The present disclosure generally relates to optoelectronic semiconductor devices, and more particularly to multi-junction optoelectronic devices with Group IV semiconductor as a bottom junction and method of manufacturing the multi-junction optoelectronic devices.
There is a need for providing optoelectronic semiconductor devices, also referred simply as optoelectronic devices, that have improved efficiency when compared to the efficiency of conventional optoelectronic devices. These improved devices need to be, however, cost effective, easily implemented and/or adaptable to existing environments. The present disclosure describes various aspects of technical solutions that address such needs.
A multi-junction optoelectronic device with Group IV semiconductor as a bottom junction and method of manufacturing the multi-junction optoelectronic device are disclosed. The method for fabricating a multi-junction optoelectronic device comprises providing a first p-n structure on a substrate, wherein the first p-n structure comprises a first base layer of a first semiconductor with a first bandgap such that a lattice constant of the first semiconductor matches a lattice constant of the substrate, and wherein the first semiconductor comprises a Group III-V semiconductor. The method further comprises providing a second p-n structure on the first p-n structure, wherein the second p-n structure comprises a second base layer of a second semiconductor with a second bandgap, wherein a lattice constant of the second semiconductor matches a lattice constant of the first semiconductor, and wherein the second semiconductor comprises a Group IV semiconductor. The method further comprises lifting the multi-junction optoelectronic device off the substrate, wherein the multi-junction optoelectronic device comprises the first p-n structure and the second p-n structure, and wherein the multi-junction optoelectronic device is a flexible device.
In another aspect of the disclosure, the multi-junction optoelectronic device comprises a first p-n structure, wherein the first p-n structure comprises a first base layer of a first semiconductor with a first bandgap such that a lattice constant of the first semiconductor matches a lattice constant of a substrate, and wherein the first semiconductor comprises a Group III-V semiconductor. The multi-junction optoelectronic device further comprises a second p-n structure formed by epitaxial growth on the first p-n structure, wherein the second p-n structure comprises a second base layer of a second semiconductor with a second bandgap, wherein a lattice constant of the second semiconductor matches a lattice constant of the first semiconductor, and wherein the second semiconductor comprises a Group IV semiconductor. The multi-junction optoelectronic device is lifted off the substrate and comprises the first p-n structure and the second p-n structure. The multi-junction optoelectronic device formed in this manner is a flexible device.
In yet another aspect of the disclosure, a multi-junction optoelectronic device comprises a first p-n structure having a first p-n junction and a second p-n junction, wherein the first p-n junction comprises a first single-crystalline Group III-V semiconductor with a first bandgap such that a lattice constant of the first single-crystalline Group III-V semiconductor matches a lattice constant of a substrate. The multi-junction optoelectronic device further comprises a second p-n structure formed by epitaxial growth on the first p-n structure, wherein the second p-n structure comprises a third p-n junction having a second single-crystalline Group IV semiconductor with a second bandgap, and wherein a lattice constant of the second single-crystalline Group IV semiconductor matches a lattice constant of the first single-crystalline Group III-V semiconductor. The multi-junction optoelectronic device is lifted off the substrate and comprises the first p-n structure and the second p-n structure. The multi-junction optoelectronic device formed in this manner is a flexible device. In an embodiment or implementation, the substrate comprises a GaAs wafer and the third p-n junction of the second p-n structure comprises a Group IV semiconductor made up of Si, Ge, Sn, or a combination therefore such that the Group IV semiconductor forms a bottom junction, away from the external light source, of the multi-junction optoelectronic device after the multi-junction optoelectronic device is separated from the substrate.
So that the manner in which the above recited features and various aspects of the disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, can be had by reference to various embodiments or implementations, some of which are illustrated in the appended figures. It is to be noted, however, that the appended figures illustrate only examples of embodiments or implementations of various aspects of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure can admit to other equally effective embodiments or implementations.
The present disclosure generally relates to optoelectronic semiconductor devices, also referred simply as optoelectronic devices, and more particularly to multi-junction optoelectronic devices with Group IV semiconductor as a bottom junction. The following description is presented to enable one of ordinary skill in the art to make and use the features and aspects of this disclosure and is provided in the context of a patent application and its requirements. Various modifications to the examples of embodiments and implementations provided and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present disclosure is not intended to be limited to the examples of embodiments or implementations shown but is to be accorded the widest scope consistent with the principles and features described herein.
As described above, the present disclosure relates to multi-junction optoelectronic devices with Group IV semiconductor as a bottom junction and the fabrication processes for forming such optoelectronic devices. Accordingly, the present disclosure describes various aspects of the fabrication of thin film devices, such as photovoltaic devices, light-emitting diodes (LEDs), or other optoelectronic devices, that can be used as the multi-junction optoelectronic devices described herein.
It is desirable to improve the performance of an optoelectronic device such as a photovoltaic cell or a light-emitting diode, for example, to improve the efficiency thereof without significantly affecting the cost or adding to overall size of the device. These devices should, therefore, be cost effective, easily implemented and/or adaptable to existing environments. The present disclosure describes various aspects of technical solutions that address such needs.
Generally, the performance of an optoelectronic device such as a photovoltaic cell (e.g., solar cell) or a light-emitting diode (LED) is improved by improving the light absorption/conversion efficiency of the cell or the light generation efficiency of the LED. High efficiency photovoltaic cells can be fabricated by growing materials with different band-gaps such that the highest band-gap material is on the light-facing side (e.g., front side) and the lowest band gap material is on the opposite side (e.g., back side). This results in the absorption of photons with different energy by different layers, improving the efficiency of the photovoltaic cell since this arrangement results in more photons being absorbed and thus generating a larger current. This can be achieved using different approaches; however, each approach has its own disadvantages.
Growing multiple layers of differing band gap materials (i.e., materials having different energy gaps) is desired for improving efficiency, but results in lattice mismatch between the growth substrate and different layers as well as between different layers, lowering the overall efficiency of the resulting photovoltaic cell (with similar inefficiencies arising in the operation of light-emitting diodes). Therefore, another approach is used to grow lattice-mismatched multi-junction optoelectronic devices (e.g., lattice-mismatched multi-junction solar cells) using a metamorphic graded layer to allow for difference in lattice constants, for example, using InGaAs as the bottom junction. The metamorphic approach leads to a lot of wasted metalorganic chemical vapor deposition (MOCVD) precursor material and reduced MOCVD tool throughput.
A different approach from the ones described above is to grow lattice-matched multi-junction optoelectronic devices using Ge as the bottom junction. Ge is widely used as a bottom cell (e.g., to provide a bottom junction) of GaAs-based multi-junction optoelectronic devices. However, since Ge has a lower than optimal bandgap, using Ge can result in substantial reduction in the conversion efficiency. Also, there is a small lattice mismatch between Ge and GaAs. To overcome these issues, the semiconductor In is sometimes added to GaAs to form InGaAs to improve lattice matching to a Ge substrate. However, this technique of using InGaAs may not work if the substrate is GaAs instead since the lattice constant of InGaAs and that of GaAs differ significantly resulting in lattice mismatch between these two materials.
The use of Group IV elements, also referred to as Group IV semiconductors, comprising a combination of Si, Ge, and/or Sn as a bottom cell of GaAs-based multi-junction optoelectronic devices can achieve a better lattice match. For example, a better match can be achieved between the lattice constant of SiGe and that of the GaAs substrate than Ge substrate. In addition, the band gap of SiGe is closer to the optimal band gap for efficiency in GaAs-based multi-junction optoelectronic devices. Therefore, SiGe, including lattice-mismatched SiGe, can be used to increase the band gap to improve the efficiency of the multi-junction optoelectronic devices.
Various aspects of a method for forming a multi-junction optoelectronic device comprising a Group IV semiconductor as a bottom cell (e.g., to provide a bottom junction) according to various aspects of the disclosure are described herein. In this disclosure, in an embodiment or implementation, SiGe can be used as the bottom cell of a GaAs-based multi-junction optoelectronic device to achieve better lattice matching to a GaAs substrate as well as higher band-gap for improved efficiency.
Many of the thin film devices described herein (e.g., multi-junction optoelectronic devices such as photovoltaic cells or LEDs) generally contain epitaxially grown layers which are formed on a sacrificial layer disposed on or over a support substrate or wafer. The thin film devices thus formed can be flexible single crystal devices. Once the thin film devices are formed by epitaxy processes, the thin film devices are subsequently removed or separated from the support substrate or wafer, for example during an epitaxial lift off (ELO) process, a laser lift off (LLO) process, or a spalling process etc.
As used in this disclosure, a layer can be described as being deposited “on or over” one or more other layers. This term indicates that the layer can be deposited directly on top of the other layer(s), or can indicate that one or more additional layers can be deposited between the layer and the other layer(s) in some embodiments or implementations. Also, the other layer(s) can be arranged in any order. To describe the features of the present disclosure in more detail reference is made to the following discussion in conjunction with the accompanying figures.
In some embodiments or implementations, the sacrificial layer can be disposed on the substrate (e.g., at 102 in
In an embodiment or implementation, the first p-n structure can be grown on a substrate (e.g., on the sacrificial layer on the substrate), for example, a GaAs wafer can be used, with epitaxially grown layers as thin films made of Group III-V materials (e.g., Group III-V semiconductors). The first p-n structure can be formed by epitaxial growth using various techniques, for example, metalorganic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), metalorganic vapor phase epitaxy (MOVPE or OMVPE), liquid phase epitaxy (LPE), hydride vapor phase epitaxy (HYPE), close-spaced vapor transport (CSVT) epitaxy, etc. In some embodiments the first p-n structure is substantially a single crystal. The first p-n structure can include a single-crystalline semiconductor material.
In some embodiments or implementations, the epitaxially grown layers of Group III-V materials can be formed using a high growth rate deposition process (e.g., a high growth rate vapor deposition process). The high growth rate deposition process is such that grown materials are of sufficient quality for use in the types of optoelectronic devices described herein. The high growth rate deposition process allows for growth rates of greater than 5 μm/hr, such as about 10 μm/hr or greater, or as high as about 100 μm/hr or greater. For example, the growth rates can be about 10 μm/hr, about 20 μm/hr, about 30 μm/hr, about 40 μm/hr, about 50 μm/hr, about 60 μm/hr, about 70 μm/hr, about 80 μm/hr, about 90 μm/hr, or about 100 μm/hr, some specific rate between any two of these values (e.g., about 25 μm/hr—between 20 μm/hr and 30 μm/hr), or some range between any two of these values (e.g., range from about 20 μm/hr to about 30 μm/hr). In some embodiments or implementations, the high growth rate deposition process allows for growth rates of greater than 100 μm/hr, including growth rates of about 120 μm/hr. The term “about” as used in this disclosure can indicate a variation of 1%, 2%, 3%, 4%, 5%, or 10%, for example, from a nominal value. The high growth rate deposition process includes heating a wafer to a deposition temperature of about 550° C. or greater (e.g., the deposition temperature can be as high as 750° C. or 850° C.), within a processing system, exposing the wafer to a deposition gas containing a chemical precursor, such as a Group III-containing precursor gas and a Group V-containing precursor gas, and depositing a layer containing a Group III-V material on the wafer. The Group III-containing precursor gas can contain a Group III element, such as indium, gallium, or aluminum. For example, the Group III-containing precursor gas can be one of trimethyl aluminum, triethyl aluminum, trimethyl gallium, triethyl gallium, trimethyl indium, triethyl indium, di-isopropylmethylindium, or ethyldimethylindium. The Group V-containing precursor gas can contain a Group V element, such as nitrogen, phosphorus, arsenic, or antimony. For example, the Group V-containing precursor gas can be one of phenyl hydrazine, dimethylhydrazine, tertiarybutylamine, ammonia, phosphine, tertiarybutyl phosphine, bisphosphinoethane, arsine, tertiarybutyl arsine, monoethyl arsine, trimethyl arsine, trimethyl antimony, triethyl antimony, or tri-isopropyl antimony, stibine.
The deposition processes for depositing or forming Group III-V materials, as described herein, can be conducted in various types of deposition chambers. For example, one continuous feed deposition chamber that can be utilized for growing, depositing, or otherwise forming Group III-V materials, is described in the commonly assigned U.S. patent application Ser. Nos. 12/475,131 and 12/475,169 (issued as U.S. Pat. No. 8,602,707), both filed on May 29, 2009, which are herein incorporated by reference in their entireties.
Some examples of layers usable in device and methods for forming such layers are disclosed in commonly assigned U.S. Pat. No. 9,136,418, issued Sep. 15, 2015, and U.S. Pat. No. 9,178,099, issued Nov. 3, 2015, and incorporated herein by reference in their entirety.
In an embodiment or implementation, the first p-n structure comprises multiple p-n junctions, for example, a first p-n junction, a second p-n junction up to an nth p-n junction. That is, the first p-n structure can include one, two, or more p-n junctions. In one example, the first p-n structure includes only one p-n junction. Each of the first through n−1th p-n junction can contain various arsenide, phosphide, and nitride layers, such as AlGaAs, InGaAs, AlInGaAsP, AlInP, InGaP, AlInGaP, GaP, GaN, InGaN, AlGaN, AlInGaN, alloys thereof, derivatives thereof, or combinations thereof. For example, the nitride and phosphide layers can include one or more of InGaP, AlInGaP, GaN, InGaN, AlGaN, AlInGaN, GaP, alloys of any of these, or derivatives of any of these. The nth p-n junction can contain various arsenide, phosphide, and nitrade layers, such as GaAs, AlGaAs, InGaAs, AlInGaAs, InGaAsP, AlInGaAsP, GaN, InGaN, alloys thereof, derivatives thereof and combinations thereof. In general each of these p-n junctions comprises a Group III-V semiconductor and includes at least one of gallium, aluminum, indium, phosphorus, nitrogen, or arsenic.
In an embodiment or implementation, the first p-n junction of the first p-n structure comprises indium gallium phosphide material or derivatives thereof. The indium gallium phosphide material can contain various indium gallium phosphide layers, such as an indium gallium phosphide, aluminum indium gallium phosphide, etc. For example, in one embodiment or implementation, the first p-n structure comprises a p-type aluminum indium gallium phosphide layer or stack disposed above an n-type indium gallium phosphide layer or stack, where the combination of these two stacks can form the first p-n junction. As described in this disclosure, a stack can refer to a set of one or more layers such that an n-type stack includes a set of one or more layers of which at least one of the layers in the set is an n-type layer or includes an n-type material, while a p-type stack includes a set of one or more layers of which at least one of the layers in the set is an p-type layer or includes an p-type material.
In one example, the p-type aluminum indium gallium phosphide stack has a thickness within a range from about 100 nm to about 3,000 nm and the n-type indium gallium phosphide stack has a thickness within a range from about 100 nm to about 3,000 nm. In one example, the n-type indium gallium phosphide stack has a thickness within a range from about 400 nm to about 1,500 nm.
In another embodiment or implementation, the first p-n junction of the first p-n structure comprises aluminum indium gallium phosphide material or derivatives thereof. The aluminum indium gallium phosphide material can contain various aluminum indium gallium phosphide layers, such as an aluminum indium phosphide, aluminum indium gallium phosphide, etc. For example, in one embodiment or implementation, the p-n structure comprises a p-type aluminum indium phosphide layer or stack disposed above an n-type aluminum indium gallium phosphide layer or stack, where the combination of these two stacks can form the first p-n junction.
In an embodiment the first p-n junction, the second p-n junction, or the nth p-n junction of the first p-n structure comprises gallium arsenide material, and derivatives thereof, for example, GaAs, AlGaAs, InGaAs, AlInGaAs, InGaAsP, AlInGaAsP, alloys thereof, derivatives thereof and combinations thereof. The gallium arsenide material can contain various gallium arsenide layers, such as gallium arsenide, aluminum gallium arsenide, indium gallium arsenide, aluminum indium gallium arsenide etc. For example, in one embodiment the nth p-n junction comprises a p-type aluminum gallium arsenide layer or stack disposed above an n-type gallium arsenide layer or stack.
In an embodiment or implementation, the first p-n junction, the second p-n junction, or the nth p-n junction of the first p-n structure comprises gallium phosphide material, and derivatives thereof, for example, GaP, InGaP, AlInP, AlGaP, AlInGaP, InGaAsP, AlInGaAsP, alloys thereof, derivatives thereof, and combinations thereof.
For some embodiments or implementations, an interface or intermediate layer can be formed between an emitter layer and a base layer (e.g., between emitter and base layers in a p-n junction or a p-n structure). The intermediate layer can comprise any suitable Group III-V compound semiconductor, such as GaAs, AlGaAs, InGaP, AlInGaP, InGaAsP, AlInGaAsP, AlInP, or a combination thereof. The intermediate layer can be n-doped, p-doped, or not intentionally doped. The thickness of the interface layer can be in the range of about 5 nm to about 200 nm, for example. The intermediate layer is located between a p-doped layer and an n-doped layer, and can be comprised of the same material as either the n-doped layer or the p-doped layer, or can be comprised of a different material from either the n-doped layer or the p-doped layer, and/or can a layer of a graded composition. The intermediate layer thus formed can provide a location offset for one or more heterojunctions from a corresponding p-n junction. Such an offset can allow for reduced dark current within the device, improving its performance.
In an embodiment or implementation, the second p-n structure can be grown on the first p-n structure (as shown in 106 in
In an embodiment or implementation, the method 100 can include providing a first junction (e.g., p-n junction) of the first p-n structure, (e.g., InGaP) on a substrate (e.g., GaAs) via step 102. Additional p-n junctions can be grown on the first p-n junction, for example, GaAs. In an embodiment or implementation, the first p-n junction can contain various arsenide, nitride, and phosphide layers, such as GaAs, AlGaAs, InGaP, AlInGaP, GaN, InGaN, AlGaN, AlInGaN, GaP, alloys thereof, derivatives thereof and combinations thereof and the additional p-n junctions can comprise any of GaAs, AlGaAs, InGaP, AlInGaP, InGaAs, AlInGaAs, InGaAsP, AlInGaAsP, alloys thereof, derivatives thereof and combinations thereof.
The first p-n structure thus formed is transferred to another growth chamber and a second p-n structure, for example, SiGe is then formed on the first p-n structure at 108. In this embodiment or implementation, the lattice constant of the substrate matches the lattice constant of the first p-n structure and the lattice constant of the second p-n structure matches the lattice constant of the first p-n structure. One of ordinary skill can recognize that such matching of lattice constants also includes materials with lattice constants nearly matching each other. For example, a semiconductor material of the substrate can have a lattice constant that matches (or substantially matches) that of a first semiconductor material of the first p-n structure, and the lattice constant of the first semiconductor material matches (or substantially matches) that of a second p-n structure. Matching or substantially matching of lattice constants refers to allowing two different and adjacent semiconductor materials a region of band gap change to be formed without introducing a change in crystal structure. As described above, the method 100 further comprises optionally providing a tunnel junction at 106 between the multiple p-n junctions within the first p-n structure and/or the second p-n structure, or between the first p-n structure and the second p-n structure, forming a multi-junction semiconductor structure for a multi-junction optoelectronic device. The tunnel junction provides electrical coupling between the multiple p-n junctions within the first p-n structure and/or the second p-n structure, or between the first p-n structure and the second p-n structure and/or the rest of the device. The other p-n junctions within the first p-n structure and the second p-n structure are voltage generating p-n junctions of the multi-junction semiconductor structure. The tunnel junctions can be grown based on Group III-V materials by using the same or similar equipment and techniques as described herein to grow the first p-n structure, or the tunnel junction can be grown based on Group IV materials by using the same or similar equipment and techniques as described herein to grow the second p-n structure. In another embodiment or implementation, the tunnel junction can be based on Group III_V materials and Group IV materials, possibly grown using more than one technique. In this case, it is possible to, for example, end the growth of the Group III-V material with a highly doped layer or surface of n-doping or p-doping, and then begin the growth of the Group IV material with a highly doped layer of the opposite doping type.
In an embodiment or implementation, the second p-n structure comprises a Group IV semiconductor such as but not limited to Si, Ge, Sn, C, or mixtures of two or more of these materials, wherein a p-type silicon germanium layer or stack is disposed above an n-type silicon germanium layer or stack. In one example, the p-type silicon germanium stack has a thickness within a range from about 100 nm to about 3,000 nm and the n-type silicon germanium stack has a thickness within a range from about 100 nm to about 3,000 nm. In one example, the n-type silicon germanium stack has a thickness within a range from about 700 nm to about 2,500 nm.
In another embodiment or implementation, the second p-n structure comprises multiple p-n junctions. Each p-n junction can contain various Group IV semiconductor layers, which can be grown using different source materials including, but not limited to, isobutylgermane, alkylgermanium trichlorides, dimethylaminogermanium trichloride, germane, silane, disilane, silicon tetrachloride, carbontetrabromide, carbontribromidechloride, etc. In general, each p-n junction comprises a Group IV semiconductor materials and includes at least one of silicon, germanium, tin, and carbon, and mixtures of two or more of these materials.
Furthermore, for both, the first p-n structure and the second p-n structure, the junction formed between the two layers can be a heterojunction that is, the N-layer and P-layer that form the junction could be made of different materials, or a homojunction, that is, both the N-layer and P-layer that form the junction could be made of the same material, for example, both layers being GaAs or both layers InGaP. Also the p-n structure could have either doping polarity, with the n-type material at the top of the structure or junction and the p-type material at the bottom of the structure or junction, or alternatively, the p-type material at the top of the structure or junction and n-type material at the bottom of the structure or junction.
In some embodiments or implementations, one or more of the first p-n structure or the second p-n structure can comprise a textured surface. This textured surface can improve the scattering of light at that surface, as well as improve adhesion to both metal and dielectric layers. In some embodiments or implementations, the texturing of the surface can be achieved during the growth of the materials that comprise the p-n structure. This can be achieved at least in part by using a lattice mismatch between at least two materials in the p-n structure, for example in a Stranski-Krastanov process or a Volmer-Weber process, to produce texturing at the interface between the materials. In another embodiment or implementation, a layer in or on the p-n structure can act as an etch mask and texturing can be provided by an etching process. In yet another embodiment or implementation, texturing can be provided by physical abrasion such as sandpaper or sandblasting or particle blasting or similar processes. In yet another embodiment or implementation, texturing can be provided by an inhomogeneous etching process that produces microscopically non-uniform features on a surface. Moreover, texturing can be accomplished using techniques similar to those used in silicon texturing, including, for example, “random pyramid” or “inverted pyramid” etching using, for example, KOH.
In addition, in an embodiment or implementation, the back side and/or the front side (e.g., the side closest to where light is received by a photovoltaic cell or emitted by an LED) of the p-n structure can be textured to improve light scattering into and/or out of the device. In some embodiments or implementations, texturing can be more likely applied to the back side (e.g., back-side texturing), in which case that Group IV semiconductor materials are to be textured using one or more of the texturing techniques described above.
A support layer can then be deposited on the multi-junction semiconductor structure thus formed at 110 in
In those instances in which a dielectric layer is included as part of a support layer, the dielectric layer comprises dielectric materials that are organic or inorganic. The organic dielectric materials comprise any of polyolefin, polycarbonate, polyester, epoxy, fluoropolymer, derivatives thereof and combinations thereof and the inorganic dielectric materials comprise any of arsenic trisulfide, arsenic selenide, α-alumina (sapphire), magnesium fluoride, derivatives thereof and combinations thereof.
In those instances in which a contact layer (or multiple contact layers) is included as part of a support layer, the contact layer can contain Group III-V materials, such as gallium arsenide (GaAs), depending on the desired composition of the final photovoltaic unit. According to embodiments or implementations described herein, the contact layer can be heavily n-doped. In some embodiments or implementations, the doping concentration can be within a range greater than about 5×1018 cm−3, for example, from greater than about 5×1018 cm−3 to about 1×1019 cm−3. The high doping of the contact layer allows an ohmic contact to be formed with a later-deposited metal layer without any annealing step performed to form such an ohmic contact, as described below.
In some embodiments or implementations, the contact layer can be gallium arsenide (GaAs) doped with silicon (Si). For example, in some embodiments or implementation in which a high-growth rate, as described above, is used to form the layers of the structure, a silicon dopant (as an n-dopant) can be used to bring the doping concentration to 5×1018 cm−3 or greater. For example, a precursor disilane can be introduced in a fast growth rate process to deposit the silicon dopant. In other embodiments or implementations, selenium (Se) or tellurium (Te) can be used as a dopant in the formation of the layers of structure.
The contact layer can be formed at a thickness of about 10 nm or greater, such as about 50 nm. In some embodiments or implementations, the contact layer can be formed prior to an ELO process that separates the structure from the growth wafer. In some alternative embodiments or implementations, the contact layer can be formed at a later stage subsequent to such an ELO process. In the various examples of embodiments or implementations described herein, the contact layers used can include one or more of an n-metal alloy contact, a p-metal contact, an n-metal contact, a p-metal alloy contact, or other suitable contacts as described in U.S. patent application Ser. No. 12/939,050, entitled, “Metallic Contacts for Photovoltaic Devices and Low-Temperature Fabrication Processes Thereof,” filed on Nov. 3, 2010, and which is incorporated herein by reference. Other types, structures, and materials of metal contact layers can also be used with the various types of optoelectronic devices described in this disclosure.
The multi-junction semiconductor structure or multi-junction optoelectronic device and the support layer can then lifted off (e.g., separated, removed) the substrate as shown at 112 in
Embodiments or implementations of such multi-junction optoelectronic devices can also provide back reflectors, also known as reflective back contacts, which are metallic reflectors or metal-dielectric reflectors. These reflective back contacts can be deposited either before after the device is lifted off and can comprise one or more of silver, aluminum, gold, platinum, copper, nickel, or alloys thereof. The layer with the reflective back contacts can have a thickness within a range from about 0.01 μm to about 1 μm, preferably, from about 0.05 μm to about 0.5 μm, and more preferably, from about 0.1 μm to about 0.3 μm, for example, about 0.2 μm or about 0.1 μm (1,000 Å). The layer with the reflective back contacts can be deposited by a vapor deposition process, such as physical vapor deposition (PVD), sputtering, electron beam deposition (e-beam), ALD, CVD, PE-ALD, or PE-CVD, or by other deposition processes including inkjet printing, screen printing, evaporation, electroplating, electroless deposition (e-less), or combinations thereof. Aspects of the reflective back contacts are described in U.S. patent application Ser. No. 12/939,050. Other types, structures, and materials of metal contact layers can also be used with the various types of optoelectronic devices described in this disclosure.
More generally, for the multi-junction optoelectronic device 300 in
In an embodiment or implementation, the first p-n structure 306 and/or the second p-n structure 302 can comprise one or more p-n junctions grown in decreasing order of band gap (e.g., from largest energy gap to smallest energy gap) such that after the separation of the device from the substrate, the p-n junction away from the side of the device receiving the incident light has the smallest band gap and the p-n junction closest to the side of the device receiving the incident light has the largest band gap.
In an embodiment or implementation of the triple-junction optoelectronic device 500, the bottom junction (e.g., the third p-n junction 508 of the second p-n structure) can comprise a Group IV semiconductor including at least one of SiGe, SiGeSn, SiSn, or GeSn. Similarly, the first p-n junction (e.g., the first p-n junction 502 of the first p-n structure) can comprise a Group III-V semiconductor including at least one of AlInGaP, InGaP or AlGaAs. In addition, the second p-n junction 506 of the first p-n structure can comprise a Group III-V semiconductor. Moreover, there may be a third p-n junction of the first p-n structure (not shown). Examples of a third p-n junction of a first p-n structure are described in more detailed below with respect to
Although the embodiments or implementations illustrated in the examples of
In this embodiment or implementation, on a top side of the semiconductor structure 602 are a plurality of contact members 628a-628n. Each of the top-side contact members 628a-628n comprise an optional antireflective coating (ARC) 626, a n-metal contact 624 underneath the optional ARC 626, and a gallium arsenide (GaAs) contact 622 underneath the n-metal contact 624. On a back side of the semiconductor structure 608 is a plurality of non-continuous contacts 640a-640n. Each of the non-continuous contacts 640a-640n includes an optional contact layer 634 coupled to the back side of the semiconductor structure 608, and a p-metal contact 636 underneath the contact layer 634. An optional ARC layer 632 can also be present on the back side of the multi-junction optoelectronic device 600 as illustrated in
Similar to
The multi-junction optoelectronic device 600 includes three structures (e.g., three p-n structures), as described above. One of the structures has a higher band gap and is placed or positioned on the top of the multi-junction optoelectronic device 600, and another of the structures has a lower band gap and is placed or positioned on the bottom of the multi-junction optoelectronic device 600.
The structure 602, which can be referred to as the p-n structure 602, has higher or larger bandgap than the structure 608 and is comprised of a window layer 618 (for example, AlInP, AlGaInP, or AlGaAs), an n-type material (for example, AlInGaP, InGaP or AlGaAs), and a p-type material (for example, AlInGaP, InGaP or AlGaAs). The structure 602 can optionally include a back side window layer (for example, AlInP, AlGaInP, or AlGaAs). The structure 602 is electrically and optically connected to structure 606, which may be referred to as p-n structure 606, through a tunnel junction structure 604′. The tunnel junction structure 604′ is comprised of a highly p-type doped layer and a highly n-type doped layer, for example, GaAs, InGaP, or AlGaAs.
The structure 608, which can be referred to as the p-n structure 608, has lower or smaller bandgap than the structure 602 and comprises an n-type material (for example, SiGe), a p-type material (for example, SiGe). The structure 608 can optionally include a back side window layer, for example, AlInP, AlGaInP, or AlGaAs. In some embodiments or implementations, the back side window layer could correspond to the textured layer 630. The structure 608 is electrically and optically connected to structure 606 through a tunnel junction structure 604″. The tunnel junction structure 604″ is comprised of a highly p-type doped layer and a highly n-type doped layer, for example, GaAs, InGaP or AlGaAs.
One of ordinary skill in the art readily recognizes that a variety of materials listed could differ from the examples listed herein. Furthermore, the p-n junctions formed in structures 602 and/or 608 could be homojunctions or heterojunctions, that is, both the n-layer and p-layer could be made of the same material (e.g., homojunction), or could be made of different materials (e.g., heterojunction), and that would be in accordance with the present disclosure. Also the doping of the materials in a p-n structure or p-n junction could be inverted. For example, the p-type material could be placed at the top of the structure or junction, facing the sun, and the n-type material could be placed at the bottom of the structure or junction. One or more additional p-n structures could be added to the multi-junction optoelectronic device 600 as illustrated by the structure 606, which may be referred to as the p-n structure 606. The structure 606 could be possibly coupled to the rest of the device through a tunnel junction layer or layers.
In connection with one or more of
In another example, as shown in
In another example, as shown in
While the foregoing is directed to example embodiments or implementation of various aspects of the disclosure, other and further embodiments or implementation of various aspects of the disclosure can be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow. Accordingly, the figures are intended to be illustrative rather than definitive or limiting. In particular many design elements could change, including but not limited to: the optoelectronic device could include junctions that are p-on-n rather than n-on-p, a structure in the optoelectronic device could include two or more junctions, the optoelectronic device could include a junction that is a homojunction, the tunnel junctions could be made of AlGaAs, GaAs or InGaP or other material, other layers within the optoelectronic device, or within a structure of the optoelectronic device, could be exchanged with different materials, e.g., AlGaAs or AlGaInP instead of AlInP, etc., and the reflector of the optoelectronic device could be made purely of a metal or metal alloy, as well as a dielectric and a metal or metal alloy.
Although the present disclosure has been described in accordance with the embodiments or implementations shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments or implementations, and those variations would be in accordance with the present disclosure. Accordingly, many modifications can be made by one of ordinary skill in the art without departing from the scope of the appended claims.
The present application is a Divisional application of U.S. application Ser. No. 15/417,105, titled “MULTI-JUNCTION OPTOELECTRONIC DEVICE WITH GROUP IV SEMICONDUCTOR AS A BOTTOM JUNCTION,” filed on Jan. 26, 2017, which claims the priority to U.S. Provisional Application No. 62/289,070, titled “MULTI-JUNCTION OPTOELECTRONIC DEVICE WITH GROUP IV SEMICONDUCTOR AS A BOTTOM JUNCTION”,” filed on Jan. 29, 2016. U.S. application Ser. No. 15/417,105 is also a Continuation-in-Part of, and claims priority to, U.S. application Ser. No. 13/705,064, titled “MULTI-JUNCTION OPTOELECTRONIC DEVICE,” filed on Dec. 4, 2012, which is a Continuation-in-Part of, and claims priority to, U.S. application Ser. No. 12/939,077, titled “OPTOELECTRONIC DEVICES INCLUDING HETEROJUNCTION LAYER,” filed on Nov. 3, 2010 and U.S. application Ser. No. 12/605,108, titled “PHOTOVOLTAIC DEVICE,” filed on Oct. 23, 2009. The disclosure of each of these prior applications is hereby incorporated in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
3615853 | Paine et al. | Oct 1971 | A |
3838359 | Hakki et al. | Sep 1974 | A |
3990101 | Ettenberg et al. | Nov 1976 | A |
4015280 | Matsushita et al. | Mar 1977 | A |
4017332 | James | Apr 1977 | A |
4094704 | Milnes et al. | Jun 1978 | A |
4107723 | Kamath | Aug 1978 | A |
4191593 | Cacheux | Mar 1980 | A |
4197141 | Bozler et al. | Apr 1980 | A |
4295002 | Chappell et al. | Oct 1981 | A |
4338480 | Antypas et al. | Jul 1982 | A |
4385198 | Rahilly | May 1983 | A |
4400221 | Rahilly | Aug 1983 | A |
4410758 | Grolitzer | Oct 1983 | A |
4419533 | Czubatyj et al. | Dec 1983 | A |
4444992 | Cox, III | Apr 1984 | A |
4479027 | Todorof | Oct 1984 | A |
4497974 | Deckman et al. | Feb 1985 | A |
4543441 | Kumada et al. | Sep 1985 | A |
4571448 | Barnett | Feb 1986 | A |
4582952 | McNeely et al. | Apr 1986 | A |
4633030 | Cook | Dec 1986 | A |
4667059 | Olson | May 1987 | A |
4773945 | Woolf et al. | Sep 1988 | A |
4775639 | Yoshida | Oct 1988 | A |
4889656 | Flynn et al. | Dec 1989 | A |
4916503 | Uematsu et al. | Apr 1990 | A |
4989059 | Micheels et al. | Jan 1991 | A |
4997491 | Hokuyo et al. | Mar 1991 | A |
5101260 | Nath et al. | Mar 1992 | A |
5103268 | Yin et al. | Apr 1992 | A |
5116427 | Fan et al. | May 1992 | A |
5136351 | Inoue et al. | Aug 1992 | A |
5217539 | Fraas et al. | Jun 1993 | A |
5223043 | Olson et al. | Jun 1993 | A |
5230746 | Wiedeman et al. | Jul 1993 | A |
5231931 | Sauvageot et al. | Aug 1993 | A |
5316593 | Olson et al. | May 1994 | A |
5330585 | Chang et al. | Jul 1994 | A |
5342453 | Olson | Aug 1994 | A |
5356488 | Hezel | Oct 1994 | A |
5376185 | Wanlass | Dec 1994 | A |
5385960 | Emmons et al. | Jan 1995 | A |
5465009 | Drabik et al. | Nov 1995 | A |
5468652 | Gee | Nov 1995 | A |
6107563 | Nakanishi et al. | Aug 2000 | A |
6166218 | Ravichandran | Dec 2000 | A |
6166318 | Freeouf | Dec 2000 | A |
6229084 | Katsu | May 2001 | B1 |
6231931 | Blazey et al. | May 2001 | B1 |
6255580 | Karam et al. | Jul 2001 | B1 |
6372981 | Ueda et al. | Apr 2002 | B1 |
6452091 | Nakagawa et al. | Sep 2002 | B1 |
6534336 | Iwane et al. | Mar 2003 | B1 |
6617508 | Kilmer et al. | Sep 2003 | B2 |
7038250 | Sugiyama et al. | May 2006 | B2 |
7875945 | Krasnov et al. | Jan 2011 | B2 |
8183081 | Weidman et al. | May 2012 | B2 |
8258596 | Nasuno et al. | Sep 2012 | B2 |
8664515 | Hong et al. | Mar 2014 | B2 |
8697553 | Adibi et al. | Apr 2014 | B2 |
8823127 | Bedell | Sep 2014 | B2 |
8895845 | Kizilyalli et al. | Nov 2014 | B2 |
8895846 | Kizilyalli et al. | Nov 2014 | B2 |
8937244 | Kizilyalli et al. | Jan 2015 | B2 |
8993873 | Youtsey et al. | Mar 2015 | B2 |
9099595 | King et al. | Aug 2015 | B2 |
9136418 | Nie et al. | Sep 2015 | B2 |
9136422 | Higashi et al. | Sep 2015 | B1 |
9178099 | Nie et al. | Nov 2015 | B2 |
9502594 | Ding et al. | Nov 2016 | B2 |
9537025 | Higashi et al. | Jan 2017 | B1 |
9691921 | Atwater et al. | Jun 2017 | B2 |
9768329 | Kayes et al. | Sep 2017 | B1 |
20010027805 | Ho et al. | Oct 2001 | A1 |
20020000244 | Zaidi | Jan 2002 | A1 |
20020053683 | Hill et al. | May 2002 | A1 |
20020144724 | Kilmer et al. | Oct 2002 | A1 |
20020179141 | Ho et al. | Dec 2002 | A1 |
20030070707 | King et al. | Apr 2003 | A1 |
20030140962 | Sharps et al. | Jul 2003 | A1 |
20030222278 | Liu et al. | Dec 2003 | A1 |
20040112426 | Hagino | Jun 2004 | A1 |
20040166681 | Iles | Aug 2004 | A1 |
20040200523 | King et al. | Oct 2004 | A1 |
20050001233 | Sugiyama et al. | Jan 2005 | A1 |
20050022863 | Agostinelli et al. | Feb 2005 | A1 |
20060081963 | Rehder et al. | Apr 2006 | A1 |
20060090790 | Kobayashi et al. | May 2006 | A1 |
20060144435 | Wanlass | Jul 2006 | A1 |
20060162767 | Mascarenhas et al. | Jul 2006 | A1 |
20060185582 | Atwater | Aug 2006 | A1 |
20060207651 | Posthuma et al. | Sep 2006 | A1 |
20060255340 | Manivannan et al. | Nov 2006 | A1 |
20070054474 | Tracy | Mar 2007 | A1 |
20070131275 | Kinsey et al. | Jun 2007 | A1 |
20070137695 | Fetzer et al. | Jun 2007 | A1 |
20070137698 | Wanlass et al. | Jun 2007 | A1 |
20070151596 | Nasuno et al. | Jul 2007 | A1 |
20070166862 | Kim et al. | Jul 2007 | A1 |
20070199591 | Harder et al. | Aug 2007 | A1 |
20070235074 | Henley et al. | Oct 2007 | A1 |
20070277874 | Dawson-Elli et al. | Dec 2007 | A1 |
20080128020 | Zafar et al. | Jun 2008 | A1 |
20080245409 | Varghese et al. | Oct 2008 | A1 |
20090151784 | Luan et al. | Jun 2009 | A1 |
20090283802 | Henderson et al. | Nov 2009 | A1 |
20090288703 | Stan et al. | Nov 2009 | A1 |
20100006143 | Weiser | Jan 2010 | A1 |
20100015751 | Weidman et al. | Jan 2010 | A1 |
20100047959 | Cornfeld et al. | Feb 2010 | A1 |
20100055397 | Kurihara et al. | Mar 2010 | A1 |
20100065117 | Kim et al. | Mar 2010 | A1 |
20100089443 | Bloomstein et al. | Apr 2010 | A1 |
20100096010 | Weiser | Apr 2010 | A1 |
20100126552 | Kizilyalli et al. | May 2010 | A1 |
20100126570 | Kizilyalli et al. | May 2010 | A1 |
20100126571 | Kizilyalli et al. | May 2010 | A1 |
20100126572 | Kizilyalli et al. | May 2010 | A1 |
20100132744 | Tadaki et al. | Jun 2010 | A1 |
20100132774 | Borden | Jun 2010 | A1 |
20100132780 | Kizilyalli et al. | Jun 2010 | A1 |
20100193002 | Dimroth et al. | Aug 2010 | A1 |
20100218819 | Farmer et al. | Sep 2010 | A1 |
20100263707 | Cheong | Oct 2010 | A1 |
20100270653 | Leitz et al. | Oct 2010 | A1 |
20100294349 | Srinivasan et al. | Nov 2010 | A1 |
20100294356 | Parikh et al. | Nov 2010 | A1 |
20110083722 | Atwater et al. | Apr 2011 | A1 |
20110088771 | Lin et al. | Apr 2011 | A1 |
20110108098 | Kapur et al. | May 2011 | A1 |
20110156000 | Cheng | Jun 2011 | A1 |
20110189817 | Takahashi et al. | Aug 2011 | A1 |
20110214728 | Veerasamy | Sep 2011 | A1 |
20110244692 | Jeong et al. | Oct 2011 | A1 |
20110259387 | Wu | Oct 2011 | A1 |
20110290322 | Meguro et al. | Dec 2011 | A1 |
20120024336 | Hwang | Feb 2012 | A1 |
20120031478 | Boisvert et al. | Feb 2012 | A1 |
20120055541 | Granek et al. | Mar 2012 | A1 |
20120067423 | Lochtefeld et al. | Mar 2012 | A1 |
20120090672 | Lebby | Apr 2012 | A1 |
20120104411 | Iza et al. | May 2012 | A1 |
20120125256 | Kramer et al. | May 2012 | A1 |
20120132930 | Young et al. | May 2012 | A1 |
20120160296 | Laparra et al. | Jun 2012 | A1 |
20120164796 | Lowenthal et al. | Jun 2012 | A1 |
20120227805 | Hermle et al. | Sep 2012 | A1 |
20120247555 | Matsushita et al. | Oct 2012 | A1 |
20120305059 | Kayes et al. | Dec 2012 | A1 |
20130000708 | Bedell | Jan 2013 | A1 |
20130025654 | Bedell et al. | Jan 2013 | A1 |
20130026481 | Xu et al. | Jan 2013 | A1 |
20130048061 | Cheng et al. | Feb 2013 | A1 |
20130112258 | Park et al. | May 2013 | A1 |
20130153013 | Archer et al. | Jun 2013 | A1 |
20130220396 | Janssen et al. | Aug 2013 | A1 |
20130270589 | Kayes et al. | Oct 2013 | A1 |
20130288418 | Wang et al. | Oct 2013 | A1 |
20130337601 | Kapur et al. | Dec 2013 | A1 |
20140076386 | King et al. | Mar 2014 | A1 |
20140261611 | King et al. | Sep 2014 | A1 |
20140263171 | Frantz | Sep 2014 | A1 |
20140312373 | Donofrio | Oct 2014 | A1 |
20140326301 | Johnson | Nov 2014 | A1 |
20140345679 | Johnson | Nov 2014 | A1 |
20140373906 | Suarez et al. | Dec 2014 | A1 |
20150034152 | Cornfeld | Feb 2015 | A1 |
20150171261 | Domine | Jun 2015 | A1 |
20150228835 | Kayes et al. | Aug 2015 | A1 |
20150368833 | Farah | Dec 2015 | A1 |
20150380576 | Kayes | Dec 2015 | A1 |
20160013350 | King | Jan 2016 | A1 |
20160155881 | France et al. | Jun 2016 | A1 |
20170047471 | Ding et al. | Feb 2017 | A1 |
20170148930 | Hu et al. | May 2017 | A1 |
Number | Date | Country |
---|---|---|
1574388 | Feb 2005 | CN |
102007582 | Apr 2011 | CN |
102473743 | May 2012 | CN |
103952768 | Jul 2014 | CN |
0595634 | May 1994 | EP |
2927968 | Oct 2015 | EP |
2501432 | Oct 2013 | GB |
2501432 | Oct 2013 | GB |
63211775 | Sep 1988 | JP |
3285368 | Dec 1991 | JP |
06244443 | Sep 1994 | JP |
07007148 | Jan 1995 | JP |
8130321 | May 1996 | JP |
H09213206 | Aug 1997 | JP |
2012-99807 | Apr 2012 | JP |
100762772 | Oct 2007 | KR |
WO 02065553 | Aug 2002 | WO |
WO 2008100603 | Aug 2008 | WO |
WO 2016123074 | Aug 2016 | WO |
Entry |
---|
Non-Final Office Action issued in U.S. Appl. No. 15/417,105. |
Aisaka et al “Enhancement of upconversion Luminescence of Er Doped A1203 Films by Ag Islands Films” (Apr. 1, 2008) Applied Physics Letters 92, 132105, pp. 1-3. |
B. H. Floyd, et al., “AN N—AlGaAs P—GaAs Graded Heterojunction for High Concentration Ratios,” pp. 81-86, IEEE, 1987. |
Biteen et al. “Spectral Tuning of Plasmon-enhanced Silicon Quantum Dot Luminescence” (Mar. 31, 2006) Applied Physics Letters 88, 131109, pp. 1-3. |
Chinese Office Action issued in Chinese Patent Application No. 201110329046.4 dated Jun. 23, 2016. |
Dionne et al. “Highly Confined Photon Transport in Subwavelength Metallic Slot Waveguides” (Jun. 20, 2006) Nano Lett., vol. 6, No. 9, pp. 1928-1932. |
Hiroshi Yamaguchi, et al., “Development Status of Space Solar Sheet”, IEEE PVSC Proceedings, 2008. |
International Search Report and Written Opinion issued in PCT/US2017/015387 dated May 8, 2017. |
Lezec et al. “Negative Refraction at Visible Frequencies” (Apr. 20, 2007) Science, vol. 316, pp. 430-432. |
M. M. Sanfacon et al, “Analysis of AlGaAs/GaAs Solar Cell Structures by Optical Reflectance Spectroscopy IEEE on Electron Devices”, vol. 37, No. 2, Feb. 1990, pp. 450-454. |
Pacifici et al. “Quantitative Determination of Optical Transmission through Subwavelength Slit Arrays in Ag films: The Essential role of Surface Wave Interference and Local Coupling between Adjacent Slits” (Oct. 22, 2007) Thomas J. Watson Lab. of Appl. Phys., pp. 1-4. |
Park et al. “Surface Plasmon Enhanced Photoluminescence of Conjugated Polymers” (Apr. 17, 2007) Appl. Phys. Letters 90, 161107, pp. 1-3. |
Peter A. Lewis, “Pigment Handbook vol. I: Properties and Economics, 2nd Edition”, John Wiley & Sons, New York, pp. 790-791 (1988). |
Pillai et al. “Enhanced emission from Si-based Light-emitting Diodes using Surface Plasmons” (Apr. 17, 2006) Applied Physics Letters, 88, 161102, pp. 1-3. |
Q. M. Zhang et al., “Effects of Displaced p-n Junction of Heterojunction Bipolar Transistors”, IEEE Transactions on Electron Devices, vol. 39, No. 11, Nov. 1992, pp. 2430-2437. |
Tanabe et al “Direct-bonded GaAs/InGaAs Tandem Solar Cell” (Sep. 6, 2006) Appl. Phys. Lett. 89, 102106, pp. 1-3. |
Tatsuya Takamoto, et al., “Paper-Thin InGaP/GaAs Solar Cells”, IEEE PVSC Proceedings, pp. 1769-1772, 2006. |
The Stranski—Krastanov Three Dimensional Island Growth Prediction on Finite Size Model to Othaman et al., 2008. |
Van Wijngaarden et al “Direct Imaging of Propagation and Damping of Near-Resonance Surface Plasmon Polaritons using Cathodoluminescence Spectroscopy” (Jun. 1, 2006) Appl. Phys. Lett. 88, 221111, pp. 1-3. |
“Volmer-Weber and Stranski-Krastanov InAs.As quantum dots emitting at 1.3um” by Tsatsul'nikov et al., Journal of Applied Physics, vol. 88, No. 11, Dec. 1, 2000. |
Advisory Action dated Apr. 13, 2016 for U.S. Appl. No. 13/446,876 of Kayes, B.M. et al. filed Apr. 13, 2012. |
Advisory Action dated Jul. 22, 2011, for U.S. Appl. No. 12/605,108 of Kizilyalli, I.C. et al. dated Nov. 23, 2009. |
Corrected Notice of Allowability dated Dec. 9, 2015 for U.S. Appl. No. 14/452,393 of Ding, I.-K. et al. filed Aug. 5, 2014. |
Corrected Notice of Allowability dated May 26, 2017, for U.S. Appl. No. 12/904,047 of Atwater, H. et al. filed Oct. 13, 2010. |
Corrected Notice of Allowability dated Apr. 20, 2015 for U.S. Appl. No. 13/451,455 of Nie, H. et al. filed Jul. 19, 2012. |
Corrected Notice of Allowability dated Aug. 17, 2015 for U.S. Appl. No. 13/451,455 of Nie, H. et al. filed Jul. 19, 2012. |
Corrected Notice of Allowability dated Jun. 29, 2015 for U.S. Appl. No. 13/451,455 of Nie, H. et al. filed Jul. 19, 2012. |
European Search Report dated Sep. 19, 2017 for European Patent Application No. 11187659.5, 11 pages. |
Final Office Action dated Apr. 10, 2014 for U.S. Appl. No. 13/772,043 of Archer, M.J. et al. filed Feb. 20, 2013. |
Final Office Action dated Apr. 20, 2017 for U.S. Appl. No. 13/446,876 of Kayes, B.M. et al. filed Apr. 13, 2012. |
Final Office Action dated Apr. 26, 2012 for U.S. Appl. No. 12/605,108 of Kizilyalli, I.C. et al. dated Nov. 23, 2009. |
Final Office Action dated Apr. 28, 2011 for U.S. Appl. No. 12/605,108 of Kizilyalli, I.C. et al. dated Nov. 23, 2009. |
Final Office Action dated Aug. 14, 2014 for U.S. Appl. No. 13/354,175 of Higashi, G. et al. filed Jan. 19, 2012. |
Final Office Action dated Feb. 1, 2016 for U.S. Appl. No. 12/904,047 of Atwater, H. et al. filed Oct. 13, 2010. |
Final Office Action dated Feb. 8, 2016 for U.S. Appl. No. 13/772,043 of Archer, M.J. et al. filed Feb. 20, 2013. |
Final Office Action dated Jan. 26, 2017, for Korean Patent Application No. KR-20127012346, 4 pages. |
Final Office Action dated Jan. 29, 2016 for U.S. Appl. No. 13/446,876 of Kayes, B.M. et al. filed Apr. 13, 2012. |
Final Office Action dated Mar. 4, 2016 for U.S. Appl. No. 14/696,106 of Kayes, Brendan M. filed Apr. 24, 2015. |
Final Office Action dated Mar. 8, 2017 for U.S. Appl. No. 15/006,003 of Kayes, B.M. et al. filed Jan. 25, 2016. |
Final Office Action dated Oct. 18, 2011, for U.S. Appl. No. 12/940,876 of Kizilyalli, I.C. et al. filed Nov. 10, 2010. |
Final Office Action dated Oct. 28, 2016 for U.S. Appl. No. 14/846,675 of Kayes, B.M. et al. filed Sep. 4, 2015. |
Final Office Action dated Sep. 11, 2017 for U.S. Appl. No. 12/904,047 of Atwater, H. et al. filed Oct. 13, 2010. |
Final Office Action dated Sep. 16, 2011 for U.S. Appl. No. 12/940,861 of Kizilyalli, I.C. et al. filed Nov. 5, 2010. |
Final Office Action dated Sep. 22, 2017 for U.S. Appl. No. 13/772,043 of Archer, M.J. et al. filed Feb. 20, 2013. |
First Office Action dated Jun. 5, 2014, for Chinese Patent Application No. 201080046469 filed Oct. 14, 2010, 23 pages. |
First Office Action dated Jun. 7, 2016 for Korean Patent Application No. KR-20127012346, 6 pages. |
First Office Action dated Nov. 30, 2016 for Chinese Patent Application No. 201510475349.5, 21 pages. |
Heckelmann, Stefan et al., “Investigations on A1xGa1-xAs Solar Cells Grown by MOVPE”, IEEE Journal of Photovoltaics, IEEE, US, vol. 5, No. 1, Dec. 18, 2014, pp. 446-453. |
Hobner, A.et al., “Novel cost-effective bifacial silicon solar cells with 19.4% front and 18.1% rear efficiency”, Applied physics letters 70(8), 1997, pp. 1008-1010. |
International Search Report and Written Opinion dated Jun. 1, 2010 for International Application No. PCT/US2009/061898. |
International Search Report and Written Opinion dated Jun. 1, 2010 for International Application No. PCT/US2009/061906. |
International Search Report and Written Opinion dated Jun. 1, 2010 for International Application No. PCT/US2009/061911. |
International Search Report and Written Opinion dated Jun. 1, 2010 for International Application No. PCT/US2009/061914. |
International Search Report and Written Opinion dated Jun. 1, 2010 for International Application No. PCT/US2009/061920. |
International Search Report and Written Opinion dated Dec. 2, 2016 for International Patent Application No. PCT/US2016/052939, 12 pages. |
International Search Report and Written Opinion dated May 23, 2016 for International Patent Application No. PCT/US2016/014866, 12 pages. |
Kang, et al., “Ultra-thin Film Nano-structured Gallium Arsenide Solar Cells”, Proc. of SPJE, vol. 9277, No. 927718 pp. 1-7. |
Lenkeit, B. et al., “Excellent thermal stability of remote plasma-enhanced chemical vapour deposited silicon nitride films for the rear of screen-printed bifacial silicon solar cells”, Solar energy materials and solar cells 65(1), 2001, pp. 317-323. |
Mathews, Ian et al., “GaAs solar cells for Indoor Light Harvesting”, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), IEEE, Jun. 8, 2014, pp. 510-513. |
McClelland, R.W. et al., “High-Efficiency Thin-Film GAAS Bifacial Solar Cells”, Proceedings of IEEE Photovoltaic Specialists Conference, May 21, 1990, pp. 145-147. |
McPheeters, et al., “Computational analysis of thin film JnGaAs/GaAs quantum well solar cells with backside light trapping structures”, Optics Express, Vcol. 20, No. S6, Nov. 5, 2012, pp. A864-A878. |
Mellor, et al., “A numerical study of Bi-periodic binary diffraction gratings for solar cell applications”, Solar Energy Materials & Solar Cells 95, 2011, pp. 3527-3535. |
Non-Final Office Action dated Apr. 7, 2016 for U.S. Appl. No. 14/846,675 of Kayes, B.M. et al. filed Sep. 4, 2015. |
Non-Final Office Action dated Apr. 7, 2017 for U.S. Appl. No. 13/772,043 of Archer, M.J. et al. filed Feb. 20, 2013. |
Non-Final Office Action dated Aug. 16, 2017 for U.S. Appl. No. 14/846,675 of Kayes, B.M. et al. filed Sep. 4, 2015. |
Non-Final Office Action dated Aug. 19, 2011 for U.S. Appl. No. 12/605,108 of Kizilyalli, I.C. et al. dated Nov. 23, 2009. |
Non-Final Office Action dated Jan. 16, 2014 for U.S. Appl. No. 12/904,047 of Atwater, H. et al. filed Oct. 13, 2010. |
Non-Final Office Action dated Jan. 30, 2014 for U.S. Appl. No. 13/354,175 of Higashi, G. et al. filed Jan. 19, 2012. |
Non-Final Office Action dated Jul. 16, 2015 for U.S. Appl. No. 13/446,876 of Kayes, B.M. et al. filed Apr. 13, 2012. |
Non-Final Office Action dated Jul. 16, 2015 for U.S. Appl. No. 13/772,043 of Archer, M.J. et al. filed Feb. 20, 2013. |
Non-Final Office Action dated Jul. 30, 2015 for U.S. Appl. No. 12/904,047 of Atwater, H. et al. filed Oct. 13, 2010. |
Non-Final Office Action dated Jun. 28, 2016 for U.S. Appl. No. 13/446,876 of Kayes, B.M. et al. filed Apr. 13, 2012. |
Non-Final Office Action dated Mar. 17, 2011, for U.S. Appl. No. 12/940,861 of Kizilyalli, I.C. et al. filed Nov. 5, 2010. |
Non-Final Office Action dated Mar. 17, 2011, for U.S. Appl. No. 12/940,876 of Kizilyalli, I.C. et al. filed Nov. 10, 2010. |
Non-Final Office Action dated May 11, 2017 for U.S. Appl. No. 14/692,647 of Kayes, Brendan M. et al. filed Apr. 21, 2015. |
Non-Final Office Action dated May 31, 2016 for U.S. Appl. No. 12/904,047 of Atwater, H. et al. filed Oct. 13, 2010. |
Non-Final Office Action dated Nov. 17, 2010 for U.S. Appl. No. 12/605,108 of Kizilyalli, I.C. et al. dated Nov. 23, 2009. |
Non-Final Office Action dated Nov. 17, 2015 for U.S. Appl. No. 14/696,106 of Kayes, Brendan M. filed Apr. 24, 2015. |
Non-Final Office Action dated Nov. 2, 2017 for U.S. Appl. No. 15/340,560 of Ding, I.-K. et al. filed Nov. 1, 2016. |
Non-Final Office Action dated Sep. 22, 2016 for U.S. Appl. No. 15/006,003 of Kayes, B.M. et al. filed Jan. 25, 2016. |
Non-Final Office Action dated Sep. 26, 2013 for U.S. Appl. No. 13/772,043 of Archer, M.J. et al. filed Feb. 20, 2013. |
Notice of Allowance dated Aug. 12, 2014, for U.S. Appl. No. 12/940,876 of Kizilyalli, I.C. et al. filed Nov. 10, 2010. |
Notice of Allowance dated Aug. 17, 2015 for U.S. Appl. No. 14/452,393 of Ding, I.-K. et al. filed Aug. 5, 2014. |
Notice of Allowance dated Aug. 26, 2016 for U.S. Appl. No. 14/696,106 of Kayes, Brendan M. filed Apr. 24, 2015. |
Notice of Allowance dated Dec. 20, 2017 for U.S. Appl. No. 14/692,647 of Kayes, Brendan M. et al. filed Apr. 21, 2015. |
Notice of Allowance dated Jan. 2, 2015 for U.S. Appl. No. 13/354,175 of Higashi, G. et al. filed Jan. 19, 2012. |
Notice of Allowance dated Jul. 13, 2014 for U.S. Appl. No. 12/940,861 of Kizilyalli, I.C. et al. filed Nov. 5, 2010. |
Notice of Allowance dated Jul. 27, 2016 for U.S. Appl. No. 14/452,393 of Ding, I.-K. et al. filed Aug. 5, 2014. |
Notice of Allowance dated Jun. 19, 2014 for U.S. Appl. No. 12/605,108 of Kizilyalli, I.C. et al. dated Nov. 23, 2009. |
Notice of Allowance dated Jun. 2, 2015 for U.S. Appl. No. 13/354,175 of Higashi, G. et al. filed Jan. 19, 2012. |
Notice of Allowance dated Mar. 4, 2016 for U.S. Appl. No. 14/452,393 of Ding, I.-K. et al. filed Aug. 5, 2014. |
Notice of Allowance dated Oct. 20, 2016 for U.S. Appl. No. 12/904,047 of Atwater, H. et al. filed Oct. 13, 2010. |
Notice of Allowance dated Feb. 27, 2015 for U.S. Appl. No. 13/451,455 of Nie, H. et al. filed Jul. 19, 2012. |
Notice of Allowance dated Jan. 26, 2015 for U.S. Appl. No. 13/451,455 of Nie, H. et al. filed Jul. 19, 2012. |
Notice of Allowance with Corrected Notice of Allowability dated Feb. 28, 2017 for U.S. Appl. No. 12/904,047 of Atwater, H. et al. filed Oct. 13, 2010. |
Ohtsuka, H. et al., “Effect of light degradation on bifacial Si solar cells”, Solar energy materials and solar cells 66(1), 2001, pp. 51-59. |
Restriction Requirement dated Dec. 26, 2014 for U.S. Appl. No. 13/446,876 of Kayes, B.M. et al. filed Apr. 13, 2012. |
Restriction Requirement dated Dec. 28, 2017 for U.S. Appl. No. 15/422,218 of Zhu, Y. et al. filed Feb. 1, 2017. |
Restriction Requirement dated Dec. 9, 2015 for U.S. Appl. No. 14/846,675 of Kayes, B.M. et al. filed Sep. 4, 2015. |
Restriction Requirement dated Jan. 22, 2013 for U.S. Appl. No. 12/904,047 of Atwater, H. et al. filed Oct. 13, 2010. |
Restriction Requirement dated Jun. 22, 2016 for U.S. Appl. No. 15/006,003 of Kayes, B.M. et al. filed Jan. 25, 2016. |
Restriction Requirement dated Nov. 18, 2016, for U.S. Appl. No. 14/692,647 of Kayes, Brendan M. et al. filed Apr. 21, 2015. |
Restriction Requirement dated Oct. 24, 2014 for U.S. Appl. No. 13/705,064 of Kayes, B.M. et al. filed Dec. 4, 2012. |
Search Report dated Jun. 5, 2014, for Chinese Patent Application No. 201080046469 filed Oct. 14, 2010, 2 pages. |
Supplementary Search Report dated Sep. 18, 2017 for Chinese Patent Application No. 201510475349.5, 1 page. |
U.S. Appl. No. 15/706,090 of Kayes, B.M. et al. filed Sep. 15, 2017. |
U.S. Appl. No. 15/837,533 of Kayes, B.M. et al. filed Dec. 11, 2017. |
Van Geelen, A. et al., “Epitaxial lift-off GaAs solar cell from a reusable GaAs substrate”, Materials Science and Engineering: B, vol. 45, No. 1-3, Mar. 1997, pp. 162-171. |
Yang, et al., “Ultra-Thin GaAs Single-Junction Solar Cells Integrated with an AllnP Layer for Reflective Back Scattering”, (4 total pages). |
Yazawa, Y. et al., “GalnP single-junction and GalnP/GaAs two-junction thin-film solar cell structures by epitaxial lift-off”, Solar Energy Materials and Solar Cells, vol. 50, No. 1-4, 1998, pp. 229-235. |
European Office Action corresponding to European Application No. 17703637.3, dated Sep. 9, 2019. |
Number | Date | Country | |
---|---|---|---|
20180248069 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
62289070 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15417105 | Jan 2017 | US |
Child | 15957446 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13705064 | Dec 2012 | US |
Child | 15417105 | US | |
Parent | 12939077 | Nov 2010 | US |
Child | 13705064 | US | |
Parent | 12605108 | Oct 2009 | US |
Child | 12939077 | US |