The present disclosure relates to the technical field of multi-layer substrates, and more particularly to a multi-layer substrate structure which can be peeled off precisely and a method for manufacturing the same.
In the prior art, a multi-layer substrate can be formed on a substrate. The substrate can be a circuit board or a glass board. The multi-layer substrate includes a flexible dielectric material or is a multi-layer substrate of which a main body is a flexible dielectric material. The multi-layer substrate includes a plurality of metal layers and a plurality of dielectric layers which are alternately stacked. When a dielectric layer or the multi-layer substrate on the substrate is required to be removed, an etching method is used conventionally. The etching method can be classified into a wet etching method and a dry etching method. In the wet etching method, the dielectric layer or the multi-layer substrate on the substrate is soaked in an etching solution. The dry etching method can be an ion etching method, for example, a reactive ion etching method, a chemical dry etching and so on. However, an uncontrolled situation occurs regardless of the dry etching method or the wet etching method. This leads to uncertainty of removing the dielectric layer or the multi-layer substrate on the substrate.
As shown in
As shown in
In another example, as shown in
As shown in
Therefore, there is a need to solve the above-mentioned problems in the prior art.
An objective of the present disclosure is to provide a multi-layer substrate structure which can be peeled off precisely and a method for manufacturing the same.
The multi-layer substrate structure which can be peeled off precisely of the present disclosure includes: a substrate; a first flexible dielectric layer formed on the substrate; a peel-off layer formed on the first flexible dielectric layer; and a unit to be peeled off formed on the peel-off layer; wherein an adhesive force between the peel-off layer and the first flexible dielectric layer is smaller than an adhesive force between the first flexible dielectric layer and the substrate, and the substrate, the first flexible dielectric layer, the peel-off layer, and the unit to be peeled off together form the multi-layer substrate structure.
The method for manufacturing the multi-layer substrate structure which can be peeled off precisely of the present disclosure includes: providing a substrate; forming a first flexible dielectric layer on the substrate; forming a peel-off layer on the first flexible dielectric layer, wherein an adhesive force between the peel-off layer and the first flexible dielectric layer is smaller than an adhesive force between the first flexible dielectric layer and the substrate; and forming a unit to be peeled off on the peel-off layer.
In the multi-layer substrate structure which can be peeled off precisely and the method for manufacturing the same, since the adhesive force between the peel-off layer and the first flexible dielectric layer is smaller than the adhesive force between the first flexible dielectric layer and the substrate, the at least one film layer on the peel-off layer can be totally or partially and precisely removed by peeling off the peel-off layer.
To make the objectives, technical schemes, and technical effects of the present disclosure clearer and more definitely, the present disclosure will be described in detail below by using embodiments in conjunction with the appending drawings. It should be understood that the specific embodiments described herein are merely for explaining the present disclosure, and as used herein, the term “embodiment” refers to an instance, an example, or an illustration but is not intended to limit the present disclosure. In addition, the articles “a” and “an” as used in the specification and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from the context to be directed to a singular form. Also, in the appending drawings, the components having similar or the same structure or function are indicated by the same reference number.
Please refer to
As shown in
The substrate 500 can be a single-layer substrate or a multi-layer substrate. The substrate 500 can be selected from the group consisting of a circuit board, a glass substrate, and a ceramic substrate. A material of the substrate 500 is an organic material or an inorganic material.
The substrate 500 includes at least one dielectric layer and at least one metal layer which are alternately stacked. The at least one metal layer can be selected from the group consisting of a metal wiring layer (i.e., a signal layer), a power supply layer, and a ground layer. A material of the at least one dielectric layer of the substrate can be polyimide (PI).
The first flexible dielectric layer 502 is formed on the substrate 500. A material of the first flexible dielectric layer 502 can be polyimide.
The peel-off layer 504 is formed on the first flexible dielectric layer 502. An adhesive force between the peel-off layer 504 and the first flexible dielectric layer 502 is smaller than an adhesive force between the first flexible dielectric layer 502 and the substrate 500, so that at least one film layer on the peel-off layer 504 can be easily removed by tearing the peel-off layer 504. In detail, the at least one film layer on the peel-off layer 504 can be totally or partially and precisely removed by peeling off the peel-off layer 504.
The unit 506 to be peeled off is formed on the peel-off layer 504. A right portion A in the unit 506 to be peeled off is a portion required to be removed. A left portion B in the unit 506 to be peeled off is a portion required to be reserved. A dashed line C is a dividing line between the right portion A and the left portion B.
In one embodiment, the unit 506 to be peeled off includes at least one flexible multi-layer substrate. The at least one flexible multi-layer substrate includes at least one dielectric layer and at least one metal layer which are alternately stacked. The at least one metal layer can be selected from the group consisting of a metal wiring layer (i.e., a signal layer), a power supply layer, and a ground layer. A material of the at least one dielectric layer of the substrate can be polyimide (PI).
In another embodiment, the unit 506 to be peeled off includes at least one second flexible dielectric layer. A material of the at least one second flexible dielectric layer can be polyimide (PI).
In the multi-layer substrate structure shown in
When the first flexible dielectric layer 502 in the right portion A is required to be removed, the first flexible dielectric layer 502 can be formed to be thin in advance. Then, the first flexible dielectric layer 502 is removed by a conventional dry etching method or a wet etching method.
Please refer to
In step S60, a substrate is provided.
In step S62, a first flexible dielectric layer is formed on the substrate.
In step S64, a peel-off layer is formed on the first flexible dielectric layer, wherein an adhesive force between the peel-off layer and the first flexible dielectric layer is smaller than an adhesive force between the first flexible dielectric layer and the substrate.
In step S66, a unit to be peeled off is formed on the peel-off layer.
Please refer to
In
The substrate 700 can be a single-layer substrate or a multi-layer substrate. The substrate 700 can be selected from the group consisting of a circuit board, a glass substrate, and a ceramic substrate. A material of the substrate 700 is an organic material or an inorganic material.
The substrate 700 includes at least one dielectric layer and at least one metal layer which are alternately stacked. The at least one metal layer can be selected from the group consisting of a metal wiring layer (i.e., a signal layer), a power supply layer, and a ground layer. A material of the at least one dielectric layer of the substrate can be polyimide (PI).
In
A material of the first flexible dielectric layer 702 can be polyimide.
In
An adhesive force between the peel-off layer 704 and the first flexible dielectric layer 702 is smaller than an adhesive force between the first flexible dielectric layer 702 and the substrate 700, so that at least one film layer on the peel-off layer 704 can be easily removed by tearing the peel-off layer 704. In detail, the at least one film layer on the peel-off layer 704 can be totally or partially and precisely removed by peeling off the peel-off layer 704.
In
In one embodiment, the unit 706 to be peeled off includes at least one flexible multi-layer substrate. The at least one flexible multi-layer substrate includes at least one dielectric layer and at least one metal layer which are alternately stacked. The at least one metal layer can be selected from the group consisting of a metal wiring layer (i.e., a signal layer), a power supply layer, and a ground layer. A material of the at least one dielectric layer of the substrate can be polyimide (PI).
In another embodiment, the unit 706 to be peeled off includes at least one second flexible dielectric layer. A material of the at least one second flexible dielectric layer can be polyimide (PI).
In
In
When the first flexible dielectric layer 702 in the right portion A is required to be removed, the first flexible dielectric layer 702 can be formed to be thin in advance. Then, the first flexible dielectric layer 702 is removed by a conventional dry etching method or a wet etching method.
In the multi-layer substrate structure which can be peeled off precisely and the method for manufacturing the same, since the adhesive force between the peel-off layer and the first flexible dielectric layer is smaller than the adhesive force between the first flexible dielectric layer and the substrate, the at least one film layer on the peel-off layer can be totally or partially and precisely removed by peeling off the peel-off layer.
While the preferred embodiments of the present disclosure have been illustrated and described in detail, various modifications and alterations can be made by persons skilled in this art. The embodiment of the present disclosure is therefore described in an illustrative but not restrictive sense. It is intended that the present disclosure should not be limited to the particular forms as illustrated, and that all modifications and alterations which maintain the spirit and realm of the present disclosure are within the scope as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
109131422 | Sep 2020 | TW | national |