This non-provisional application claims priority under 35 U.S.C. § 119(a) on Patent Application No(s). 111142437 filed in Taiwan, R.O.C. on Nov. 7, 2022, and on provisional patent application No(s). 63/356,379 filed in U.S.A. on Jun. 28, 2022, the entire contents of which are hereby incorporated by reference.
The disclosure relates to a resonator circuit structure and a filter circuit structure, more particularly to a multi-layered resonator circuit structure and a multi-layered filter circuit structure.
In general, a band-pass filter is configured to pass frequencies within a certain range and reject frequencies outside that range. Such band-pass filter is usually implemented by one or more resonators since the resonators exhibit a resonance behavior of having better frequency response at some specific frequencies than at other frequencies. Typically, the resonators are disposed on the same mounting surface of the circuit board when implementing the band-pass filter.
However, since the resonators are disposed on the same mounting surface of the circuit board, the total space on the mounting surface available for mounting other electronic components besides the resonators is very limited, which is unfavorable for the space utilization and the miniaturization of the circuit board.
The disclosure provides a multi-layered resonator circuit structure and a multi-layered filter circuit structure to improve the space utilization of the circuit board (i.e., multi-layered substrate) and facilitate the miniaturization of the circuit board.
One embodiment of this disclosure provides a multi-layered resonator circuit structure including a multi-layered substrate, a plurality of resonators and a plurality of conductive components. The multi-layered substrate has a top surface, a bottom surface, and a ground layer. The top surface and the bottom surface face away from each other. The ground layer is located between the top surface and the bottom surface. A part of the plurality of resonators is/are disposed on the top surface. Another part of the plurality of resonators is/are disposed on the bottom surface. The plurality of conductive components is located in the multi-layered substrate. The plurality of resonators is electrically connected to the ground layer, respectively, via the plurality of conductive components.
In an embodiment of the disclosure, each of the plurality of resonators includes a joint and a plurality of stubs. The plurality of stubs is connected to the joint. The plurality of stubs is one ground stub and at least one open stub. The plurality of ground stubs is electrically connected to the ground layer, respectively, via the plurality of conductive components.
In an embodiment of the disclosure, the at least one open stub includes a plurality of open stubs.
In an embodiment of the disclosure, each of the plurality of stubs includes an inner extension portion and an outer extension portion. The inner extension portion is connected to the joint. The outer extension portion is connected to the inner extension portion. The outer extension portion is non-parallel to the inner extension portion.
In an embodiment of the disclosure, the inner extension portion and the outer extension portion of one of the plurality of stubs and the inner extension portion of another one of the plurality of stubs which is located adjacent thereto together form an arrangement area therebetween. Each of the plurality of resonators further includes a plurality of leaves connected to the joint and located in the plurality of arrangement areas, respectively.
In an embodiment of the disclosure, two of the plurality of resonators are disposed on the top surface and are coupled to each other via two of the plurality of stubs arranged side by side on the top surface. Another two of the plurality of resonators are disposed on the bottom surface and are coupled to each other via another two of the plurality of stubs arranged side by side on the bottom surface. The ground layer has two opening slots spaced apart from each other. One of the two opening slots corresponds to the two of the plurality of stubs coupled to each other on the top surface. Another one of the two opening slots corresponds to the another two of the plurality of stubs coupled to each other on the bottom surface.
In an embodiment of the disclosure, an orthogonal projection of each of the two opening slots onto the top surface or the bottom surface is located between the two joints, and perpendicular to the two outer extension portions of the two stubs coupled to each other.
In an embodiment of the disclosure, each of the two opening slots includes a main slot portion and two secondary slot portions. An orthogonal projection of the main slot portion onto the top surface or the bottom surface is located between the two joints and perpendicular to the two outer extension portions of the two stubs coupled to each other. The two secondary slot portions are perpendicular to the main slot portion and connected to two opposite ends of the main slot portion, respectively.
In an embodiment of the disclosure, each of the two opening slots further includes a plurality of tertiary slot portions parallel to the main slot portion and connected two opposite ends of the two secondary slot portions, respectively.
Another embodiment of this disclosure provides a multi-layered filter circuit structure including a multi-layered substrate having a top surface, a plurality of filters and a plurality of conductive components. The multi-layered substrate has a top surface, a bottom surface, and a ground layer. The top surface and the bottom surface face away from each other. The ground layer is located between the top surface and the bottom surface. A part of the plurality of filters is/are disposed on the top surface, and another part of the plurality of filters is/are disposed on the bottom surface. A plurality of conductive components is located in the multi-layered substrate. The plurality of filters is electrically connected to the ground layer, respectively, via the plurality of conductive components.
In an embodiment of the disclosure, each of the plurality of filters includes at least one resonator, an input port and an output port. The input port and the output port are spaced apart from the at least one resonator and located on two opposite sides of the at least one resonator, respectively. The plurality of resonators is, electrically connected to the ground layer, respectively, via the plurality of conductive components.
In an embodiment of the disclosure, a plurality of resonators is disposed on the top surface and in alignment with a plurality of straight lines, and a plurality of resonators is disposed on the bottom surface and in alignment with a plurality of straight lines.
In an embodiment of the disclosure, on the top surface or the bottom surface, identical amount of the plurality of resonators are in alignment with different ones of the plurality of straight lines.
In an embodiment of the disclosure, on the top surface or the bottom surface, different amounts of the plurality of resonators are in alignment with at least two of the plurality of straight lines.
According to the multi-layered resonator circuit structure and the multi-layered filter circuit structure disclosed by the above embodiments, the resonators or the filters are disposed on the top surface and the bottom surface of the multi-layered substrate facing away from each other; in other words, at least one of the resonators or the filters is not disposed on the top surface of the multi-layered substrate. Accordingly, by moving at least one of the resonators or the filters from the top surface to the bottom surface, more spare space on the top surface is available for other electronic components besides the resonators, thereby improving the space utilization of the circuit board (i.e., multi-layered substrate) and facilitating the miniaturization of the circuit board.
The present disclosure will become better understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only and thus are not intending to limit the present disclosure and wherein:
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
Note that throughout the specification and the drawings, the same reference number refers to the same or similar component.
Please refer to
In this embodiment, the multi-layered resonator circuit structure 10 includes a multi-layered substrate 100, a plurality of resonators 200, and a plurality of conductive components 300. The multi-layered substrate 100 has a top surface 111, a bottom surface 121, and a ground layer 130. The top surface 111 and the bottom surface 121 face away from each other, and the ground layer 130 is located between the top surface 111 and the bottom surface 121. In this embodiment, the multi-layered substrate 100 is, for example, a two-layered substrate or a two-layered circuit board. In detail, in this embodiment, the multi-layered substrate 100 includes a first dielectric layer 110 and a second dielectric layer 120. The top surface 111 and the bottom surface 121 are located on the first dielectric layer 110 and the second dielectric layer 120, respectively. In addition, the multi-layered substrate 100 further includes a ground layer 130. The first dielectric layer 110 and the second dielectric layer 120 are located on two opposite sides of the ground layer 130, respectively. The top surface 111 and the bottom surface 121 face away from the ground layer 130.
In this embodiment, the ground layer 130 has two opening slots 131 that are spaced apart from each other. In this embodiment, an outline of the opening slot 131 is in, for example, a bar shape; in other words, the opening slot 131 may be a bar shaped slot. Each opening slot 131 is filled with, for example, a dielectric material, but the disclosure is not limited thereto. In other embodiments, each opening slot may be filled with air instead of the dielectric material; in other words, the opening slot may be an empty slot which is absent of any solid filling therewith.
A part of the resonators 200 is/are disposed on the top surface 111, and the remaining part of the resonators 200 is/are disposed on the bottom surface 121; in other words, the resonators 200 appear on both of the top surface 111 and the bottom surface 121 of the multi-layered substrate 100. For example, there are two resonators 200 coupled to each other disposed on the top surface 111 and two resonators 200 disposed on the bottom surface 121.
In this embodiment, the quantity of the resonators 200 disposed on the top surface 111 is equal to the quantity of the resonators 200 disposed on the bottom surface 121, but the disclosure is not limited thereto. In other embodiments, the quantity of the resonators disposed on the top surface may be different from the quantity of the resonators disposed on the bottom surface.
The resonators 200 are the same or similar in structure, and thus only one of the resonators 200 will be described in detail hereinafter. The resonator 200 includes a joint 210 and a plurality of stubs 220. The stubs 220 are connected to the joint 210. The stubs 220 are, for example, one ground stub 2201 and three open stubs 2202; that is, in the resonator 200, there are one ground stub 2201 and three open stubs 2202 connected to the joint 210. In addition, the stubs 220 may be referred as transmission lines.
Each stub 220 has a bent shape. Specifically, the studs 220 each include an inner extension portion 221 and an outer extension portion 222 (that is, the ground stub 2201 and the open stubs 2202 each include one inner extension portion 221 and one outer extension portion 222), where the inner extension portion 221 is at an angle to the outer extension portion 222. In addition, the ground stub 2201 is at a specific angle to each open stub 2202. The inner extension portions 221 are connected to the joint 210. The outer extension portions 222 are connected to the inner extension portions 221, respectively. The outer extension portions 222 are non-parallel to the inner extension portions 221, respectively. In this embodiment, an outline of the resonator 200 is generally in a square shape. The inner extension portions 221 extend along, for example, the diagonals of the resonator 200, respectively. In other words, the inner extension portions 221 are, respectively, arranged along the radial directions of the joint 210. The outer extension portions 222 extend along the outer contour of the resonator 200, respectively. An angle between two of the inner extension portions 221 that extend along different diagonals of the resonator 200 is, for example, 90 degrees. An angle between one of the outer extension portions 222 and one of the inner extension portions 221 that are connected to each other is, for example, 45 degrees. With such configuration, the inner extension portion 221 and the outer extension portion 222 of one of the stubs 220 and the inner extension portion 221 of adjacent stub 220 together form an arrangement area S therebetween. As shown, the stubs 220 of the resonator 200 may define four arrangement areas S, and an outline of each arrangement area S may be in an isosceles triangle shape.
In this embodiment, the resonator 200 may further include a plurality of leaves 230. The leaves 230 are located in the arrangement areas S, respectively. The leaves 230 are connected to the joint 210. With respect to one of the leaves 230 and a pair of the inner extension portion 221 and the outer extension portion 222 surrounding that leaf 230, the leave 230 is, for example, spaced apart from the inner extension portion 221 and the outer extension portion 222 while being filled in the arrangement area S as much as possible. In other words, the leaves 230 are not in direct contact with the stubs 220 and are sized and shaped to be close to the arrangement area S. Accordingly, an arrangement area of each leaf 230 is increased to widen the stopband of the resonator 200. Furthermore, the stopband of the resonator 200 may be widened by increasing the quantity of the open stubs 2202.
In this embodiment, on each side of the multi-layered substrate 100, two stubs 220 of the two resonators 200 are arranged side by side to couple the two resonators 200 to each other. For example, regarding the resonators 200 on the top surface 111 as shown in
One of the opening slots 131 corresponds to the two stubs 220 on the top surface 111, and the other opening slot 131 corresponds to the stubs 220 coupled to each other on the bottom surface 121. The two opening slots 131 are the same or similar in structure, and thus only one of the opening slots 131 will be described in detail hereinafter. For example, with respect to the opening slot 131 that corresponds to the resonators 200 on the top surface 111, an orthogonal projection of the opening slot 131 onto the top surface 111 is located between the two joints 210 of the resonators 200, and is perpendicular to the outer extension portions 222 of the stubs 220 coupled to each other. The relationship between the other opening slot 131 and the resonators 200 on the bottom surface 121 is the same as or similar to those described above, and thus the relevant descriptions are omitted.
The opening slots 131 are able to make the coupling between the resonators 200 stronger. In this embodiment, a length L of the opening slot 131 is positively correlated with the strength of the coupling between the resonators 200 coupled to each other. In other words, the longer the opening slot 131 is, the stronger the coupling between the resonators 200 coupled to each other is.
The conductive components 300 are, for example, conductive blind vias. The conductive components 300 are located in the first dielectric layer 110 and the second dielectric layer 120 of the multi-layered substrate 100, respectively. The ground stubs 2201 of the resonators 200 are electrically connected to the ground layer 130, respectively, via the conductive components 300.
Please refer to
As shown in
Please refer to
As shown in
Please refer to
The disclosure is not limited by the configuration of each resonator. Please refer to
As shown in
The disclosure is not limited by the quantity of the open stubs. Please refer to
Please refer to
Please refer to
Please refer to
Please refer to
Please refer to
Please refer to
The multi-layered substrate 100c has a top surface 111, a bottom surface 121 and a ground layer 130c. The top surface 111 and the bottom surface 121 face away from each other, and the ground layer 130c is located between the top surface 111 and the bottom surface 121. In this embodiment, the multi-layered substrate 100c is, for example, a two-layered substrate or a two-layered circuit board. In detail, in this embodiment, the multi-layered substrate 100c includes a first dielectric layer 110, and a second dielectric layer 120. The top surface 111 and the bottom surface 121 are located on the first dielectric layer 110 and the second dielectric layer 120, respectively. In addition, the multi-layered substrate 100 further includes a ground layer 130c. The first dielectric layer 110 and the second dielectric layer 120 are located on two opposite sides of the ground layer 130c, respectively. The top surface 111 and the bottom surface 121 face away from the ground layer 130c.
A part of the filters 500k is/are disposed on the top surface 111, and the remaining part of the filters 500k is/are disposed on the bottom surface 121. The filters 500k are the same or similar in structure, and thus only one of the filters 500k will be described in detail hereinafter. The filter 500k includes a resonator 200, an input port 510k and an output port 520k. The resonator 200 includes a joint 210 and a plurality of stubs 220. The stubs 220 are connected to the joint 210. The stubs 220 are, for example, one ground stub 2201 and three open stubs 2202; that is, in the resonator 200, there are one ground stub 2201 and three open stubs 2202 connected to the joint 210.
Note that in this embodiment, a quantity of the filters 500k disposed on the top surface 111 is equal to a quantity of the filters 500k disposed on the bottom surface 121, but the disclosure is not limited thereto. In other embodiments, the quantity of the filters disposed on the top surface may be different from the quantity of the filters disposed on the bottom surface.
The input port 510k and the output port 520k are located on two opposite sides of the resonator 200, respectively. Also, the input port 510k and one stub 220 located on a side of the resonator 200 are arranged side by side. The output port 520k and another stub 220 located on the opposite side of the resonator 200 are arranged side by side. With such configuration, one or more signals can be input into the input port 510k and then output from the output port 520k via the resonator 200, thereby performing a function of filtering.
Please refer to
Please refer to
According to the multi-layered resonator circuit structure and the multi-layered filter circuit structure disclosed by the above embodiments, the resonators or the filters are disposed on the top surface and the bottom surface of the multi-layered substrate facing away from each other; in other words, at least one of the resonators or the filters is not disposed on the top surface of the multi-layered substrate. Accordingly, by moving at least one of the resonators or the filters from the top surface to the bottom surface, more spare space on the top surface is available for other electronic components besides the resonators, thereby improving the space utilization of the circuit board (i.e., multi-layered substrate) and facilitating the miniaturization of the circuit board.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present disclosure. It is intended that the specification and examples be considered as exemplary embodiments only, with a scope of the disclosure being indicated by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
111142437 | Nov 2022 | TW | national |
Number | Date | Country | |
---|---|---|---|
63356379 | Jun 2022 | US |