(A) Field of the Invention
The present invention relates to a semiconductor structure and manufacturing method thereof, and more specifically, to a multi-layer semiconductor structure and manufacturing method thereof using wafer-bonding technology
(B) Description of the Related Art
With continuing improvements in semiconductor technology, line width gradually shrinks to increase integration density. However, as devices become closer, manufacture becomes more difficult and integration density is limited. Moreover, some problems such as crosslink, timing delay and thermal effect may occur.
Consequently, a double-layer semiconductor structure in combination with two wafers is generated. In addition to increasing the density of devices, different semiconductor structures may be integrated for various applications. U.S. Pat. No. 6,423,613 discloses a process in which semiconductor structures are formed in two wafers first, and the two wafers are bonded and annealed afterwards.
Wafer bonding has a problem of common interface defects; the majority of the interface defects are voids. Interface defects may occur in the bonding process, during long-term storage, under heat treatment or in the wafer grinding process. The defects occurring in bonding may be caused by residual particles, surface convexity, insufficient bonding filler or residual gases at the interface. If the wafers are stored for a long time before bonding, or heat-treated after bonding, interface defects may be caused by reaction of bonding filler and substrate, damage to surface bonding, or contamination or peeling of bonding surface or interface. Therefore, yield and reliability of devices are decreased. Moreover, different glue conditions may generate bubbles on a glue interface and therefore decrease yield of the gluing process. Excessive glue pressure may break wafers. Also, wafers may break during heat treatment due to large differences between thermal expansion coefficients of bonding materials.
In view of the risks of wafer bonding and the formation of semiconductor structures on wafers needing to undergo more than one hundred processes, problems occurring during wafer bonding can nullify all previous efforts and lead to increases in manufacturing cost.
The present invention provides a multi-layer semiconductor structure and manufacturing method thereof, with a view to increasing device density, and providing various semiconductor structures to increase diversity of device design. Moreover, manufacturing scrap expense due to defects in wafer bonding can be avoided.
In accordance with the present invention, a multi-layer semiconductor structure is manufactured as follows. First, a first wafer including a first semiconductor device structure and a second wafer including a substrate and a single crystal silicon layer are provided. The first and second wafers are bonded, in which a surface of the first wafer having the first semiconductor device structure is in contact with a surface of the second wafer having the single crystal silicon layer. The first wafer and the second wafer can be bonded by a dielectric layer and a glue layer. Then, the single crystal silicon layer is subjected to processes to form a second semiconductor device structure thereon.
Preferably, the single crystal silicon layer can be formed by ion implantation, grinding, etching and polishing. After bonding the first and second wafers, the substrate of the second wafer is removed by ion implantation, grinding and etching.
The first and second semiconductor device structures can be manufactured as desired; they can be the same or different semiconductor devices. As an example, the first semiconductor device structure may be a memory structure and the second semiconductor device structure may be a logic device structure, so as to form an embedded memory structure. Alternatively, the first semiconductor device structure may be a dynamic random access memory (DRAM) structure of deep trench type and the second semiconductor device structure may be a DRAM structure of stack type. The process to form the second semiconductor device structure comprises the formation of conductive lines connecting the first and second semiconductor device structures to bit lines on a surface of the substrate of the first wafer, so as to control operations of the first and second semiconductor device structures.
Manufacture of a memory structure is exemplified as follows:
Referring to
Referring to
Referring to
The second semiconductor device structure of DRAM of stack type is exemplified as follows.
Referring to
Referring to
Referring to
In consideration of high temperature process for making semiconductor device structure in the upper wafer after bonding, metal lines of the lower wafer can be of tungsten or copper with higher melting points to avoid thermal cycle problems.
A semiconductor device structure of two layers is exemplified in the above embodiment. Nevertheless, the same process can be repeated to manufacture a multi-layer structure of three or more layers as desired.
The above-described embodiments of the present invention are intended to be illustrative only. Numerous alternative embodiments may be devised by those skilled in the art without departing from the scope of the following claims.
| Number | Date | Country | Kind |
|---|---|---|---|
| 096113281 | Apr 2007 | TW | national |