Multi-layer metallization capacitive structure for reduction of the simultaneous switching noise in integrated circuits

Information

  • Patent Grant
  • 6205013
  • Patent Number
    6,205,013
  • Date Filed
    Monday, April 6, 1998
    27 years ago
  • Date Issued
    Tuesday, March 20, 2001
    24 years ago
Abstract
A multi-layer metallization capacitive structure is provided to a conductive line, such as a power line or signal transmission line in an integrated circuit, where the undesired effect of simultaneous switching noise (SSN) is adverse due to rapid switching of pulses in a digital signal. The multi-layer metallization capacitive structure can help reduce the SSN effect in the integrated circuit by providing at least one metallization layer which extends substantially beneath the conductive line; and at least one dielectric layer sandwiched between the power line and the metallization layer. The multi-layer metallization capacitive structure has an optimal effect if the metallization layer is designed to be precisely equal in width to the power line. The multi-layer metallization capacitive structure has an advantage over the prior art in that it can be formed together with the processing for forming multiple interconnects in the integrated circuit without the need to devise additional processes. Moreover, it requires a reduced layout area to implement as compared to the conventional on-chip capacitor.
Description




CROSS-REFERENCE TO RELATED APPLICATION




This application claims the priority benefit of Taiwan application serial no. 87102003, filed Feb. 13, 1998, the full disclosure of which is incorporated herein by reference.




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to noise reduction means in integrated circuits, and more particularly, to a multi-layer metallization capacitive structure which can help reduce the simultaneous switching noise (SSN) due to rapid switching of pulses in a digital signal.




2. Description of Related Art




The SSN effect is caused by the rapid switching of the pulses in a digital signal due to the inductance of the conductive line or the ground line.

FIG. 1

shows a CMOS inverter in which the SSN effect is a problem. As shown, the CMOS inverter includes a PMOS transistor (P-type metal-oxide semiconductor transistor)


10


and an NMOS transistor (N-type metal-oxide semiconductor transistor)


12


. The gate of the PMOS transistor


10


and the gate of the NMOS transistor


12


are tied together and connected to the input port for receiving a stream of pulses representative of digital data or signals. The source of the PMOS transistor


10


is connected via a power line


18


and a first inductor


14


to a system voltage V


d


, where, for example, V


d


=5 V (volt). The source of the NMOS transistor


12


is connected via a ground line and a second inductor


16


to the ground. Further, the drain of the PMOS transistor


10


and the drain of the NMOS transistor


12


are tied together and connected to the output port of the inverter.




One drawback to the foregoing circuit, however, is that when the pulses in the input signal are switched from one state to the other, an instantaneous current will be induced to flow either through the first inductor


14


to the system voltage line or through the second inductor


16


to the ground. A high voltage is thus induced across the power line


18


due to the instantaneous change in the current. This can be represented by the following relationship:






Δ


V=L·dI/dt.








where




ΔV is the induced voltage;




L is the inductance of the power line; and




dI/dt is the rate of change of the instantaneous current.




The induced high voltage from the power line would then influence the neighboring circuits that are connected to the inverter. The influence from such a high voltage is particularly adverse in integrated circuits of high packing densities and small sizes; high voltage can corrupt the digital data that are processed by the integrated circuits.




One solution to the foregoing problem, as shown in

FIG. 1

, is to provide a so-called on-chip capacitor


15


across the source and drain of the NMOS transistor


12


to offset the inductance of the conductive line connected to the ground. This provision can suppress the instantaneous current to a lesser degree. A conventional structure for forming the on-chip capacitor


15


in an integrated circuit is depicted in the following with reference to FIG.


2


.




In

FIG. 2

, the reference numeral


20


designates a power line or a ground line where the problem of the SSN effect is serious. As shown, the on-chip capacitor


15


includes a first metallization layer


22


connected to the power line or the ground line


20


, a second metallization layer


24


formed beneath the first metallization layer


22


, and a dielectric layer


26


sandwiched between the first and second metallization layers


22


,


24


.




The foregoing on-chip capacitor structure has two major drawbacks. First, it takes quite a large layout space in the integrated circuit, which is cost-ineffective for the manufacture of integrated circuits. Second, since the level of SSN is difficult to precisely predict in advance, if the on-chip capacitor fails to suppress the SSN effect, the whole layout should be redesigned. This makes the manufacture of the integrated circuits even more cost-ineffective.




SUMMARY OF THE INVENTION




It is therefore an objective of the present invention to provide a multi-layer metallization capacitive structure, which can help reduce the simultaneous switching noise in an integrated circuit.




It is another objective of the present invention to provide a multi-layer metallization capacitive structure, which will take up a lesser layout space in the integrated circuit as compared to the prior art.




In accordance with the foregoing and other objectives of the present invention, an improved multi-layer metallization capacitive structure is provided. The multi-layer metallization capacitive structure of the invention includes a power line, at least one metallization layer which extends substantially beneath the power line and at least one dielectric layer sandwiched between the power line and the metallization layer. The multi-layer metallization capacitive structure can provide the optimal effect if the metallization layer is designed to be precisely equal in width to the power line.











BRIEF DESCRIPTION OF DRAWINGS




The invention can be more fully understood by reading the following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein:





FIG. 1

is a schematic diagram of a CMOS inverter circuit, which is used to depict the SSN effect due to pulse switching;





FIG. 2

is a schematic diagram showing the conventional structure of an on-chip capacitor used to suppress the SSN effect;





FIG. 3

is a schematic diagram of a preferred embodiment of the multi-layer metallization capacitive structure according to the invention, which is embodied as a double-layer structure to suppress SSN effect in an integrated circuit;





FIG. 4

is a schematic diagram used to depict the method of finding the optimal structure for the double-layer metallization capacitive structure of

FIG. 3

;





FIG. 5A

is a graph, showing the waveform of a pulsed signal applied to an integrated circuit that is not provided with the double-layer metallization capacitive structure of the invention;





FIG. 5B

is a graph, showing the waveform of the same pulsed signal used in the case of

FIG. 5A

with the pulsed signal being applied to an integrated circuit provided with the double-layer metallization capacitive structure of the invention;





FIG. 6A

is a graph of simulation result, showing the SSN of a single-layer metallization capacitive structure (Z


0


=88.3452Ω);





FIG. 6B

is a graph of simulation result, showing the SSN of a double-layer metallization capacitive structure (Z


0


=40.645Ω);





FIG. 6C

is a graph of simulation result, showing the SSN of a single-layer metallization capacitive structure whose surface area is the same as the conventional on-chip capacitor (C


0


=66.5 fF);





FIG. 6D

is a graph of simulation result, showing the SSN of a double-layer metallization capacitive structure whose surface area is the same as the conventional on-chip capacitor (C


0


=5 pF);





FIG. 7

is a schematic diagram showing a multi-layer metallization capacitive structure according to the invention, which can reduce the SSN effect in an integrated circuit.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




In the following detailed description, the invention is embodied as a double-layer metallization capacitive structure. However, it is to be understood that the invention is not limited to such a structure, and instead can be extended to three or more layers.





FIG. 3

is a schematic diagram showing a double-layer metallization capacitive structure according to the invention, which can help reduce the SSN effect in an integrated circuit. As shown, the double-layer metallization capacitive structure is provided beneath a power line or a ground line


32


(which is formed from a flat metallization layer), which includes a metallization layer


34


equal in width to the power line or the ground line


32


and a dielectric layer


36


sandwiched between the power line or the ground line


32


and the metallization layer


34


. The metallization layer


34


can be formed from aluminum, for example. The dielectric layer


36


can be formed from oxide, for example. In combination, the power line or the ground line


32


, the dielectric layer


36


, and the metallization layer


34


constitute a double-layer capacitive structure which can serve to offset the inductance of the power line or the ground line


32


, thereby reducing the current drift due to the switching of pulses in the digital signal processed by the integrated circuit. The drawbacks of the prior art can thus be improved.





FIG. 4

is a schematic diagram used to depict the method of finding the optimal structure for the double-layer metallization capacitive structure of FIG.


3


. In this figure, the reference numeral


42


designates an upper metallization layer, the reference numeral


44


designates a grounded metallization layer and the reference numeral


46


designates a dielectric layer sandwiched between the upper metallization layer


42


and the grounded metallization layer


44


. Assume the power line or the ground line


32


has a width W, the grounded metallization layer


44


has a width a, the dielectric layer


46


has a thickness d, the dielectric constant of the medium above the power line or the ground line


32


is ε


0


and the dielectric constant of the dielectric layer


46


is ε


r


ε


0


. Further, assume the upper metallization layer


42


is centered above the grounded metallization layer


44


, with the center thereof being the original, making the rightmost edge of the grounded metallization layer


44


at the coordinate a/


2


and the leftmost edge of the same at the coordinate-a/


2


.




Based on the above assumptions, the following relationship can be deduced:








C=Q/V


















=

1





n
=
1

odd










4

a






sin


(

n





π






W
/
2


a

)



sin






h


(

n





π






d
/
a


)






(

n





π

)

2


W







ε
0



[


sin






h


(

n





π






d
/
a


)



+


ε
r


cos






h


(

n





π






d
/
a


)




]










(
1
)













where






ε


0




=C/C




0








Therefore, the characteristic impedance Z


0


of the upper metallization layer


42


(when serving as a power line) can be expressed as follows:







Z
0

=



ε
e



c
·
C












where








c=


3×10


8


m/sec






From Eqn. (1), it can be found that the capacitance per unit length of the power line is at the maximum when the upper metallization layer


42


and the grounded metallization layer


44


are equal in width. Accordingly, as illustrated in

FIG. 3

, the metallization layer


34


is designed to have its width substantially equal to that of the power line or the ground line


32


so as to provide the best capacitance to offset the inductance of the power line or the ground line


32


.




The improvements provided by the double-layer metallization capacitive structure of the invention are demonstrated in the following with reference to

FIGS. 5A-5B

and

FIGS. 6A-6D

.





FIG. 5A

is a graph showing the waveform of a pulsed signal applied to an integrated circuit that is not provided with the double-layer metallization capacitive structure of the invention. For comparison purpose,

FIG. 5B

shows the same for an integrated circuit that is provided with the double-layer metallization capacitive structure of the invention. It can be seen from

FIG. 5A

that, without the provision of the invention, the waveform of the pulsed signal, when passing through the power line, will undulate between a maximum of about 1 V and a minimum of about −2 V. By contrast, as shown in

FIG. 5B

, the invention will only allow the same pulsed signal to undulate between a maximum of about 0.4V and a minimum of about −0.4 V. The undulation range is therefore considerably reduced as compared to the prior art.





FIGS. 6A-6D

are graphs, showing the respective simulation results for a single-layer metallization capacitive structure with Z


0


=88.3452Ω, a double-layer metallization capacitive structure with Z


0


=40.645Ω, a metallization capacitive structure with C


0


=66.5 fF (femtofarad) and whose surface area is the same as the conventional on-chip capacitor and a metallization capacitive structure with C


0


=5 pF (picofarad) and whose surface area is the same as the conventional on-chip capacitor. It can be seen from these graphs that the invention can allow a decreased characteristic impedance Z


0


and an increased capacitance C


0


for the power line.




In conclusion, the multi-layer metallization capacitive structure of the invention can reduce the SSN effect due to the switching of pulses in a digital signal. With the same surface area, the multi-layer metallization capacitive structure of the invention can provide a larger capacitance than the conventional on-chip capacitor. In the foregoing disclosure, the preferred embodiment is a double-layer structure; but the invention can be extended to three or more layers.





FIG. 7

is a schematic diagram showing a multi-layer metallization capacitive structure according to the invention, which can help reduce the SSN effect in an integrated circuit. The number signs here are the same as in FIG.


3


. As shown, the multilayer metallization capacitive structure is provided beneath a power line or a ground line


32


(which is formed from a flat metallization layer), which includes several metallization layers


34


and


34


′ equal in width to the power line or the ground line


32


and dielectric layers


36


and


36


′. The dielectric layer


36


is sandwiched between the power line or the ground line


32


and the metallization layer


34


. The dielectric layer


36


′ is sandwiched between the metallization layer


34


and the metallization layer


34


′. The metallization layers


34


and


34


′ can be formed from aluminum, for example. The dielectric layers


36


and


36


′ can be formed from oxide, for example.




The multi-layer metallization capacitive structure of the invention can be formed together by the process for forming multiple interconnects in an integrated circuit. Therefore, the fabrication of the multi-layer metallization capacitive structure requires no additional processes. In practice, a simulation test can be performed on the integrated circuit to find those power lines that are particularly adversely affected by the SSN effect; and then these power lines are replaced with the multi-layer metallization capacitive structure of the invention so as to reduce the SSN effect.




The invention has an advantage over the prior art in that it can be implemented without the need to take up additional layout space in the integrated circuit. Moreover, the power lines that are subjected to SSN can be detected in advance and then replaced with the multi-layer metallization capacitive structure of the invention to reduce the SSN effect. The manufacture of the integrated circuits is therefore much more cost-effective than the prior art.




The invention has been described using exemplary preferred embodiments. However, it is to be understood that the scope of the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements. The scope of the claims, therefore, should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.



Claims
  • 1. A multi-layer metallization capacitive structure for reduction of simultaneous switching noise (SSN) effect in an integrated circuit, which comprises:a power line; at least one metallization layer which extends substantially beneath said power line, wherein the power line is substantially equal in width to that of the at least one metallization layer; and at least one dielectric layer sandwiched between said power line and said metallization layer.
  • 2. The multi-layer metallization capacitive structure of claim 1, wherein said power line is connected to a DC voltage.
  • 3. The multi-layer metallization capacitive structure of claim 1, wherein said metallization layer is formed from aluminum.
  • 4. The multi-layer metallization capacitive structure of claim 1, wherein said metallization layer is formed together with a process for forming multiple interconnects in the integrated circuit.
  • 5. The multi-layer metallization capacitive structure of claim 1, wherein said dielectric layer is formed from oxide.
  • 6. A multi-layer metallization capacitive structure for reduction of simultaneous switching noise (SSN) effect in an integrated circuit, which comprises:a conductive line; a plurality of metallization layers which extend substantially beneath said conductive line in a stacked manner, each of said metallization layers is substantially equal in width to said conductive line; and a plurality dielectric layers, one of said dielectric layers is sandwiched between said conductive line and one of said metallization layers, and all the others of said dielectric layers are sandwiched between other said metallization layers.
  • 7. The multi-layer metallization capacitive structure of claim 6, wherein said conductive layer is connected to a DC voltage.
  • 8. The multi-layer metallization capacitive structure of claim 6, wherein said conductive layer is connected to a system voltage supply.
  • 9. The multi-layer metallization capacitive structure of claim 6, wherein said conductive layer is connected to ground.
  • 10. The multi-layer metallization capacitive structure of claim 6, wherein said metallization layers are formed from aluminum.
  • 11. The multi-layer metallization capacitive structure of claim 6, wherein said metallization layers are formed together by a process for forming multiple interconnects in the integrated circuit.
  • 12. The multi-layer metallization capacitive structure of claim 6, wherein said dielectric layers are formed from oxide.
Priority Claims (1)
Number Date Country Kind
87102003 Feb 1998 TW
US Referenced Citations (10)
Number Name Date Kind
4811082 Jacobs et al. Mar 1989
5155655 Howard et al. Oct 1992
5161086 Howard et al. Nov 1992
5469324 Henderson et al. Nov 1995
5583739 Vu et al. Dec 1996
5635767 Wenzel et al. Jun 1997
5672911 Patil et al. Sep 1997
5708296 Bhansali Jan 1998
5870274 Lucas Feb 1999
5886406 Bhansali Mar 1999