 | Kottapalli et al. | Jan 2017 | A1 |
20170023487 | Boesch | Jan 2017 | A1 |
20170030982 | Jeske et al. | Feb 2017 | A1 |
20170038314 | Suyama et al. | Feb 2017 | A1 |
20170038411 | Yacobi et al. | Feb 2017 | A1 |
20170068012 | Fisk | Mar 2017 | A1 |
20170074660 | Gann et al. | Mar 2017 | A1 |
20170075020 | Gann et al. | Mar 2017 | A1 |
20170075205 | Kriman et al. | Mar 2017 | A1 |
20170077665 | Liu et al. | Mar 2017 | A1 |
20170104426 | Mills | Apr 2017 | A1 |
20170138735 | Cappellaro et al. | May 2017 | A1 |
20170139017 | Egan et al. | May 2017 | A1 |
20170146615 | Wolf et al. | May 2017 | A1 |
20170199156 | Villani et al. | Jul 2017 | A1 |
20170205526 | Meyer | Jul 2017 | A1 |
20170207823 | Russo et al. | Jul 2017 | A1 |
20170211947 | Fisk | Jul 2017 | A1 |
20170212046 | Cammerata | Jul 2017 | A1 |
20170212177 | Coar et al. | Jul 2017 | A1 |
20170212178 | Hahn et al. | Jul 2017 | A1 |
20170212179 | Hahn et al. | Jul 2017 | A1 |
20170212180 | Hahn et al. | Jul 2017 | A1 |
20170212181 | Coar et al. | Jul 2017 | A1 |
20170212182 | Hahn et al. | Jul 2017 | A1 |
20170212183 | Egan et al. | Jul 2017 | A1 |
20170212184 | Coar et al. | Jul 2017 | A1 |
20170212185 | Hahn et al. | Jul 2017 | A1 |
20170212186 | Hahn et al. | Jul 2017 | A1 |
20170212187 | Hahn et al. | Jul 2017 | A1 |
20170212190 | Reynolds et al. | Jul 2017 | A1 |
20170212258 | Fisk | Jul 2017 | A1 |
20170261629 | Gunnarsson et al. | Sep 2017 | A1 |
20170343617 | Manickam et al. | Nov 2017 | A1 |
20170343619 | Manickam et al. | Nov 2017 | A1 |
20170343621 | Hahn et al. | Nov 2017 | A1 |
20170343695 | Stetson et al. | Nov 2017 | A1 |
20180136291 | Pham et al. | May 2018 | A1 |
20180275209 | Mandeville et al. | Sep 2018 | A1 |
20180275212 | Hahn et al. | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
105738845 | Jul 2016 | CN |
106257602 | Dec 2016 | CN |
69608006 | Feb 2001 | DE |
19600241 | Aug 2002 | DE |
10228536 | Jan 2003 | DE |
0 161 940 | Dec 1990 | EP |
0 718 642 | Jun 1996 | EP |
0 726 458 | Aug 1996 | EP |
1 505 627 | Feb 2005 | EP |
1 685 597 | Aug 2006 | EP |
1 990 313 | Nov 2008 | EP |
2 163 392 | Mar 2010 | EP |
2 495 166 | Sep 2012 | EP |
2 587 232 | May 2013 | EP |
2 705 179 | Mar 2014 | EP |
2 707 523 | Mar 2014 | EP |
2 745 360 | Jun 2014 | EP |
2 769 417 | Aug 2014 | EP |
2 790 031 | Oct 2014 | EP |
2 837 930 | Feb 2015 | EP |
2 907 792 | Aug 2015 | EP |
2 433 737 | Jul 2007 | GB |
2423366 | Aug 2008 | GB |
2 482 596 | Feb 2012 | GB |
2 483 767 | Mar 2012 | GB |
2 486 794 | Jun 2012 | GB |
2 490 589 | Nov 2012 | GB |
2 491 936 | Dec 2012 | GB |
2 493 236 | Jan 2013 | GB |
2 495 632 | Apr 2013 | GB |
2 497 660 | Jun 2013 | GB |
2 510 053 | Jul 2014 | GB |
2 515 226 | Dec 2014 | GB |
2 522 309 | Jul 2015 | GB |
2 526 639 | Dec 2015 | GB |
3782147 | Jun 2006 | JP |
4800896 | Oct 2011 | JP |
2012-103171 | May 2012 | JP |
2012-110489 | Jun 2012 | JP |
2012-121748 | Jun 2012 | JP |
2013-028497 | Feb 2013 | JP |
5476206 | Apr 2014 | JP |
5522606 | Jun 2014 | JP |
5536056 | Jul 2014 | JP |
5601183 | Oct 2014 | JP |
2014-215985 | Nov 2014 | JP |
2014-216596 | Nov 2014 | JP |
2015-518562 | Jul 2015 | JP |
5764059 | Aug 2015 | JP |
2015-167176 | Sep 2015 | JP |
2015-529328 | Oct 2015 | JP |
5828036 | Dec 2015 | JP |
5831947 | Dec 2015 | JP |
WO-8704028 | Jul 1987 | WO |
WO-8804032 | Jun 1988 | WO |
WO-9533972 | Dec 1995 | WO |
WO-2009073736 | Jun 2009 | WO |
WO-2011046403 | Apr 2011 | WO |
WO-2011153339 | Dec 2011 | WO |
WO-2012016977 | Feb 2012 | WO |
WO-2012084750 | Jun 2012 | WO |
WO-2013027074 | Feb 2013 | WO |
WO-2013059404 | Apr 2013 | WO |
WO-2013066446 | May 2013 | WO |
WO-2013066448 | May 2013 | WO |
WO-2013093136 | Jun 2013 | WO |
WO-2013188732 | Dec 2013 | WO |
WO-2013190329 | Dec 2013 | WO |
WO-2014011286 | Jan 2014 | WO |
WO-2014099110 | Jun 2014 | WO |
WO-2014135544 | Sep 2014 | WO |
WO-2014135547 | Sep 2014 | WO |
WO-2014166883 | Oct 2014 | WO |
WO-2014210486 | Dec 2014 | WO |
WO-2015015172 | Feb 2015 | WO |
WO-2015142945 | Sep 2015 | WO |
WO-2015157110 | Oct 2015 | WO |
WO-2015157290 | Oct 2015 | WO |
WO-2015158383 | Oct 2015 | WO |
WO-2015193156 | Dec 2015 | WO |
WO-2016075226 | May 2016 | WO |
WO-2016118756 | Jul 2016 | WO |
WO-2016118791 | Jul 2016 | WO |
WO-2016122965 | Aug 2016 | WO |
WO-2016122966 | Aug 2016 | WO |
WO-2016126435 | Aug 2016 | WO |
WO-2016126436 | Aug 2016 | WO |
WO-2016190909 | Dec 2016 | WO |
WO-2017007513 | Jan 2017 | WO |
WO-2017007514 | Jan 2017 | WO |
WO-2017014807 | Jan 2017 | WO |
WO-2017039747 | Mar 2017 | WO |
WO-2017095454 | Jun 2017 | WO |
WO-2017127079 | Jul 2017 | WO |
WO-2017127080 | Jul 2017 | WO |
WO-2017127081 | Jul 2017 | WO |
WO-2017127085 | Jul 2017 | WO |
WO-2017127090 | Jul 2017 | WO |
WO-2017127091 | Jul 2017 | WO |
WO-2017127093 | Jul 2017 | WO |
WO-2017127094 | Jul 2017 | WO |
WO-2017127095 | Jul 2017 | WO |
WO-2017127096 | Jul 2017 | WO |
WO-2017127097 | Jul 2017 | WO |
WO-2017127098 | Jul 2017 | WO |
Entry |
---|
Bucher et al, “High Resolution Magnetic Resonance Spectroscopy Using Solid-State Spins”, May 25, 2017, downloaded from https://arxiv.org/ (arXiv.org>quant-ph>arXiv:1705.08887) on May 25, 2017, pp. 1-24. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 1, 2017, from related PCT application PCT/US17/21811, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 1, 2017, in related PCT application PCT/US17/22279, 20 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 15, 2017, from related PCT application PCT/US2017/024175, 10 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 9, 2017, from related patent application PCT/US2017/024181, 13 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 9, 2017, from related PCT application PCT/US2017/024179, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jul. 14, 2017, from related PCT application PCT/US2017/022118, 13 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jul. 17, 2017, from related PCT application PCT/US2017/024177, 11 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jul. 18, 2017, from related PCT application PCT/US2017/024167, 11 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jul. 18, 2017, from related PCT application PCT/US2017/024173, 13 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jul. 19, 2017, from related PCT application PCT/US2017/024171, 12 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 15, 2017, from related PCT application PCT/US2017/024182, 21 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 22, 2017, in related PCT application PCT/US2017/024180, 10 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 5, 2017, from related PCT application PCT/US2017/024169, 11 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 5, 2017, from related PCT application PCT/US2017/024174, 8 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 5, 2017, in related PCT application PCT/US2017/024168, 7 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 6, 2017, from related PCT application PCT/2017/024165, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 6, 2017, from related PCT application PCT/US2017/024172, 9 pages. |
Michaelovich et al., “Polarization Dependencies of the Nitrogen-Vacancy Center.” Undergraduate Project Report, Ben-Gurion University, Aug. 2015, pp. 1-9. |
Notice of Allowance dated Jun. 8, 2017, from related U.S. Appl. No. 15/351,862, 7 pages. |
Sheinker et al., “Localization in 3-D Using Beacons of Low Frequency Magnetic Field.” IEEE Transactions on Instrumentation and Measurement 62(12): 3194-3201 (Dec. 2013), 8 pages. |
U.S. Notice of Allowance dated Aug. 11, 2017 from related U.S. Appl. No. 15/003,558, 5 pages. |
U.S. Notice of Allowance dated Jul. 18, 2017 from related U.S. Appl. No. 15/003,634, 6 pages. |
U.S. Notice of Allowance dated Jul. 24, 2017 from related U.S. Appl. No. 15/003,088, 12 pages. |
U.S. Notice of Allowance dated Jun. 20, 2017, from related U.S. Appl. No. 15/204,675, 9 pages. |
U.S. Notice of Allowance dated Jun. 28, 2017 from related U.S. Appl. No. 15/003,256, 10 pages. |
U.S. Office Action dated Aug. 15, 2017 from related U.S. Appl. No. 15/003,281, 12 pages. |
U.S. Office Action dated Jul. 27, 2017 from related U.S. Appl. No. 15/003,577, 15 pages. |
U.S. Office Action dated Jun. 1, 2017, from related U.S. Appl. No. 15/003,797, 29 pages. |
U.S. Office Action dated Jun. 1, 2017, from related U.S. Appl. No. 15/179,957, 29 pages. |
U.S. Office Action dated Jun. 12, 2017, from related U.S. Appl. No. 15/003,256, 9 pages. |
U.S. Office Action dated Jun. 12, 2017, from related U.S. Appl. No. 15/003,336, 14 pages. |
U.S. Office Action dated Jun. 16, 2017, from related U.S. Appl. No. 15/003,678, 15 pages. |
U.S. Office Action dated Jun. 2, 2017, from related U.S. Appl. No. 15/476,636, 10 pages. |
Wroble, “Performance Analysis of Magnetic Indoor Local Positioning System.” Western Michigan University Master's Theses, Paper 609 (Jun. 2015), 42 pages. |
GB Office Action dated Jan. 10, 2017, in related national stage application GB1618202.4. |
U.S. Appl. No. 15/610,526, filed May 31, 2017. |
PCT/US2017/035315, May 31, 2017. |
U.S. Appl. No. 15/672,953, filed Aug. 9, 2017. |
International Search Report and Written Opinion of the International Searching Authority in PCT/US2016/014390 dated Feb. 15, 2017. |
Notice of Allowance dated Dec. 13, 2016, from related U.S. Appl. No. 14/680,877. |
Notice of Allowance dated Dec. 22, 2016, from related U.S. Appl. No. 14/659,498. |
U.S. Notice of Allowance dated Feb. 14, 2017, from related U.S. Appl. No. 15/003,677, 8 pages. |
U.S. Office Action dated Feb. 10, 2017, from related U.S. Appl. No. 14/676,740, 38 pages. |
U.S. Office Action dated Feb. 10, 2017, from related U.S. Appl. No. 15/003,088, 32 pages. |
U.S. Office Action dated Feb. 16, 2017, from related U.S. Appl. No. 15/204,675, 15 pages. |
U.S. Appl. No. 14/659,498, filed Mar. 16, 2015. |
U.S. Appl. No. 14/676,740, filed Apr. 1, 2015. |
U.S. Appl. No. 15/003,678, filed Jan. 21, 2016. |
U.S. Appl. No. 14/680,877, filed Apr. 7, 2015. |
U.S. Appl. No. 15/003,281, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,292, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,298, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,309, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,176, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,145, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,336, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,558, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,519, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,677, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,256, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,577, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,704, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,718, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,062, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,652, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,634, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,670, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,088, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,797, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,590, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,206, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,193, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,617, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,396, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,177, filed Jan. 21, 2016. |
U.S. Appl. No. 15/003,209, filed Jan. 21, 2016. |
U.S. Appl. No. 15/179,957, filed Jun. 10, 2016. |
U.S. Appl. No. 15/207,457, filed Jul. 11, 2016. |
U.S. Appl. No. 15/218,821, filed Jul. 25, 2016. |
U.S. Appl. No. 15/204,675, filed Jul. 7, 2016. |
U.S. Appl. No. 15/350,303, filed Nov. 14, 2016. |
U.S. Appl. No. 15/351,862, filed Jul. 7, 2016. |
U.S. Appl. No. 15/372,201, filed Dec. 7, 2016. |
U.S. Appl. No. 15/376,244, filed Dec. 12, 2016. |
U.S. Appl. No. 15/380,691, filed Dec. 15, 2016. |
U.S. Appl. No. 15/382,045, filed Dec. 16, 2016. |
U.S. Appl. No. 15/380,419, filed Dec. 15, 2016. |
U.S. Appl. No. 15/419,832, filed Jan. 30, 2017. |
U.S. Appl. No. 15/400,794, filed Jan. 6, 2017. |
U.S. Appl. No. 15/443,422, filed Jan. 27, 2017. |
U.S. Appl. No. 15/440,194, filed Feb. 23, 2017. |
U.S. Appl. No. 15/437,222, filed Feb. 20, 2017. |
U.S. Appl. No. 15/437,038, filed Feb. 20, 2017. |
“‘Diamond Sensors, Detectors, and Quantum Devices’ in Patent Application Approval Process,” Chemicals & Chemistry, pp. 1-6, (Feb. 28, 2014), 6 pages. |
“Findings from University of Stuttgart in physics reported,” Science Letter, (Jul. 7, 2009), 2 pages. |
“New Findings on Nitrogen from Ecole Normale Superieure Summarized (Magnetic imaging with an ensemble of nitrogen vacancy-centers in diamond),” Physics Week, pp. 1-2, (Jul. 21, 2015), 2 pages. |
“Patent Issued for Diamond Sensors, Detectors, and Quantum Devices (U.S. Pat. No. 9,249,526),” Journal of Engineering, pp. 1-5 (Feb. 15, 2016), 5 pages. |
“Researchers Submit Patent Application, ‘Diamond Sensors, Detectors, and Quantum Devices’, for Approval,” Chemicals & Chemistry, pp. 1-7, (Apr. 11, 2014), 7 pages. |
Acosta et al., “Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond,” Appl. Phys. Letters 97: 174104 (Oct. 29, 2010), 4 pages. |
Acosta et al., “Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications,” Physical Review B 80(115202): 1-15 (Sep. 9, 2009), 15 pages. |
Acosta et al., “Nitrogen-vacancy centers: physics and applications,” MRS Bulletin 38(2): 127-130 (Feb. 2013), 4 pages. |
Acosta, “Optical Magnetometry with Nitrogen-Vacancy Centers in Diamond,” University of California Berkeley, (Spring 2011), 118 pages. |
Aiello et al., “Composite-pulse magnetometry with a solid-state quantum sensor,” Nature Communications 4(1419): 1-6 (Jan. 29, 2013), 7 pages. |
Alam, “Solid-state 13C magic angle spinning NMR spectroscopy characterization of particle size structural variations in synthetic nanodiamonds,” Materials Chemistry and Physics 85(2-3): 310-315 (Jun. 15, 2004), 6 pages. |
Albrecht et al., “Coupling of nitrogen vacancy centres in nanodiamonds by means of phonons,” New Journal of Physics 15(083014): 1-26 (Aug. 6, 2013), 27 pages. |
Appel et al., “Nanoscale microwave imaging with a single electron spin in diamond,” New Journal of Physics 17(112001): 1-6 (Nov. 3, 2015), 7 pages. |
Arai et al., “Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond,” Nature Nanotechnology 10: 859-864 (Aug. 10, 2015), 7 pages. |
Aslam et al., “Single spin optically detected magnetic resonance with 60-90 GHz (E-band) microwave resonators,” Review of Scientific Instruments 86(064704): 1-8 (Jun. 22, 2015), 9 pages. |
Awschalom et al., “Diamond age of spintronics,” Scientific American 297: 84-91 (Oct. 2007), 8 pages. |
Babamoradi et al., “Correlation between entanglement and spin density in nitrogen-vacancy center of diamond,” European Physical Journal D 65: 597-603 (Dec. 1, 2011), 7 pages. |
Babunts et al., “Diagnostics of NV defect structure orientation in diamond using optically detected magnetic resonance with a modulated magnetic field,” Technical Physics Letters 41(6): 583-586 (Jun. 2015; first published online Jul. 14, 2015), 4 pages. |
Babunts et al., “Temperature-scanned magnetic resonance and the evidence of two-way transfer of a nitrogen nuclear spin hyperfine interaction in coupled NV-N pairs in diamond,” JETP Letters 95(8): 429-432 (Jun. 27, 2012), 4 pages. |
Bagguley et al., “Zeeman effect of acceptor states in semiconducting diamond,” Journal of the Physical Society of Japan 21(Supplement): 244-248 (1966), 7 pages. |
Balasubramanian et al., “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455: 648-651 (Oct. 2, 2008), 5 pages. |
Balmer et al., “Chemical Vapour deposition synthetic diamond: materials technology and applications,” J. of Physics: Condensed Matter 21(36): 1-51 (Aug. 19, 2009), 51 pages. |
Baranov et al., “Enormously High Concentrations of Fluorescent Nitrogen-Vacancy Centers Fabricated by Sintering of Detonation Nanodiamonds,” Small 7(11): 1533-1537 (Jun. 6, 2011; first published online Apr. 26, 2011), 5 pages. |
Barfuss et al., “Strong mechanical driving of a single electron spin,” Nature Physics 11: 820-824 (Aug. 3, 2015), 6 pages. |
Barry et al., “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” as submitted to Quantum Physics on Feb. 2, 2016, 23 pages. |
Bennett et al., “CVD Diamond for High Power Laser Applications,” SPIE 8603, High-Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications II, 860307: 1-10 (Feb. 22, 2013), 10 pages. |
Berman & Chernobrod, “Single-spin microscope with sub-nanoscale resolution based on optically detected magnetic resonance,” SPIE 7608, Quantum Sensing and Nanophotonic Devices VII, 76080Y (Jan. 23, 2010), 4 pages. |
Berman et al. “Measurement of single electron and nuclear spin states based on optically detected magnetic resonance,” J. Physics: Conf. Series 38: 167-170 (2006), 5 pages. |
Blakley et al., “Room-temperature magnetic gradiometry with fiber-coupled nitrogen-vacancy centers in diamond,” Optics Letters 40(16): 3727-3730 (Aug. 15, 2015), 4 pages. |
Bourgeois, et al., “Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond,” Nature Communications 6(8577): 1-8 (Oct. 21, 2015), 8 pages. |
Budker & Kimball, “Optical Magnetometry,” Cambridge Press, (2013), 11 pages. |
Budker & Romalis, “Optical Magnetometry,” Nature Physics 3: 227-243 (Apr. 2007), 8 pages. |
Casanova, et al., “Effect of magnetic field on phosphorus centre in diamond,” Physica Status Solidi A 186(2): 291-295 (Jul. 30, 2001), 6 pages. |
Castelletto, et al., “Frontiers in diffraction unlimited optical methods for spin manipulation, magnetic field sensing and imaging using diamond nitrogen vacancy defects,” Nanophotonics 1(2): 139-153 (Nov. 2012), 15 pages. |
Chapman, et al., “Anomalous saturation effects due to optical spin depolarization in nitrogen-vacancy centers in diamond nanocrystals,” Physical Review B 86(045204): 1-8 (Jul. 10, 2012), 8 pages. |
Chen et al., “Vector magnetic field sensing by a single nitrogen vacancy center in diamond,” EPL 101(67003): 1-5 (Mar. 2013), 6 pages. |
Chernobrod et al., “Improving the sensitivity of frequency modulation spectroscopy using nanomechanical cantilevers,” Applied Physics Letters 85(17): 3896-3898 (Oct. 25, 2004), 3 pages. |
Chernobrod et al., “Spin Microscope Based on Optically Detected Magnetic Resoncance,” Journal of Applied Physics 97(014903): 1-3, (2005; first published online Dec. 10, 2004), 4 pages. |
Childress et al., “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314(5797): 281-285 (Oct. 13, 2006), 6 pages. |
Chipaux et al., “Magnetic imaging with an ensemble of nitrogen vacancy-centers in diamond,” European Physical Journal D 69(166): 1-10 (Jul. 2, 2015), 10 pages. |
Chipaux et al., “Nitrogen vacancies (NV) centers in diamond for magnetic sensors and quantum sensing,” SPIE 9370, Quantum Sensing and Nanophotonic Devices XII, 93701V (Feb. 8, 2015), 6 pages. |
Chipaux, et al., “Wide bandwidth instantaneous radio frequency spectrum analyzer based on nitrogen vacancy centers in diamond,” Applied Physics Letters 107(233502): 1-5 (2015), 6 pages. |
Clevenson et al., “Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide,” Nature Physics 11: 393-397 (May 2015; first published online Apr. 6, 2015), 6 pages. |
Constable, “Geomagnetic Spectrum, Temporal.” In Encyclopedia of Geomagnetism and Paleomagnetism, pp. 353-355, Springer: Dordrecht, Netherlands (2007), 3 pages. |
Cooper et al., “Time-resolved magnetic sensing with electronic spins in diamond,” Nature Communications 5:3141: 1-7 (Jan. 24, 2014), 7 pages. |
Creedon et al., “Strong coupling between P1 diamond impurity centers and a three-dimensional lumped photonic microwave cavity,” Physical Review B 91(140408R): 1-5 (Apr. 24, 2015), 5 pages. |
Davies, “Current problems in diamond: towards a quantitative understanding,” Physica B 273-274: 15-13 (Dec. 15, 1999), 9 pages. |
De Lange et al., “Single-Spin Magnetometry with Multipulse Sensing Sequences,” Physical Review Letters 106(080802): 1-4 (Feb. 24, 2011), 4 pages. |
Degen, “Scanning magnetic field microscope with a diamond single-spin sensor,” Applied Physics Letters 92(243111): 1-3 (Jun. 17, 2008), 3 pages. |
Delacroix et al., “Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings,” Applied Optics 51(24): 5897-5902 (Aug. 16, 2012), 6 pages. |
Denatale et al., “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. of Applied Physics 71: 1388-1393 (Mar. 1992), 8 pages. |
Dobrovitski et al., “Quantum Control over Single Spins in Diamond,” Annual Review of Condensed Matter Physics 4: 23-50 (Apr. 2013), 30 pages. |
Doherty et al., “The nitrogen-vacancy colour centre in diamond,” Physics Reports 528: 1-45 (Jul. 1, 2013), 45 pages. |
Doherty et al., “Theory of the ground-state spin of the NV- center in diamond,” Physical Review B 85(205203): 1-21 (May 3, 2012), 21 pages. |
Doi et al., “Pure negatively charged state of the NV center in n-type diamond,” Physical Review B 93(081203): 1-6 (Feb. 3, 2016), 6 pages. |
Drake et al., “Influence of magnetic field alignment and defect concentration on nitrogen-vacancy polarization in diamond,” New Journal of Physics 18(013011): 1-8 (Jan. 2016; first published on Dec. 24, 2015), 9 pages. |
Dreau et al., “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Physical Review B 84(195204): 1-8 (Nov. 23, 2011), 8 pages. |
Dreau et al., “High-resolution spectroscopy of single NV defects coupled with nearby 13C nuclear spins in diamond,” Physical Review B 85(134107): 1-7 (Apr. 20, 2012), 7 pages. |
Dumeige et al., “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Physical Review B 87(155202): 1-9 (Apr. 8, 2013), 9 pages. |
Epstein et al., “Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond,” Nature Physics 1: 94-98 (Nov. 2005), 5 pages. |
Fedotov et al., “High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber,” Optics Letters 41(3): 472-475 (Feb. 1, 2016; published Jan. 25, 2016), 4 pages. |
Fedotov et al., “Photonic-crystal-fiber-coupled photoluminescence interrogation of nitrogen vacancies in diamond nanoparticles,” Laser Physics Letters 9(2): 151-154 (Feb. 2012; first published online Dec. 2, 2011), 5 pages. |
Feng & Wei, “A steady-state spectral method to fit microwave absorptions of NV centers in diamonds: application to sensitive magnetic field sensing,” Measurement Science & Technology 25(105102): 1-6 (Oct. 2014; first published online Aug. 29, 2014), 7 pages. |
Freitas, et al., “Solid-State Nuclear Magnetic Resonance (NMR) Methods Applied to the Study of Carbon Materials,” Chemistry and Physics of Carbon, vol. 31 (2012), 45 pages. |
Geiselmann et al., “Fast optical modulation of the fluorescence from a single nitrogen-vacancy centre,” Nature Physics 9: 785-789 (Dec. 2013; first published online Oct. 13, 2013), 5 pages. |
Gombert & Blasi, “The Moth-Eye Effect-From Fundamentals to Commercial Exploitation,” Functional Properties of Bio-Inspired Surfaces: 79-102, (Nov. 2009), 26 pages. |
Gong et al., “Generation of Nitrogen-Vacancy Center Pairs in Bulk Diamond by Molecular Nitrogen Implantation,” Chinese Physics Letters 33(2)(026105): 1-4 (Feb. 2016), 5 pages. |
Gould et al., “An imaging magnetometer for bio-sensing based on nitrogen-vacancy centers in diamond,” SPIE 8933, Frontiers in Biological Detection: From Nanosensors to Systems VI, 89330L (Mar. 18, 2014), 8 pages. |
Gould et al., “Room-temperature detection of a single 19 nm superparamagnetic nanoparticle with an imaging magnetometer,” Applied Physics Letters 105(072406): 1-4 (Aug. 19, 2014), 5 pages. |
Gruber et al., “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276(5321): 2012-2014 (Jun. 27, 1997), 4 pages. |
Haeberle et al., “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnology 10: 125-128 (Feb. 2015; first published online Jan. 5, 2015), 4 pages. |
Haihua et al., “Design of wideband anti-reflective sub wavelength nanostructures,” Infrared and Laser Engineering 40(2): 267-270 (Feb. 2011), 4 pages. |
Hall et al., “Sensing of Fluctuating Nanoscale Magnetic Fields Using Nitrogen-Vacancy Centers in Diamond,” Physical Review Letters 103(220802): 1-4 (Nov. 25, 2009), 4 pages. |
Hanson et al., “Coherent Dynamics of a Single Spin Interacting with an Adjustable Spin Bath,” Science 320(5874): 352-355 (Apr. 18, 2008), 5 pages. |
Hanson et al., “Polarization and Readout of Coupled Single Spins in Diamond,” Physical Review Letters 97(087601): 1-4 (Aug. 23, 2006), 4 pages. |
Hanson et al., “Room-temperature manipulation and decoherence of a single spin in diamond,” Physical Review 74(161203): 1-4 (Oct. 26, 2006), 4 pages. |
Hanzawa et al., “Zeeman effect on the zero-phonon line of the NV center in synthetic diamond,” Physica B 184(1-4): 137-140 (Feb. 1993), 4 pages. |
Hegyi & Yablonovitch, “Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds,” Nano Letters 13(3): 1173-1178 (Mar. 2013; first published online Feb. 6, 2013), 6 pages. |
Hegyi & Yablonovitch, “Nanodiamond molecular imaging with enhanced contrast and expanded field of view,” Journal of Biomedical Optics 19(1)(011015): 1-8 (Jan. 2014), 9 pages. |
Hilser et al., “All-optical control of the spin state in the NV- center in diamond,” Physical Review B 86(125204): 1-8 (Sep. 14, 2012), 8 pages. |
Hobbs, “Study of the Environmental and Optical Durability of AR Microstructures in Sapphire, ALON, and Diamond,” SPIE 7302, Window and Dome Technologies and Materials XI, 73020J (Apr. 27, 2009), 14 pages. |
Huebener et al., “ODMR of NV centers in nano-diamonds covered with N@C60,” Physica Status Solidi B 245(10): 2013-2017 (Oct. 2008; first published online Sep. 8, 2008), 5 pages. |
Huxter et al., “Vibrational and electronic dynamics of nitrogen-vacancy centres in diamond revealed by two-dimensional ultrafast spectroscopy,” Nature Physics 9: 744-749 (Sep. 29, 2013), 6 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Apr. 1, 2016 from related PCT application PCT/US2016/014384, 12 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Apr. 11, 2016 from related PCT application PCT/US2016/014376, 12 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Apr. 11, 2016 from related PCT application PCT/US2016/014388, 14 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Apr. 11, 2016 from related PCT application PCT/US2016/014395, 15 pages. |
International Search Report and Written opinion of the International Searching Authority dated Jul. 12, 2016, from related PCT application PCT/US2016/014287, 14 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jul. 16, 2015, from related PCT application PCT/US2015/24723, 8 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jul. 6, 2015, from related PCT application PCT/US2015/021093, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jul. 8, 2015, from related PCT application PCT/US2015/024265, 11 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 10, 2016 from related PCT application PCT/US2016/014290, 11 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 2, 2016, from related PCT application PCT/US2016/014386, 14 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 2, 2016, from related PCT application PCT/US2016/014387, 13 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 6, 2016, from related PCT application PCT/US2016/014291, 13 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jun. 9, 2016 from related PCT application PCT/US2016/014333, 16 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 24, 2016 from related PCT application PCT/US2016/014336, 17 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 24, 2016 from related PCT application PCT/US2016/014297, 15 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 24, 2016 from related PCT application PCT/US2016/014392, 8 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 24, 2016 from related PCT application PCT/US2016/014403, 10 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 25, 2016, from related PCT application PCT/US2016/014363, 8 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 25, 2016, from related PCT application PCT/US2016/014389, 19 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 28, 2016, from related PCT application PCT/US2016/014380, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 28, 2016, from related PCT application PCT/US2016/014394, 17 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 29, 2016 from related PCT application PCT/US2016/014325, 11 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 29, 2016 from related PCT application PCT/US2016/014330, 8 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 29, 2016, from related PCT application PCT/US2016/014328, 7 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 29, 2016, from related PCT application PCT/US2016/014385, 11 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 30, 2016 from related PCT application PCT/US2016/014298, 14 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 31, 2016 from related PCT application PCT/US2016/014375, 11 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 31, 2016 from related PCT application PCT/US2016/014396, 11 pages. |
International Search Report and Written Opinion of the International Searching Authority dated May 26, 2016, 2016 from related PCT application PCT/US2016/014331, 15 pages. |
Ivady et al., “Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: A first-principles study,” Physical Review B 90(235205): 1-8 (Dec. 2014), 8 pages. |
Jarmola et al., “Temperature- and Magnetic-Field-Dependent Longitudinal Spin Relaxation in Nitrogen-Vacancy Ensembles in Diamond,” Physical Review Letters 108 (197601): 1-5 (May 2012), 5 pages. |
Jensen et al., “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond,” Physical Review B 87(014115): 1-10 (Jan. 2013), 10 pages. |
Kailath, “Linear Systems,” Prentice Hall, (1979), 6 pages. |
Karlsson et al., “Diamond micro-optics: microlenses and antireflection structures surfaces for the infrared spectral region,” Optics Express 11(5): 502-507 (Mar. 10, 2003), 6 pages. |
Khan & Hemmer, “Noise limitation in nano-scale imaging,” Proceedings of SPIE vol. 5842: 302-305, (Dec. 2005), 7 pages. |
Kim et al., “Electron spin resonance shift and linewidth broadening of nitrogen-vacancy centers in diamond as a function of electron irradiation dose,” Applied Physics Letters 101(082410): 1-5 (Aug. 2012), 6 pages. |
Kim et al., “Jahn-Teller Splitting and Zeeman Effect of Acceptors in Diamond,” Physica B 273-274: 647-627 (Jul. 1999), 4 pages. |
Kim et al., “Magnetospectroscopy of acceptors in ‘blue’ diamonds,” Physica B 302-301: 88-100 (Aug. 2001), 13 pages. |
Kim et al., “Zeeman effect of electronic Raman lines of accepters in elemental semiconductors: Boron in blue diamond,” Physical Review B 62(12): 8038-8052 (Sep. 2000), 15 pages. |
King et al., “Optical polarization of 13C nuclei in diamond through nitrogen vacancy centers,” Physical Review B 81(073201): 1-4 (Feb. 2010), 4 pages. |
Kok et al., “Materials Science: Qubits in the pink,” Nature 444(2): 49 (Nov. 2006), 1 page. |
Konenko et al., “Formation of antireflective surface structures on diamond films by laser patterning,” Applied Physics A 68:99-102 (Jan. 1999), 4 pages. |
Kraus et al., “Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide,” Scientific Reports 4(5303): 1-8 (Jul. 4, 2014), 8 pages. |
Lai et al., “Influence of a static magnetic field on the photoluminescence of an ensemble of nitrogen vacancy color centers in a diamond single-crystal,” Applied Physics Letters 95, (Sep. 2009), 4 pages. |
Lai et al., “Optically detected magnetic resonance of a single Nitrogen-Vacancy electronic spin in diamond nanocrystals,” CLEO/EQEC, (Jun. 14-19, 2009), 1 page. |
Laraoui et al., “Nitrogen-vacancy assisted magnetometry of paramagnetic centers in an individual diamond nanocrystal,” Nano Letters 12: 3477-3482 (Jul. 2012) 6 pages. |
Lazariev et al., “A nitrogen-vacancy spin based molecular structure microscope using multiplexed projection reconstruction,” Scientific Reports 5(14130): 1-8 (Sep. 15, 2015), 8 pages. |
Le Sage et al., “Efficient photon detection from color centers in a diamond optical waveguide,” Phys. Rev. B 85: 121202(R), pp. 121202-1-121202-4, (Mar. 2012), 4 pages. |
Lee et al., “Vector magnetometry based on S=3/2 electronic spins,” Physical Review B 92 (115201): 1-7 (Sep. 2015), 7 pages. |
Lesik et al., “Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates,” Diamond and Related Materials 56: 47-53 (Jun. 2015), 7 pages. |
Levchenko et al., “Inhomogeneous broadening of optically detected magnetic resonance of the ensembles of nitrogen-vacancy centers in diamond by interstitial carbon atoms,” Applied Physics Letters 106, (Mar. 2015; published online Mar. 9, 2015), 6 pages. |
Liu et al., “Electron spin studies of nitrogen vacancy centers in nanodiamonds,” Acta Physica Sinica 62(16) 164208: 1-5 (Aug. 2013), 5 pages. |
Liu et al., “Fiber-integrated diamond-based magnetometer,” Applied Physics Letters 103(143105): 14 (Sep. 2013), 5 pages. |
Maclaurin et al., “Nanoscale magnetometry through quantum control of nitrogen-vacancy centres in rotationally diffusing nanodiamonds,” New Journal of Physics 15, (Jan. 2013), 16 pages. |
Macquarie et al., “Mechanical spin control of nitrogen-vacancy centers in diamond,” Retrieved from http://www.arxiv.org/pdf/1306.6356.pdf, pp. 1-8, (Jun. 2013), 8 pages. |
Macs et al., “Diamond as a magnetic field calibration probe,” Journal of Physics D: Applied Physics 37, (Apr. 2004; published Mar. 17, 2004), 6 pages. |
Maletinsky et al., “A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres,” Nature Nanotechnology 7: 320-324, (May 2012; published online Apr. 15, 2012), 5 pages. |
Mamin et al., “Multipulse Double-Quantum Magnetometry with Near-Surface Nitrogen-Vacancy Centers,” Physical Review Letters 13(030803): 1-5 (Jul. 2014), 5 pages. |
Mamin et al., “Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor,” Science 339, (Feb. 1, 2013), 5 pages. |
Manson et al., “GR transitions in diamond: magnetic field measurements,” Journal of Physics C Solid St. Phys 13: L1005-L1009, (Nov. 1980), 6 pages. |
Massachusetts Institute of Technology, “Wide-Field Imaging Using Nitrogen Vacancies,” in Patent Application Approval Process, Physics Week: 1-5, (Jan. 20, 2015), 5 pages. |
Matsuda et al., “Development of a plastic diamond anvil cell for high pressure magneto-photoluminescence in pulsed high magnetic fields,” International Journal of Modern Physics B 18(2729), (Nov. 2004), 7 pages. |
Maze et al., “Nanoscale magnetic sensing using spin qubits in diamond,” Proc. SPIE 7225, Advanced Optical Concepts in Quantum Computing, Memory, and Communication II, 722509 (Feb. 2, 2009) 8 pages. |
Maze et al., “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature Physics 455: 644-647 (Oct. 2, 2008), 5 pages. |
Meijer et al., “Generation of single color centers by focused nitrogen implantation,” Applied Physics Letters 87(261909): 1-3 (Dec. 2005), 4 pages. |
Millot et al., “High-field Zeeman and Paschen-Back effects at high pressure in oriented ruby,” Physical Review B 78 (155125): 1-7 (Oct. 2008), 7 pages. |
Moriyama et al., “Importance of electron-electron interactions and Zeeman splitting in single-wall carbon nanotube quantum dots,” Physica E 26: 473-476 (Feb. 2005), 4 pages. |
Mrozek et al., “Circularly polarized microwaves for magnetic resonance study in the GHz range: Application to nitrogen-vacancy in diamonds,” Applied Physics Letters, pp. 1-4 (Jul. 2015), 4 pages. |
Nagl et al., “Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes—a review,” Analytical and Bioanalaytical Chemistry 407: 7521-7536 (Oct. 2015; published online Jul. 29, 2015), 16 pages. |
Neumann et al., “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New Journal of Physics 11(013017): 1-10, (Jan. 2009), 11 pages. |
Nizovtsev & Kilin, “Optically Detected Magnetic Resonance Spectra of the 14NV-13C Spin Systems in Diamond: Analytical Theory and Experiment,” Doklady of the National Academy of Sciences of Belarus, (2013), 27 pages with English machine translation. |
Nizovtsev et al., “Modeling fluorescence of single nitrogen-vacancy defect centers in diamond,” Physica B—Condensed Matter, 608-611 (Dec. 2001), 4 pages. |
Nizovtsev et al., “Theoretical study of hyperfine interactions and optically detected magnetic resonance spectra by simulation of the C-291(NV)H-(172) diamond cluster hosting nitrogen-vacancy center,” New Journal of Physics 16(083014): 1-21 (Aug. 2014), 22 pages. |
Nobauer et al., “Smooth optimal quantum control for robust solid state spin magnetometry,” Retrieved from http://www.arxiv.org/abs/1412.5051, pp. 1-12, (Dec. 2014), 12 pages. |
Nowodzinski et al., “Nitrogen-Vacancy centers in diamond for current imaging at the redistributive layer level of Integrated Circuits,” Microelectronics Reliability 55: 1549-1553 (Aug. 2015), 5 pages. |
Nusran et al., “Optimizing phase-estimation algorithms for diamond spin magnetometry,” Physical Review B 90(024422): 1-12 (Jul. 2014), 12 pages. |
Ohashi et al., “Negatively Charged Nitrogen-Vacancy Centers in a 5 nm Thin 12C Diamond Film,” Nano Letters 13: 4733-4738 (Oct. 2013), 6 pages. |
Plakhotnik et al., “Super-Paramagnetic Particles Chemically Bound to Luminescent Diamond : Single Nanocrystals Probed with Optically Detected Magnetic Resonance,” Journal of Physical Chemistry C 119: 20119-20124 (Aug. 2015), 6 pages. |
Polatomic. “AN/ASQ-233A Digital Magnetic Anomaly Detective Set.” Retrieved May 9, 2016, from http://polatomic.com/images/DMAD_Data_Sheet_09-2009.pdf (2009), 1 page. |
Poole, “What is GMSK Modulation—Gaussian Minimum Shift Keying.” Radio-Electronics, retrieved from https://web.archive.org/web/20150403045840/http://www.radio-electronics.com/info/rf-technology-design/pm-phase-modulation/what-is-gmsk-gaussian-minimum-shift-keyingtutorial.php (Apr. 3, 2015), 4 pages. |
Rabeau et al., “Implantation of labelled single nitrogen vacancy centers in diamond using 15N,” Applied Physics Letters 88, (Jan. 2006), 4 pages. |
Ranjbar et al., “Many-electron states of nitrogen-vacancy centers in diamond and spin density calculations,” Physical Review B 84(165212): 1-6 (Oct. 2011), 6 pages. |
Reynhardt, “Spin-lattice relaxation of spin-1/2 nuclei in solids containing diluted paramagnetic impurity centers. I. Zeeman polarization of nuclear spin system,” Concepts in Magnetic Resonance Part A, pp. 20-35, (Sep. 2003), 16 pages. |
Rogers et al., “Singlet levels of the NV(−) centre in diamond,” New Journal of Physics 17, (Jan. 27, 2015), 13 pages. |
Rondin et al., “Magnetometry with nitrogen-vacancy defects in diamond,” Reports on Progress in Physics 77(056503) 1-26 (May 6, 2014), 27 pages. |
Rondin et al., “Nanoscale magnetic field mapping with a single spin scanning probe magnetometer,” Applied Physics Letters 100, (Apr. 2012), 5 pages. |
Sarkar et al., “Magnetic properties of graphite oxide and reduced graphene oxide,” Physica E 64: 78-82 (Nov. 2014), 5 pages. |
Scheuer et al., “Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion,” Scientific Reports 5(17728): 1-8 (Dec. 3, 2015), 8 pages. |
Schirhagl et al., “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annual Review of Physical Chemistry 65: 83-105 (Jan. 2014), 26 pages. |
Schoenfeld & Harneit, “Real time magnetic field sensing and imaging using a single spin in diamond,” Physical Review Letters 106(030802): 1-4 (Jan. 2011), 4 pages. |
Sedov et al., “Si-doped nano- and microcrystalline diamond films with controlled bright photoluminescence of silicon-vacancy color centers,” Diamond and Related Materials 56: 23-28 (Jun. 2015; available online Apr. 18, 2015), 6 pages. |
Shames et al., “Magnetic resonance tracking of fluorescent nanodiamond fabrication,” Journal of Physics D: Applied Physics 48(155302): 1-13 (Apr. 2015; published Mar. 20, 2015), 14 pages. |
Shao et al., “Diamond Color Center Based FM Microwave Demodulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America), paper JTh2A.136, (Jun. 5-10, 2016), 2 pages. |
Simanovskaia et al., “Sidebands in optically detected magnetic resonance signals of nitrogen vacancy centers in diamond,” Physical Review B 87(224106): 1-11 (Jun. 2013), 11 pages. |
Sotoma et al., “Effective production of fluorescent nanodiamonds containing negatively-charged nitrogen-vacancy centers by ion irradiation,” Diamond and Related Materials 49: 33-38 (Oct. 2014), 6 pages. |
Steiner et al., “Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond,” Physical Review B 81(035205): 1-6 (Jan. 2010), 6 pages. |
Steinert et al., “High-sensitivity magnetic imaging using an array of spins in diamond,” Rev. Sci. Inst. 81(043705): 1-5 (Apr. 2010), 5 pages. |
Stepanov et al., “High-frequency and high-field optically detected magnetic resonance of nitrogen-vacancy centers in diamond,” Applied Physics Letters 106, (Feb. 2015), 5 pages. |
Sternschulte et al., “Uniaxial stress and Zeeman splitting of the 1.681 eV optical center in a homoepitaxial CVD diamond film,” Diamond and Related Materials 4: 1189-1192 (Sep. 1995), 4 pages. |
Storteboom et al., “Lifetime investigation of single nitrogen vacancy centres in nanodiamonds,” Optics Express 23(9): 11327-11333 (May 4, 2015; published Apr. 22, 2015), 7 pages. |
Tahara et al., “Quantifying selective alignment of ensemble nitrogen-vacancy centers in (111) diamond,” Applied Physics Letters 107:193110 (Nov. 2015; published online Nov. 13, 2015), 5 pages. |
Taylor et al., “High-sensitivity diamond magnetometer with nanoscale resolution,” Nature Physics 4: 810-816 (Oct. 2008), 7 pages. |
Terblanche et al., “13C spin-lattice relaxation in natural diamond: Zeeman relaxation at 4.7 T and 300 K due to fixed paramagnetic nitrogen defects,” Solid State Nuclear Magnetic Resonance 20: 122 (Aug. 2001), 22 pages. |
Terblanche et al., “13C spin-lattice relaxation in natural diamond: Zeeman relaxation in fields of 500 to 5000 G at 300 K due to fixed paramagnetic nitrogen defects,” Solid State Nuclear Magnetic Resonance 19: 107-129 (May 2001), 23 pages. |
Tetienne et al., “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New Journal of Physics 14(103033): 1-5 (Oct. 19, 2012), 16 pages. |
Tong et al., “A hybrid-system approach for W state and cluster state generation,” Optics Communication 310: 166-172, (Jan. 2014; available online Aug. 12, 2013 ), 7 pages. |
Uhlen et al., “New diamond nanofabrication process for hard x-ray zone plates,” J. of Vacuum Science & Tech. B 29(6) (06FG03): 1-4 (Nov./Dec. 2011), 4 pages. |
U.S. Notice of Allowance dated Apr. 20, 2016, from related U.S. Appl. No. 15/003,718, 9 pages. |
U.S. Notice of Allowance dated Mar. 29, 2016, from related U.S. Appl. No. 15/003,590, 11 pages. |
U.S. Office Action dated Jul. 29, 2016 from related U.S. Appl. No. 14/680,877, 8 pages. |
U.S. Office Action dated May 13, 2016, from related U.S. Appl. No. 14/676,740, 15 pages. |
U.S. Office Action dated May 6, 2016, from related U.S. Appl. No. 14/659,498, 20 pages. |
Vershovskii & Dmitriev, “Combined excitation of an optically detected magnetic resonance in nitrogen-vacancy centers in diamond for precision measurement of the components of a magnetic field vector,” Technical Physics Letters 41(11): 1026-1029 (Nov. 2015), 4 pages. |
Vershovskii & Dmitriev, “Micro-scale three-component quantum magnetometer based on nitrogen-vacancy color centers in diamond crystal,” Technical Physics Letters 41(4): 393-396 (Apr. 2015), 4 pages. |
Wahlstrom et al., “Modeling Magnetic Fields Using Gaussian Processes,” 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 3522-3526 (May 26-31, 2013), 5 pages. |
Wang et al., “Optimizing ultrasensitive single electron magnetometer based on nitrogen-vacancy center in diamond,” Chinese Science Bulletin, 58(24): 2920-2923, (Aug. 2013), 4 pages. |
Webber et al., “Ab initio thermodynamics calculation of the relative concentration of NV- and NV0 defects in diamond,” Physical Review B 85,(014102): 1-7 (Jan. 2012), 7 pages. |
Wolf et al., “Subpicotesla Diamond Magnetometry,” Physical Review X 5(041001): 1-10 (Oct. 2015), 10 pages. |
Wolfe et al., “Off-resonant manipulation of spins in diamond via precessing magnetization of a proximal ferromagnet,” Physical Review B 89(180406): 1-5 (May 2014), 5 pages. |
Xue & Liu, “Producing GHZ state of nitrogen-vacancy centers in cavity QED,” Journal of Modern Optics 60(6-7), (Mar. 2013), 8 pages. |
Yang & Gu, “Novel calibration techniques for high pulsed-magnetic fields using luminescence caused by photo,” (with English machine translation), Journal of Huazhong University of Science and Technology, (Jun. 2007), 11 pages. |
Yavkin et al., “Defects in Nanodiamonds: Application of High-Frequency cw and Pulse EPR, ODMR,” Applied Magnetic Resonance, 45: 1035-1049 (Oct. 2014; published online Sep. 10, 2014), 15 pages. |
Yu et al., “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc., 127: 17604-17605 (Dec. 2005), 2 pages. |
Zhang et al., “Laser-polarization-dependent and magnetically controlled optical bistability in diamond nitrogen-vacancy centers,” Physics Letters A 377: 2621-2627 (Nov. 2013), 7 pages. |
Zhang et al., “Laser-polarization-dependent spontaneous emission of the zero phonon line from single nitrogen-vacancy center in diamond,” Chinese Physics B 24(3), (Apr. 2014), 13 pages. |
Zhang et al., “Scalable quantum information transfer between nitrogen-vacancy-center ensembles,” Annals of Physics, 355: 170-181 (Apr. 2015; available online Feb. 14, 2013), 12 pages. |
Zhao et al., “Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond,” Nature Nanotechnology, 5: 242-246 (Apr. 2011), 5 pages. |
Teale, “Magnetometry with Ensembles of Nitrogen Vacancy Centers in Bulk Diamond,” Master's Thesis, Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science (Sep. 2015), 57 pages. |
European Extended Search Report for Appl. Ser. No. 16743879.5 dated Sep. 11, 2018, 11 pages. |
European Extended Search Report for Appl. Ser. No. 16800410.9 dated Oct. 12, 2018, 11 pages. |
Niu, “Crack Detection of Power Line Based on Metal Magnetic Memory Non-destructive”, TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 12, No. 11, Nov. 1, 2014, pp. 7764-7771. |
U.S. Final Office Action for U.S. Appl. No. 15/380,691 dated Sep. 21, 2018, 12 pages. |
U.S. Final Office Action for U.S. Appl. No. 15/479,256 dated Sep. 10, 2018, 20 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/443,422 dated Oct. 2, 2018, 16 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/446,373 dated Oct. 1, 2018, 13 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/454,162 dated Sep. 10, 2018, 13 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/468,282 dated Oct. 10, 2018, 12 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/372,201 dated Oct. 15, 2018, 12 pages. |
U.S. Non-Final Office Action for Appl. U.S. Appl. No. 15/468,274 dated Oct. 26, 2018, 11 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 14/866,730 dated Aug. 15, 2018, 9 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/468,289 dated Oct. 17, 2018, 12 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/003,704 dated Nov. 2, 2018, 19 pages. |
U.S. Office Action for U.S. Appl. No. 15/468,397 dated Sep. 13, 2018, 7 pages. |
International Search Report and Written Opinion from related PCT application PCT/US2017/035315 dated Aug. 24, 2017, 7 pages. |
Ramsey, et al., “Phase Shifts in the Molecular Beam Method of Separated Oscillating Fields”, Physical Review, vol. 84, No. 3, Nov. 1, 1951, pp. 506-507. |
U.S. Notice of Allowance on U.S. Appl. No. 14/676,740 dated Sep. 1, 2017, 7 pages. |
U.S. Notice of Allowance on U.S. Appl. No. 15/003,206 dated Sep. 18, 2017, 11 pages. |
U.S. Notice of Allowance on U.S. Appl. No. 15/003,281 dated Sep. 26, 2017, 7 pages. |
U.S. Notice of Allowance on U.S. Appl. No. 15/476,636 dated Sep. 14, 2017, 10 pages. |
U.S. Office Action on U.S. Appl. No. 15/003,176 dated Sep. 27, 2017, 8 pages. |
U.S. Office Action on U.S. Appl. No. 15/003,292 dated Sep. 8, 2017, 8 pages. |
PCT/US2015/021093, Mar. 17, 2015 |
PCT/US2015/024265, Apr. 1, 2015. |
PCT/US2015/024723, Apr. 7, 2015. |
U.S. Appl. No. 14/866,730, filed Sep. 25, 2017. |
PCT/US2016/014389, Jan. 21, 2016 |
PCT/US2016/014336, Jan. 21, 2016 |
PCT/US2016/014403, Jan. 21, 2016 |
PCT/US2016/014331, Jan. 21, 2016 |
PCT/US2016/014387, Jan. 21, 2016 |
PCT/US2016/014390, Jan. 21, 2016 |
PCT/US2016/014385, Jan. 21, 2016 |
PCT/US2016/014375, Jan. 21, 2016 |
PCT/US2016/014298, Jan. 21, 2016. |
PCT/US2016/014297, Jan. 21, 2016. |
PCT/US2016/014377, Jan. 21, 2016. |
PCT/US2016/014392, Jan. 21, 2016. |
PCT/US2016/014395, Jan. 21, 2016. |
PCT/US2016/014394, Jan. 21, 2016. |
PCT/US2016/014386, Jan. 21, 2016. |
PCT/US2016/014333, Jan. 21, 2016. |
PCT/US2016/014328, Jan. 21, 2016. |
PCT/US2016/014325, Jan. 21, 2016. |
PCT/US2016/014330, Jan. 21, 2016. |
PCT/US2016/014388, Jan. 21, 2016. |
PCT/US2016/014380, Jan. 21, 2016. |
PCT/US2016/014290, Jan. 21, 2016. |
PCT/US2016/014363, Jan. 21, 2016. |
PCT/US2016/014287, Jan. 21, 2016. |
PCT/US2016/014291, Jan. 21, 2016. |
PCT/US2016/014396, Jan. 21, 2016. |
PCT/US2016/014384, Jan. 21, 2016. |
PCT/US2016/014376, Jan. 21, 2016. |
PCT/US2016/066566, Dec. 14, 2016. |
PCT/US2016/068320, Dec. 22, 2016. |
PCT/US2016/068344, Dec. 22, 2016. |
PCT/US2016/068366, Dec. 22, 2016. |
PCT/US2017/017321, Feb. 10, 2017. |
PCT/US2017/018099, Feb. 16, 2017. |
PCT/US2017/018709, Feb. 21, 2017. |
PCT/US2017/019411, Feb. 24, 2017. |
U.S. Appl. No. 15/446,373, filed Mar. 1, 2017. |
U.S. Appl. No. 15/450,504, filed Mar. 6, 2017. |
U.S. Appl. No. 15/454,162, filed Mar. 9, 2017. |
PCT/US2017/021593, Mar. 9, 2017. |
PCT/US2017/021811, Mar. 10, 2017. |
U.S. Appl. No. 15/456,913, filed Mar. 13, 2017. |
PCT/US2017/022118, Mar. 13, 2017. |
PCT/US2017/022279, Mar. 14, 2017. |
U.S. Appl. No. 15/468,356, filed Mar. 24, 2017. |
U.S. Appl. No. 15/468,397, filed Mar. 24, 2017. |
U.S. Appl. No. 15/468,386, filed Mar. 24, 2017. |
U.S. Appl. No. 15/468,289, filed Mar. 24, 2017. |
U.S. Appl. No. 15/468,641, filed Mar. 24, 2017. |
U.S. Appl. No. 15/468,582, filed Mar. 24, 2017. |
U.S. Appl. No. 15/468,410, filed Mar. 24, 2017. |
U.S. Appl. No. 15/468,951, filed Mar. 24, 2017. |
U.S. Appl. No. 15/468,559, filed Mar. 24, 2017. |
U.S. Appl. No. 15/468,282, filed Mar. 24, 2017. |
U.S. Appl. No. 15/468,314, filed Mar. 24, 2017. |
U.S. Appl. No. 15/468,274, filed Mar. 24, 2017. |
U.S. Appl. No. 15/468,303, filed Mar. 24, 2017. |
U.S. Appl. No. 15/469,374, filed Mar. 24, 2017. |
PCT/US17/24165, Mar. 24, 2017. |
PCT/US17/24167, Mar. 24, 2017. |
PCT/US17/24168, Mar. 24, 2017. |
PCT/US17/24169, Mar. 24, 2017. |
PCT/US17/24171, Mar. 24, 2017. |
PCT/US17/24172, Mar. 24, 2017. |
PCT/US17/18701, Feb. 21, 2017. |
PCT/US17/24173, Mar. 24, 2017. |
PCT/US17/24174, Mar. 24, 2017. |
PCT/US17/24175, Mar. 24, 2017. |
PCT/US17/24177, Mar. 24, 2017. |
PCT/US17/24179, Mar. 24, 2017. |
PCT/US17/24180, Mar. 24, 2017. |
PCT/US17/24181, Mar. 24, 2017. |
PCT/US17/24182, Mar. 24, 2017. |
U.S. Appl. No. 15/476,636, filed Mar. 31, 2017. |
U.S. Appl. No. 15/479,256, filed Apr. 4, 2017. |
U.S. Notice of Allowance dated Oct. 19, 2017, from related U.S. Appl. No. 15/179,957, 5 pages. |
U.S. Notice of Allowance dated Oct. 23, 2017, from related U.S. Appl. No. 15/003,797, 6 pages. |
U.S. Office Action dated Nov. 24, 2017, from related U.S. Appl. No. 15/003,145, 14 pages. |
U.S. Office Action dated Nov. 27, 2017, from related U.S. Appl. No. 15/468,386, 28 pages. |
Brenneis, et al. “Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene.” Nature nanotechnology 10.2 (2015): 135-139. |
Chavez, et al. “Detecting Arctic oil spills with NMR: a feasibility study.” Near Surface Geophysics 13.4 (Feb. 2015): 409-416. |
Dale, et al. “Medical applications of diamond magnetometry: commercial viability.” arXiv preprint arXiv:1705.01994 (May 8, 2017), pp. 1-7. |
Fologea, et al. “Detecting single stranded DNA with a solid state nanopore.” Nano Letters 5.10 (Aug. 15, 2005): 1905-1909. |
Gaebel, et al. “Room-temperature coherent coupling of single spins in diamond.” Nature Physics 2.6 (May 28, 2006): 408-413. |
Heerema, et al. “Graphene nanodevices for DNA sequencing.” Nature nanotechnology 11.2 (Feb. 3, 2016): 127-136. |
International Search Report and Written Opinion of the International Searching Authority dated Apr. 4, 2017 from related PCT application PCT/US16/68366, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 13, 2017 from related PCT application PCT/US2016/68320, 10 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 27, 2017 from related PCT application PCT/US16/68344, 6 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Mar. 31, 2017 from related PCT application PCT/US2016/066566, 11 pages. |
International Search Report and Written Opinion of the International Searching Authority dated May 10, 2017 from related PCT application PCT/US17/19411, 8 pages. |
International Search Report and Written Opinion of the International Searching Authority dated May 18, 2017, from related PCT application PCT/US2017/021593, 10 pages. |
International Search Report and Written Opinion of the International Searching Authority dated May 19, 2017, from related PCT application PCT/US17/18099, 16 pages. |
International Search Report and Written Opinion of the International Searching Authority dated May 3, 2017 from related PCT application PCT/US2017/018701, 8 pages. |
International Search Report and Written Opinion of the International Searching Authority dated May 4, 2017 from related PCT application PCT/US2017/018709, 8 pages. |
International Search Report and Written Opinion of the International Searching Authority dated May 8, 2017 from related PCT application PCT/US2017/17321, 17 pages. |
Keyser “Enhancing nanopore sensing with DNA nanotechnology.” Nature nanotechnology 11.2 (Feb. 2016): 106-108. |
Lindsay “The promises and challenges of solid-state sequencing.” Nature nanotechnology 11.2 (Feb. 2016): 109-111. |
Matlashov, et al. “SQUIDs for magnetic resonance imaging at ultra-low magnetic field.” PIERS online 5.5 (2009): 466-470. |
Matlashov, et al. “SQUIDs vs. induction coils for ultra-low field nuclear magnetic resonance: experimental and simulation comparison.” IEEE Transactions on Applied Superconductivity 21.3 (Jan. 1, 2012): 465-468. |
Moessle, et al. “SQUID-detected magnetic resonance imaging in microtesla fields.” Annu. Rev. Biomed. Eng. 9 (May 23, 2008): 389-413. |
Pelliccione, et al., Two-dimensional nanoscale imaging of gadolinium spins via scanning probe relaxometry with a single spin in diamond, Phys. Rev. Applied 2.5, (Sep. 8, 2014): 054014 pp. 1-17. |
Qiu et al., “Low-field NMR Measurement Procedure when SQUID Detection is Used,” IEEE/CSC & ESAS European Superconductivity News Forum, No. 5, Jul. 2008. |
Qiu, et al. “SQUID-detected NMR in Earth's magnetic field.” Journal of Physics: Conference Series. vol. 97. No. 1. IOP Publishing, Mar. 2008, pp. 1-7. |
Steinert et al., “Magnetic spin imaging under ambient conditions with sub-cellular resolution.” Nature Comms 4:1607 (Mar. 19, 2013). |
Sushkov, et al. “All-optical sensing of a single-molecule electron spin.” Nano letters 14.11 (Nov. 7, 2013): 6443-6448. |
Tetienne, et al. “Spin relaxometry of single nitrogen-vacancy defects in diamond nanocrystals for magnetic noise sensing.” Physical Review B 87.23 (Apr. 3, 2013): 235436-1-235436-5. |
U.S. Notice of Allowance dated Mar. 15, 2017, from related U.S. Appl. No. 15/351,862, 6 pages. |
U.S. Notice of Allowance dated May 26, 2017 from related U.S. Appl. No. 15/218,821, 7 pages. |
U.S. Office Action dated Apr. 17, 2017, from related U.S. Appl. No. 15/003,558, 12 pages. |
U.S. Office Action dated Mar. 1, 2017, from related U.S. Appl. No. 15/003,634, 7 pages. |
U.S. Office Action dated Mar. 16, 2017, from related U.S. Appl. No. 15/218,821, 7 pages. |
U.S. Office Action dated May 22, 2017, from related U.S. Appl. No. 15/003,206, 12 pages. |
Wells, et al. “Assessing graphene nanopores for sequencing DNA.” Nano letters 12.8 (Jul. 10, 2012): 4117-4123. |
Wysocki et al., “Modified Walsh-Hadamard sequences for DS CDMA wireless systems.” Int. J. Adaptive Control and Signal Processing 16(8): 589-602 (Oct. 2002; first published online Sep. 23, 2002), 25 pages. |
Bui et al., “Noninvasive Fault Monitoring of Electrical Machines by Solving the Steady-State Magnetic Inverse Problem,” in IEEE Transactions on Magnetics, vol. 44, No. 6, pp. 1050-1053, Jun. 24, 2008. |
Chadebec et al., “Rotor fault detection of electrical machines by low frequency magnetic stray field analysis,” 2005 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Vienna, 2005, submitted Mar. 22, 2006, pp. 1-6. |
Froidurot et al., “Magnetic discretion of naval propulsion machines,” in IEEE Transactions on Magnetics, vol. 38, No. 2, pp. 1185-1188, Mar. 2002. |
IEEE Std 802.11 TM-2012 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 1 page. |
Kwon et al., “Analysis of the far field of permanent-magnet motors and effects of geometric asymmetries and unbalance in magnet design,” in IEEE Transactions on Magnetics, vol. 40, No. 2, pp. 435-442, Mar. 2004. |
Maertz et al., “Vector magnetic field microscopy using nitrogen vacancy centers in diamond”, Applied Physics Letters 96, No. 9, Mar. 1, 2010, pp. 092504-1-092504-3. |
U.S. Notice of Allowance dated Feb. 2, 2018, from related U.S. Appl. No. 15/003,292, 8 pages. |
U.S. Notice of Allowance dated Feb. 21, 2018, from related U.S. Appl. No. 15/003,176, 9 pages. |
U.S. Office Action dated Feb. 1, 2018, from related U.S. Appl. No. 15/003,577, 16 pages. |
U.S. Office Action dated Feb. 5, 2018, from related U.S. Appl. No. 15/450,504, 12 pages. |
U.S. Office Action dated Jan. 25, 2018, from related U.S. Appl. No. 15/672,953, 28 pages. |
U.S. Office Action dated Jan. 26, 2018, from related U.S. Appl. No. 15/003,678, 14 pages. |
U.S. Office Action dated Mar. 27, 2018, from related U.S. Appl. No. 15/468,386, 21 pages. |
U.S. Office Action dated Mar. 28, 2018, from related U.S. Appl. No. 15/003,177, 12 pages. |
U.S. Office Action dated Mar. 5, 2018, from related U.S. Appl. No. 14/866,730, 14 pages. |
U.S. Office Action dated Mar. 8, 2018, from related U.S. Appl. No. 15/380,691, 12 pages. |
U.S. Office Action dated Mar. 8, 2018, from related U.S. Appl. No. 15/479,256, 30 pages. |
Wegerich, “Similarity based modeling of time synchronous averaged vibration signals for machinery health monitoring,” 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720), 2004, pp. 3654-3662 vol. 6. |
Wikipedia, “Continuous phase modulation”, downloaded from https://web.archive.org/web/20151017015236/https://en.wikipedia.org/wiki/Continuous_phase_modulation on May 10, 2017, 3 pages. |
Wikipedia, “Minimum-shift keying”, downloaded from https://web.archive.org/web/20151017175828/https://en.wikipedia.org/wiki/Minimum-shift_keying on May 10, 2017, 2 pages. |
Fallah et al., “Multi-sensor approach in vessel magnetic wake imaging,” Wave Motion 51(1): 60-76 (Jan. 2014), retrieved from http://www.sciencedirect.com/science/article/pii/S0165212513001133 (Aug. 21, 2016), 17 pages. |
International Preliminary Report on Patentability dated Oct. 20, 2016 from related PCT application PCT/US2015/024723, 7 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Sep. 13, 2016 from related PCT application PCT/US16/14377, 11 pages. |
Notice of Allowance dated Aug. 17, 2016, from related U.S. Appl. No. 15/003,718, 8 pages. |
Notice of Allowance dated Sep. 8, 2016, from related U.S. Appl. No. 15/003,298, 10 pages. |
Soykal et al., “Quantum metrology with a single spin-3/2 defect in silicon carbide,” Mesoscale and Nanoscale Physics (May 24, 2016), retrieved from https://arxiv.org/abs/1605.07628 (Sep. 22, 2016), 9 pages. |
U.S. Office Action dated Aug. 24, 2016 from related U.S. Appl. No. 14/676,740, 19 pages. |
U.S. Office Action dated Oct. 14, 2016 from related U.S. Appl. No. 15/003,677, 13 pages. |
U.S. Office Action dated Oct. 19, 2016 from related U.S. Appl. No. 15/218,821, 6 pages. |
U.S. Office Action dated Nov. 2, 2016 from related U.S. Appl. No. 15/003,256, 19 pages. |
U.S. Office Action dated Nov. 3, 2016 from related U.S. Appl. No. 15/204,675, 9 pages. |
Widmann et al., “Coherent control of single spins in silicon carbide at room temperature,” Nature Materials, 14: 164-168 (Feb. 2015) (available online Dec. 1, 2014), 5 pages. |
European Extended Search Report for Appl. Ser. No. 16740794.9 dated Nov. 12, 2018, 12 pages. |
Halbach et al., “Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt Material”, Nuclear Instruments and Methods, North Holland Publishing Co., Amsterdam, NL., vol. 169, Jan. 1, 1980, pp. 1-5, XP001032085, DOI: 10.1016/0029-554X(80) 90094-4. |
Hodges et al., “Time-keeping with electron spin states in diamond”, Dept. of Electrical Engineering and Dept. of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, Aug. 30, 2011, 13 pages. |
Hodges et al., Appendix, “Time-keeping with electron spin states in diamond”, Dept. of Electrical Engineering and Dept. of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, Aug. 27, 2012, 46 pages. |
International Search Report and Written Opinion for PCT Appl. Ser. No. PCT/US2018/041527 dated Feb. 4, 2019, 22 pages. |
U.S. Ex Parte Quayle Action for U.S. Appl. No. 15/468,641 dated Nov. 28, 2018, 11 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/003,177 dated Jan. 14, 2019, 15 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/003,670 dated Nov. 27, 2016, 14 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/382,045 dated Dec. 31, 2018, 16 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/400,794 dated Jan. 10, 2019, 6 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/468,356 dated Jan. 2, 2019, 10 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/468,951 dated Dec. 13, 2018, 9 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/003,670 dated Feb. 1, 2019, 7 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/350,303 dated Dec. 26, 2018, 10 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/450,504 dated Dec. 13, 2018, 7 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/454,162 dated Jan. 17, 2019, 8 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/468,397 dated Dec. 12, 2018, 5 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/468,641 dated Feb. 7, 2019, 10 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/479,256 dated Feb. 4, 2019, 7 pages. |
Teeling-Smith et al., “Electron Paramagnetic Resonance of a Single NV Nanodiamond Attached to an Individual Biomolecule”, Biophysical Journal 110, May 10, 2016, pp. 2044-2052. |
UK Office Action dated Jun. 8, 2018, from related application No. GB1617438.5, 3 pages. |
U.S. Final Office Action dated Jul. 26, 2018 from related U.S. Appl. No. 15/003,177, 14 pages. |
U.S. Non-Final Office Action dated Aug. 6, 2018 from related U.S. Appl. No. 15/376,244, 28 pages. |
U.S. Non-Final Office Action dated Aug. 9, 2018 from related U.S. Appl. No. 15/003,309, 22 pages. |
U.S. Non-Final Office Action dated Jul. 20, 2018 from related U.S. Appl. No. 15/350,303, 13 pages. |
U.S. Non-Final Office Action dated Jul. 26, 2018 from related U.S. Appl. No. 15/380,419, 11 pages. |
U.S. Non-Final Office Action dated Jul. 3, 2018 from related U.S. Appl. No. 15/003,396, 19 pages. |
U.S. Notice of Allowance dated Jul. 18, 2018 from related U.S. Appl. No. 15/468,386, 12 pages. |
U.S. Notice of Allowance dated Jul. 6, 2018 from related U.S. Appl. No. 15/672,953, 11 pages. |
U.S. Notice of Allowance dated Jun. 27, 2018 from related U.S. Appl. No. 15/003,519, 21 pages. |
U.S. Notice of Allowance dated May 15, 2018, from related U.S. Appl. No. 15/003,209, 7 pages. |
U.S. Notice of Allowance dated May 16, 2018, from related U.S. Appl. No. 15/003,145, 8 pages. |
U.S. Office Action dated Jun. 19, 2018, from related U.S. Appl. No. 15/450,504, 12 pages. |
International Search Report and Written Opinion for PCT Appl. Ser. No. PCT/US2018/041411 dated Feb. 8, 2019, 13 pages. |
Schonfeld, “Optical readout of single spins for quantum computing and magnetic sensing”, Dissertation, Fachbereich Physlk der Freien Universitat Berlin, May 1, 2011, 21 Pages (relevant pages only), XP055143403. Retrieved from the Internet: URL: http://www.dlss.fu-berlln.de/diss/servlets/MCRFlleNodeServleUFU DISS_derivate_00000001219 9/Dlssertatlon_Slmon-choenfela_PubllcVersion-2.pdfJsessionid-89A943688E59. |
U.S. Final Office Action for U.S. Appl. No. 15/003,396 dated Mar. 22, 2019, 13 pages. |
U.S. Final Office Action for U.S. Appl. No. 15/382,045 dated Apr. 26, 2019, 16 pages. |
U.S. Final Office Action for U.S. Appl. No. 15/443,422 dated Mar. 7, 2019, 17 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/003,193 dated Apr. 11, 2019, 7 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/003,309 dated Feb. 13, 2019, 16 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/003,617 dated Feb. 26, 2019, 10 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/372,201 dated Apr. 2, 2019, 10 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/419,832 dated Feb. 8, 2019, 12 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/440,194 dated Feb. 15, 2019, 21 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/446,373 dated Apr. 19, 2019, 8 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/468,314 dated Mar. 28, 2019, 17 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/468,410 dated Apr. 11, 2019, 15 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/468,559 dated Apr. 11, 2019, 12 pages. |
U.S. Non-Final Office Action for U.S. Appl. No. 15/469,374 dated Feb. 28, 2019, 14 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/003,617 dated Apr. 30, 2019, 9 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/376,244 dated Feb. 21, 2019, 7 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/380,419 dated Feb. 26, 2019, 5 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/400,794 dated Apr. 25, 2019, 5 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/437,038 dated Mar. 21, 2019, 13 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/437,222 dated Mar. 25, 2019, 11 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/468,282 dated Feb. 19, 2019, 8 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/468,56 dated Apr. 22, 2019, 8 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/468,582 dated Mar. 21, 2019, 13 pages. |
U.S. Notice of Allowance for U.S. Appl. No. 15/468,951 dated Mar. 28, 2019, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20180011151 A1 | Jan 2018 | US |