Ti-6Al-4V is one of the most widely used titanium alloys. Ti-6A-4V is an alpha-beta type titanium alloy containing 6 wt. % Al and 4 wt. % V. Ti-6Al-4V is known for its good combination of strength, toughness and corrosion resistance.
Broadly, the present disclosure relates to new multi-material wires for additive manufacturing of titanium alloys, such as additive manufacturing techniques employing an electron beam and/or plasma arc radiation source.
In one approach, a wire for use in electron beam or plasma arc additive manufacturing is provided. In this approach, the wire may include an outer tube portion and a volume of particles contained within the outer tube portion. The outer tube portion comprises a first material or a second material, and the volume of particles generally comprise the other of the first material and the second material relative to the outer tube portion. In one embodiment, the second material at least comprises titanium. In one embodiment, the second material comprises an aluminum-containing titanium alloy. In one embodiment, the second material is a titanium alloy selected from the group consisting of Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-7Al-4Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-5Al-2Sn-2Zr-4Mo-4Cr, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Ti-3Al-2.5V, Ti-10V-2Fe-3Al, Ti-13V-11Cr-3Al, Ti-8Mo-8V-2Fe-3Al, Ti-3Al-8V-6Cr-4Mo-4Zr, Ti-5Al-2.5Sn, Ti-8Al-1Mo-1V, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Nb-1Ta-0.8Mo, Ti-2.25Al-11Sn-5Zr-1Mo, and Ti-5Al-5Sn-2Zr-2Mo. In one embodiment, the first material comprises an element for alloying with titanium, such as one or more of aluminum, tin, molybdenum, niobium, vanadium, zirconium, chromium, and iron, among others. In one embodiment, the first material is selected from the group consisting of aluminum, tin, molybdenum, niobium, vanadium, zirconium, chromium, iron and combinations thereof. In one embodiment, the first material comprises aluminum or an aluminum alloy. In one embodiment, the first material comprises elemental aluminum or a 1xxx alloy. In one embodiment, the first material is essentially free of titanium. The combined compositions of the first material and second material are generally sufficient to produce a titanium alloy product when the wire is used in additive manufacturing. For instance, the wire may include a sufficient amount of the first material and the second material to achieve a target composition of a final titanium alloy product. In one embodiment, the first material is a 1xxx aluminum alloy and the second material is Ti-6Al-4V.
In another approach, a wire for use in electron beam or plasma arc additive manufacturing is provided, the wire including a first elongate outer tube and a second elongate inner tube disposed within the first elongate outer tube. The first elongate outer tube generally comprises a first material or a second material, and the second elongate inner tube generally comprise the other of the first material and the second material relative to the first elongate outer tube. In one embodiment, the second material at least comprises titanium. In one embodiment, the second material comprises an aluminum-containing titanium alloy. In one embodiment, the second material is a titanium alloy selected from the group consisting of Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-7Al-4Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-5Al-2Sn-2Zr-4Mo-4Cr, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Ti-3Al-2.5V, Ti-10V-2Fe-3Al, Ti-13V-11Cr-3Al, Ti-8Mo-8V-2Fe-3Al, Ti-3Al-8V-6Cr-4Mo-4Zr, Ti-5Al-2.5Sn, Ti-8Al-1Mo-1V, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Nb-1Ta-0.8Mo, Ti-2.25Al-11Sn-5Zr-1Mo, and Ti-5Al-5Sn-2Zr-2Mo. In one embodiment, the first material comprises an element for alloying with titanium, such as one or more of aluminum, tin, molybdenum, niobium, vanadium, zirconium, chromium, and iron, among others. In one embodiment, the first material is selected from the group consisting of aluminum, tin, molybdenum, niobium, vanadium, zirconium, chromium, iron and combinations thereof. In one embodiment, the first material comprises aluminum or an aluminum alloy. In one embodiment, the first material comprises elemental aluminum or a 1xxx alloy. In one embodiment, the first material is essentially free of titanium. The combined compositions of the first material and second material are generally sufficient to produce a titanium alloy product when the wire is used in additive manufacturing. For instance, the wire may include a sufficient amount of the first material and the second material to achieve a target composition of a final titanium alloy product. In one embodiment, the first material is a 1xxx aluminum alloy and the second material is Ti-6Al-4V.
In another approach, a wire for use in electron beam or plasma arc additive manufacturing is provided, the wire including a first fiber and a second fiber intertwined with the first fiber. The first fiber generally comprises a first material, and the second fiber generally comprises a second material, different than the first material. In one embodiment, the second material at least comprises titanium. In one embodiment, the second material comprises an aluminum-containing titanium alloy. In one embodiment, the second material is a titanium alloy selected from the group consisting of Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-7Al-4Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-5Al-2Sn-2Zr-4Mo-4Cr, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Ti-3Al-2.5V, Ti-10V-2Fe-3Al, Ti-13V-11Cr-3Al, Ti-8Mo-8V-2Fe-3Al, Ti-3Al-8V-6Cr-4Mo-4Zr, Ti-5Al-2.5Sn, Ti-8Al-1Mo-1V, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Nb-1Ta-0.8Mo, Ti-2.25Al-11Sn-5Zr-1Mo, and Ti-5Al-5Sn-2Zr-2Mo. In one embodiment, the first material comprises an element for alloying with titanium, such as one or more of aluminum, tin, molybdenum, niobium, vanadium, zirconium, chromium, and iron, among others. In one embodiment, the first material is selected from the group consisting of aluminum, tin, molybdenum, niobium, vanadium, zirconium, chromium, iron and combinations thereof. In one embodiment, the first material comprises aluminum or an aluminum alloy. In one embodiment, the first material comprises elemental aluminum or a 1xxx alloy. In one embodiment, the first material is essentially free of titanium. The combined compositions of the first material and the second material are generally sufficient to produce a titanium alloy product when the wire is used in additive manufacturing. For instance, the wire may include a sufficient amount of the first material and the second material to achieve a target composition of a final titanium alloy product. In one embodiment, the first material is a 1xxx aluminum alloy and the second material is Ti-6Al-4V.
Methods of using the above-described wires are also disclosed. In one embodiment, a method includes using a radiation source to heat any of the above-described wires above the liquidus point of the titanium alloy body to be formed, thereby creating a molten pool, and cooling the molten pool at a cooling rate of at least 1000° C. per second. These steps may be repeated as necessary (e.g., during additive manufacturing) until the final titanium alloy product is completed.
Referring now to
As noted above, the wire comprises a sufficient amount of the second material to produce a titanium alloy product when the wire is used in additive manufacturing, and this second material generally comprises titanium. In one approach, the second material is a titanium alloy. In one embodiment, the second material is an aluminum-containing titanium alloy. In one embodiment, the second material is selected from the group consisting of Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-7Al-4Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-5Al-2Sn-2Zr-4Mo-4Cr, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Ti-3Al-2.5V, Ti-10V-2Fe-3Al, Ti-13V-11Cr-3Al, Ti-8Mo-8V-2Fe-3Al, Ti-3Al-8V-6Cr-4Mo-4Zr, Ti-5Al-2.5Sn, Ti-8Al-1Mo-1V, Ti-6Al-2.5n-4Zr-2Mo, Ti-6Al-2Nb-1Ta-0.8Mo, Ti-2.25Al-11Sn-5Zr-1Mo, and Ti-5Al-5Sn-2Zr-2Mo. In one embodiment, the second material is Ti-6Al-4V.
As noted above, the wire comprises a sufficient amount of the first material to produce a titanium alloy product when the wire is used in additive manufacturing, and this first material generally comprises aluminum. In one embodiment, the first material is essentially free of titanium. In one embodiment, the first material is a 1xxx aluminum alloy as defined by the Aluminum Association, i.e., a material comprising at least 99.0 wt. % Al. In another embodiment, the first material comprises at least one secondary element to facilitate achievement of the target titanium alloy composition upon conclusion of the additive manufacturing. In one embodiment, the at least one secondary element is selected from the group of vanadium (V), tin (Sn), molybdenum (Mo), zirconium (Zr), niobium (Nb), chromium (Cr), iron (Fe) and combinations thereof, wherein the first material comprises a sufficient amount of the aluminum and the at least one secondary element to facilitate achievement of the target titanium alloy composition upon conclusion of the additive manufacturing.
As used herein, “additive manufacturing” means “a process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies”, as defined in ASTM F2792-12a entitled “Standard Terminology for Additively Manufacturing Technologies”, as it applies to the use of wires. In one embodiment, an additive manufacturing processes uses Electron Beam Melting (EBM). In one embodiment, an additive manufacturing process uses an EOSINT M 280 Direct Metal Laser Sintering (DMLS) additive manufacturing system, or comparable system, available from EOS GmbH (Robert-Stirling-Ring 1, 82152 Krailling/Munich, Germany).
The wire (25) used in the additive manufacturing process may include the appropriate volume of the first material and the second material to achieve the target titanium alloy composition upon conclusion of the additive manufacturing. In this regard, the thickness of the elongate outer tube and/or the volume of particles may be tailored.
In another embodiment, and referring now to
In another embodiment, and referring now to
In another embodiment, not illustrated, an electron beam (EB) or plasma arc additive manufacturing apparatus may employ multiple different wires, optionally with corresponding multiple different radiation sources, each of the wires and sources being fed and activated, as appropriate to provide the target composition for the deposited titanium alloy material (100).
While various embodiments of the new technology described herein have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and adaptations are within the spirit and scope of the presently disclosed technology.
This patent application claims benefit of priority of U.S. Provisional Patent Application No. 62/336,898, filed May 16, 2016, entitled “MULTI-MATERIAL WIRES FOR ADDITIVE MANUFACTURING OF TITANIUM ALLOYS”, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62336898 | May 2016 | US |