The present invention relates to a surgical device, system, and method of use and, more particularly, to an endoscopic, minimally-invasive, multi-functional, modular cautery device, system, and method of use.
Endoscopic, minimally invasive, surgery relies on instrumentation for achieving hemostasis and surgical outcomes comparable to traditional open surgery techniques via comparatively small corridors, or ports, (e.g., nostrils or keyholes) within a patient. As yet, conventionally used bipolar cautery forceps have not been effectively translated into a functional instrument for use through the smaller corridors of this minimally invasive surgery. Presently used bipolar cauterization instruments suffer from limited mobility and visualization within the smaller corridors of minimally-invasive surgery and are difficult to use due to the relatively poor depth perception and stereoscopic vision offered within those corridors.
A surgical cautery device, system, and method of use are herein described. The device is a modified method of applying bipolar and/or sesquipolar electrocautery to target tissue via a pair of instruments that retain other primary surgical functions. The device may include a first and second element. The second element may be independently positionable with respect to the first element. The first and second elements include a surgical component and may be capable of forming an electrical circuit. The surgical component may be made from an electrically conductive material, such as stainless steel. Exemplary surgical components include a cutting tool, rotary blade, grasper tool, micro-grasping forceps tool, ring curette, dissector or micro-dissector, micro-scissors tool, and a suction cannula, although a wide variety of insulated surgical instruments may be incorporated into this system. The surgical components are interchangeable, and can therefore be used in any combination to provide cautery application and increase efficiency of the operation. For example, when one surgical component is a suction cannula, it may be interchangeable with a cutting tool, a rotary blade, a grasper tool, a micro-scissors tool, a micro-grasping forceps tool, a dissector, a micro-dissector, or another suction cannula.
In many instances, the first and second elements are configured to contact a target tissue of a patient and, upon completion of the electrical circuit, deliver electrical energy to the target tissue. Often times, the delivery of the electrical energy to the target tissue acts to cauterize the target tissue.
Often times, a tip of the first and second elements may be electrically conductive while a portion of the first and second elements are electrically insulated from the tip. The first element and the second element may approach the target tissue through, for example, a conventional type of surgical opening, a single port (e.g., an endoscopic or microsurgery port), or a plurality of separate ports in the patient and may be configured to be manipulated by, for example, by a human surgeon and/or a robot.
Another exemplary device includes an electrically conductive wire that is electrically connected to an electrically insulated element. The electrically insulated element may include an electrically conductive surgical component. The surgical component may be capable of delivering electrical energy to a target tissue of a patient via the electrically conductive wire.
Exemplary systems consistent with embodiments of the present invention may include a source of electrical energy electrically coupled to the first and second elements. The second element may be independently positionable with respect to the first element. The first and second elements may have a surgical component and may be capable of forming an electrical circuit and delivering electrical energy from the source to a target tissue of a patient upon completion of the electrical circuit. The systems may deliver, for example, cautery, sesquipolar cautery, and/or bipolar cautery.
The present invention is illustrated by way of example, and not limitation, in the figures of the accompanying drawings in which:
Electrosurgical devices apply a high-frequency electric current to biological target tissue to cut, coagulate, or desiccate the target tissue or at least a portion of the target tissue. Electrosurgical devices use a generator (e.g., power supply or waveform generator) and a hand piece including one or several electrodes. Electrosurgery techniques are used in, for example, dermatological, gynecological, cardiac, plastic, ocular, spine, ear, nose, and throat (ENT), maxillofacial, orthopedic, urological, neuro- and general surgical procedures as well as certain dental procedures.
One of the benefits of modern endoscopic surgery is the ability to work through two or more ports, via a bimanual and/or robotic approach. Rather than constrain the size and mobility of a cautery device to one port, one embodiment of the current surgical system proposes a novel electrocautery technique, in which two separate “electrodes” of the system are also independently insulated modular devices with their own functional purpose (e.g., micro-grasping forceps, suction cannula, micro-scissors, dissectors, micro-dissectors, etc.). These dually-functioning components of the cautery system can manipulate target tissue with much greater mobility and visualization, and independently transmit opposing current from one electrode to another in order to achieve a sesquipolar or bipolar cautery effect (depending on, for example, the size and surface area of the conducting electrode surfaces) from one electrode to the other. Rather than functionally diverge near the tip of the forceps, as current models for endoscopic bipolar forceps propose, the current invention has two separate electrodes with dual function as another surgical device. The two electrodes diverge outside of the patient rather than within the surgical cavity, and are connected to each other and a power supply via wiring in order to appropriately transmit opposing high-frequency current to contacted target tissue. Each functional electrode/element of the electrocautery device may be insulated with respect to the surgical component, so that current will only be transmitted selectively from one surgical component to the other. The modular devices can be connected and disconnected to, for example, standard wires used with power supplies, such as bipolar electro cautery generators, and may be used in various combinations (e.g., suction cannula and micro-scissors or micro-grasping forceps and micro-scissors). Current may be activated via any conventionally available means, such as with a foot pedal in a manner similar to existing bipolar devices.
The present invention provides increased mobility and visualization in cauterizing the surgical target when compared with conventional techniques, by, for example, allowing two or more elements with surgical components to approach target tissue from different depths, angles, and/or ports. Each surgical component may have independent, interchangeable, and/or functional properties (i.e., cutting, grasping, dissection, sucking, probing, etc.), thus allowing a surgeon to manipulate delicate surgical target tissue as it is cauterized in an efficient manner. In addition, according to the present invention, the size of a surgical opening within a patient (i.e., port) need only accommodate one surgical component, which, in many cases, is smaller than traditionally used cauterizing forceps.
The present invention further allows a surgeon to perform surgical operations and cauterize with the same surgical components, thereby reducing the need to remove surgical devices from the patient and subsequently insert a separate cauterization device. Thus, utilization of the present invention increases surgical efficiency and potentially reduces the risk of infection or damage to surrounding anatomical structures that may be caused by repeatedly removing and inserting devices.
The present invention is more particularly described with regard to the exemplary embodiments depicted in the figures that accompany the instant patent application. For example,
First and second elements 110 and 120 may be configured to deliver electrical energy 165 from power supply 150 to a contacted, or target, portion of tissue within a patient via surgical components 115 and/125. Exemplary target tissue includes a small blood vessel in need of cauterization, tumor, or other undesirable tissue to be removed from the patient. First and second elements 110 and 120 may be configured to be manipulated by a human surgeon and/or a robot and, on some occasions, may be configured to be used in microscopic or endoscopic single or multiple port surgery. In some embodiments, a portion of first and second elements 110 and 120, with the exception of a first and second surgical components 115 and 125, respectively, may be covered in electrical insulation 135 or may be otherwise insulated. In this way, only surgical components 115 and/or 125 may deliver electrical energy from power supply 150 to contacted tissue. Electrical insulation 135 may be any appropriate electrically insulating material including, but not limited to, plastic, vinyl, epoxy, parylene, or ceramic and may enable a surgeon to grasp and/or hold first and second elements 110 and 120 via, for example, graspers 140. First and/or second elements 110 and 120 as well as surgical components 115 and/or 125 may be disposable (i.e., one time use), or reusable (i.e., capable of being used multiple times).
On some occasions, first and second surgical components 115 and 125 may be similarly configured to one another with regard to shape and size and, in some instances, may comprise a matched pair of components. On other occasions, first surgical component 115 may be configured to perform a first function in addition to the conduction of electricity and second surgical component 125 may be configured to perform a second function in addition to the conduction of electricity. For example, first surgical component 115 may be configured to be operable by a robot while second surgical component 125 may be configured to be operable by a human surgeon. Additionally, one or both surgical components 115 and/or 125 may include one or more controls (not shown) that enable a manipulator of the surgical component (e.g., human surgeon or robot) to control the operation of the surgical component.
First and second elements 110 and 120 and/or first and second surgical components 115 and 125 may configured to be independently positionable by a human surgeon and/or a robot. In this way movement of, for example, first element 110 does not impact the position of second element 120. Likewise, on some occasions, movement of first surgical component 115 may not impact the position or functioning of second surgical component 125. In this manner, first and second elements 110 and 120 and/or first and second surgical components 115 and 125 may be moved independently within a patient and/or prior to entry into a patient to, for example, contact target tissue from different angles or enter different ports within a patient and/or perform different functions (in addition to the delivery of electricity) within the patient with regard to the target tissue.
In some embodiments, first and second elements 115 and 125 may be interchangeable with other elements via any known method. For example, first and/or second element 115 and/or 125 may be interchangeable at power supply 150 via extraction of electrical connector 145 coupled to first or second element 115 or 125 from power supply 150 and insertion of another electrical connector compatible with power supply 150 (not shown) electrically coupled to another element (not shown) into power supply 150. In this way, for example, micro-scissors element 115/125 as depicted in
In some embodiments, first and second surgical components may be similar to, or different from, one another. For example,
Hence, an endoscopic multi-port bipolar cautery device, system, and method of use have been herein described.
This application is a continuation of U.S. application Ser. No. 13/922,000, filed Jun. 19, 2013 and issued on Sep. 6, 2016 as U.S. Pat. No. 9,433,458 which is related to, incorporates by reference, and hereby claims the priority benefit of U.S. Provisional Patent Application No. 61/661,459, filed Jun. 19, 2012 by the present inventor.
Number | Name | Date | Kind |
---|---|---|---|
4686980 | Williams | Aug 1987 | A |
5376094 | Kline | Dec 1994 | A |
5766167 | Eggers | Jun 1998 | A |
6241725 | Cosman | Jun 2001 | B1 |
6264651 | Underwood et al. | Jul 2001 | B1 |
8182476 | Julian et al. | May 2012 | B2 |
20010014806 | Ellman et al. | Aug 2001 | A1 |
20020111615 | Cosman et al. | Aug 2002 | A1 |
20020188284 | To et al. | Dec 2002 | A1 |
20020188294 | Couture et al. | Dec 2002 | A1 |
20030130656 | Levin | Jul 2003 | A1 |
20030158545 | Hovda et al. | Aug 2003 | A1 |
20030171744 | Leung et al. | Sep 2003 | A1 |
20050113825 | Cosmescu | May 2005 | A1 |
20060184161 | Maahs | Aug 2006 | A1 |
20070066971 | Podhajsky | Mar 2007 | A1 |
20070156245 | Cauthen et al. | Jul 2007 | A1 |
20080221392 | Jorgensen | Sep 2008 | A1 |
20100023002 | DiCarlo | Jan 2010 | A1 |
20110178517 | Beller | Jul 2011 | A1 |
20120053406 | Conlon | Mar 2012 | A1 |
20130030429 | Rusin | Jan 2013 | A1 |
Entry |
---|
Cappabianca, Paolo, “Expanded Endoscopic Endonasal Approaches to the Skull Base.” Cranial, Craniofacial and Skull Base Surgery. Milan: Springer, 2010. |
Number | Date | Country | |
---|---|---|---|
20170049498 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
61661459 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13922000 | Jun 2013 | US |
Child | 15221306 | US |