1. Field of the Invention
The present invention relates to play systems, and specifically to a framework for interactive games involving a broad range of game activities and play media.
2. Description of the Related Art
Family entertainment centers, play structures and other similar facilities are well known for providing play and interaction among play participants playing in, or around the entertainment facilities and/or play structure. See, for example, U.S. Pat. No. 5,853,332 to Briggs, incorporated herein by reference. A wide variety of commercially available play toys and games are also known for providing valuable learning and entertainment opportunities for children, such as role playing, reading, memory stimulation, tactile coordination and the like.
However, there is always demand for more exciting and entertaining play structures and play toys that increase the learning and entertainment opportunities for children.
In accordance with one preferred embodiment a multi-media interactive play system comprises a number of play elements such as a maze that the participant must navigate, a set of trivia questions that the participant must answer, or number of targets that the participant must shoot with a water blaster or laser gun. The play elements are situated in a variety of play environments, and a central scoring system interfaces with the play elements. The scoring system electronically exchanges data with the play elements. For example, the exchanged data may comprise a participant's identity, game progress and performance. The exchanged data may also comprise play element parameters that correspond to the participant's progress, performance, and ability level, and the set of play elements to which the participant may proceed. The play elements are interlinked by the electronic system to define a sequence or path network along which a participant proceeds in the course of completing the play elements or reaching a stated performance standard.
In accordance with another preferred embodiment a method of interactive play comprises the steps of providing a number of play elements situated in a variety of play environments, recording a participant's performance in the play elements, and selecting a set of additional play elements or play environments to which the participant may proceed based on the recorded participant performance. The method may also comprise the step of setting various play parameters in a play element based on the recorded participant performance.
For purposes of summarizing the invention and the advantages achieved over the prior art, certain objects and advantages of the invention have been described herein above. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the invention not being limited to any particular preferred embodiment(s) disclosed.
Having thus summarized the general nature of the invention and its essential features and advantages, certain preferred embodiments and modifications thereof will become apparent to those skilled in the art from the detailed description herein having reference to the figures that follow, of which:
Conceptually, the multi-media interactive play system (hereinafter “Links”) is a framework for various interactive games in which a participant must complete a number of challenges or play elements which are conceptually, qualitatively, sensually, geographically, or otherwise distinct but are nonetheless related to an overall quest, mission, or set of quests or missions. The play elements may, alternatively or additionally, be related to an overall record of the participant's identity associated with his or her game status, character attributes, progress, points, credits, or the like.
A central Links system, such as a computer system or systems or a number of memory devices assigned to or possessed by each participant, are desirably employed to maintain the participant records. As used herein, “central Links system” refers to any device or collection of devices which maintains one or more participant records, and/or determines game parameters, results, or capabilities that affect a participant or participants, corresponding to information in a participant record or records, or otherwise provided to the system.
Preferably, the successful completion of a given play element earns the participant a reward, which may include permission to proceed to the “next” play element or elements, while the participant's game status, progress, etc. is updated to reflect such completion. The reward may also include enhanced capabilities or knowledge that affects the participant's performance or experiences in the next play element or elements. The play elements are thus interlinked under the Links system. The Links system may further define a path network, course, quest, etc. along which the participant progresses while playing the associated game. Another preferred feature of Links is an overall story, plot, theme, etc. that unifies the play elements and attaches a significance to the successful completion of a given element, in terms of advancing the participant in his or her quest, or discovery of further aspects of the plot, theme or play world.
As used herein, “play element” refers to an individual game or challenge that a Links participant is to complete. Play elements are the most basic components used in Links to define a course or path along which the participant proceeds. A number of examples of play elements are detailed below.
“Play module” refers to a group of 3-6 or more play elements that are physically or otherwise interlinked. The play module may link the play elements together under a common or aggregate scoring or record system. Generally, a participant must complete all (or a predetermined number) of the play elements, or acquire a requisite number of points within a play module, to proceed to the next play module.
“Play arena” refers to a group of 3-5 or more play modules that are generally (but not always) contained in a single large room or series of rooms, as may be convenient for purposes of scoring, theming, facility design, etc. As with a play module, a play arena may have a common or aggregate scoring or record system for the play elements and modules contained therein, and a required point total or number of completed elements/modules for advancement. A single Links facility may contain one or more play arenas.
“Play medium” or “play environment” refers to a format through which an individual play element is presented or communicated to a participant, and through which the participant interacts with the play element. Preferably, the Links system includes a number of play environments or media, each of which preferably supports a variety of play elements. Examples of play media/environments include Links facilities or play centers, home video game consoles, a home PC or other information appliance, the Internet, a Links website or chat room, a Links television show, etc.
“Central Links system” refers to any device or collection of devices that maintains one or more participant records, and/or determines game parameters, results, or capabilities that affect a participant or participants, corresponding to information in a participant record or records, or otherwise provided to the system.
Advantageously, each Links participant has associated with him/her some indicium of his/her progress in the game. Suitable indicia include a magnetic-storage card, RF card, floppy disk, CD-ROM, DVD or any other type of relatively small, inexpensive device that electronically (or otherwise) interfaces with a read or read/write device associated with a given play element to identify the participant and update the participant's record as necessary with his or her performance in the play element, and any resulting effect on the participant's progress or status in the game. Preferably, a toy such as a sword, ring, hat, key, magic wand, etc. incorporates interface equipment to provide a functional indicium which itself forms an enjoyable aspect of the game. Alternatively, a participant can carry a stylized photo identification card or Links passport which incorporates the proper interface. As yet another alternative, the indicium can comprise a password, username, or a combination of the two assigned to or chosen by a participant. Suitable input devices associated with the play elements can permit the participant to log in with the password/username so that the participant's performance at the element may be added to and/or influenced by information in the record maintained for the participant.
For each participant the Links system preferably maintains a record as necessary to reflect the participant's game status, progress, etc. The type of information contained in the record, as well as the location of the record may depend largely on the type of game played. For example, the record may contain data relating to which play elements the participant has successfully completed, the participant's performance in each element and the number of points or credits accumulated. In addition, the record may show a type of character the participant has selected for the game (e.g., a wizard, scientist, alien, dragon, astronaut, warrior, etc.) and a set of capabilities or aptitudes (such as magic, speed, intelligence, leadership, creativity) associated with the character or subsequently “developed” as a reflection of, or reward for, attaining a given performance level in a play element or elements, or successfully completing a defined task. Similarly, the record might show an inventory of items (e.g., a key, map, charm, weapon, book, vehicle, etc.) which the participant has “collected” or “purchased” in the course of playing the game, which collection or purchase may also be enabled by attaining given performance levels or completing tasks, or by the accumulation of points, credits, etc.
If desired, the indicium and record system may be further used to group participants into teams, with a record maintained for the team. The team record may represent a total of the points, credits, etc. of the team members or a composite team character with certain attributes and powers. Teams may be composed of a group of friends or family playing together at one Links play center, or participants at multiple centers who interact to achieve their goals, or compete against one another or other teams. Alternatively, Links teams may be assembled partly or wholly from home participants via the Internet or other electronic networks. As still another alternative, Links teams may be formed from a group of participants who are guests at a Links-themed party, for which special rooms may be provided at Links facilities.
The Links system may encompass various play elements set in or carried out by wide variety of play media or play environments. For example, Links play elements can be located in Links facilities or “play centers” which preferably comprise multi- or single-story structures with a fairly large floor area (thousands or tens of thousands of square feet or more). However, smaller play centers are possible as well. A play center preferably houses a number of play elements arranged in a manner that is descriptive of their interrelation in the overall game, e.g. sequentially or grouped according to levels or type of challenge. The play elements housed in a play center may be individually linked to the central Links system, or interlinked with other play elements in the center in addition to the central Links system. Each center may serve as a stand-alone attraction, or can be linked with other centers or other Links play environments. The preferred center houses perhaps three or more game arenas, each of which may have five or more distinct play modules. Each play module comprises a number of a wide variety of play elements, which are discussed in more detail below.
Within a play center a participant can pass or “link” from one arena to another by the completion of some or all of the play modules in the arena, or the accumulation of enough points or credits in the arena. Similarly, a participant can link from one play module to another within an arena by the completion of some or all of the play elements in the module, or the accumulation of enough points or credits in the module. In a given module one or more play elements may require a participant to interact with another participant at a corresponding element in another play module, to help each other solve special problems or achieve a common goal to complete the element.
Each link between arenas or play elements may comprise a challenge connection such as a slide, rope bridge, trolley tracks, swinging bridges, net climbs and bridges, V-net bridges, web climbs and bridges, web slides and push/pull tracks. These challenge connections provide dexterity and physical play challenges.
A Links play center may employ one or more Links Gamemasters who may occupy a control room or rooms in the play center. The control room provides Gamemasters with access to some or all the computer, audio and visual systems in the play center. A Gamemaster can assume different roles in the interactive play, such as antagonist, joker, or mentor to the participants. The Gamemaster may monitor individual participants and assist, aggravate or tease them, give hints for play elements or cause a participant to get lost in a maze. In addition, the Gamemaster may organize special quests or games within the play center, for either an individual participant or teams of participants. Thus the Gamemaster can become the “personality” of the play center and make occasional live appearances, or become invisible to most or all participants.
Preferably, a given city or region has a number of Links play centers in different locations, and a Links game requires participants to visit many or all of the centers to complete a game by filling out certain aspects of their characters or completing all levels of the game. A collection of play centers, combined with other links play media and environments, comprises a “Links World.” It is contemplated that each separate play center in a World will permit the participant to complete aspects of the game which are unique to that particular center. To facilitate this variety, each center may have a different theme, such as a medieval, western, or space theme. Within each center each game arena can have a sub-theme that fits into the overall theme. For example, in a medieval play center one arena may be themed as a castle, another arena as a city and a third as a dungeon. Alternatively, each arena within a center can have a different theme.
Another preferred play medium for the Links system is a stand-alone arcade-type game (possibly coin operated) which may be located in a game business or other public area which does not have an overall affiliation with Links. That is, a stand-alone game or a group thereof may be situated in an arcade, convenience store, shopping mall, etc. which has no overall affiliation with Links, and provided with a connection to the main Links system for participant and game data transfer. In addition, a Links stand-alone game may give a participant clues, hints, tips, etc. which may be useful when the participant plays in another Links environment, such as a Links play center.
It is also contemplated that Links may include play via home console or hand-held game systems such as the familiar PLAYSTATION, NINTENDO 64, DREAMCAST, GAMEBOY, and other similar products. Alternatively, dedicated or purpose-built home gaming systems could be employed. One option for employing this type of play medium is through Links-specific game CD-ROMs, DVDs, cartridges, or other software that the participant can purchase and play on the home game system as a Links play element or play module, with his or her score/result/etc. communicated to the central Links system. Where properly equipped, any of these home game systems may accomplish data transfer with the central system via a direct modem or network connection, or via the Internet. A home game system may also support a connection to Links through a read/write device that connects to the home game system and interfaces with the indicium described [above], so as to transfer data to and from the indicium to influence the participant's performance in the game, adjust game parameters, update the indicia with the player's performance or result in the game, etc. As with a Links stand-alone game, home console play may give a participant clues, hints, tips, etc. which may be useful when the participant plays in another Links environment, such as a Links play center.
Another preferred Links play medium is a home PC or other information appliance that interfaces with Links through the Internet or other network or modem connections. As with the home game system described above, the participant may purchase play element software to run on the PC or other appliance to participate in the play element. Alternatively, the participant could use the PC or other appliance to play Links games which are resident partly or wholly on a Links Internet server or website, Links mainframe or other machines connected to the participant's PC. By playing on a PC or other information appliance, a participant may find clues, hints, tips, etc., which may be useful when the participant plays in another Links environment. Preferably, the Internet or network connection is used to transfer game parameters, results, participant performance, etc. to update the participant's record. As with the home game systems described above, a read/write device can also provide an interface between the PC or other appliance and the indicium to update the participant's record as necessary.
Yet another preferred Links play environment is an interactive television show presented on broadcast or cable television, or available via home video or pay-per-view. Preferably, the Links television show is a combination game show and participatory TV program based on a Links game theme. The participants on the Links television show may face challenges or play elements similar to those found at Links play centers. Participants viewing the program can learn special tips and clues for completing their challenges or quests the next time they visit a Links play center. In addition, some or all of the Links play centers can hold competitions, the winners of which can then compete on the Links television show.
A Links feature film or series, presented in theatres, on broadcast television or on home video, is a further potential source of Links secrets, codes, tips, tricks, etc.
Yet another preferred Links play environment is a Creation Station which is a crafts area where participants may complete various play elements which involve construction of simple items. A Creation Station may be located in a Links play center or may comprise a stand-alone play environment.
Preferably, a Links website provides a center for the Links participant community to interact via chat or message forums, and look up player records, statistics and the like. The website may also contain Links news, secrets, tips, tricks, and other information. In addition, accessing the website may itself be a source of points for a Links participant; that is, a participant may gain a certain number of Links points, credits, character attributes, etc. for logging onto the website and engaging in various activities on the site.
It is also contemplated that Links players can accumulate Links points, credits, secrets, tricks, tips, etc. through the purchase of Links merchandise at stores which may be stand-alone or integrated into Links play centers as gift shops. Such stores may also be dedicated Links stores or existing retailers that sell Links items. Links merchandise may include T-shirts, computer games, video games, board games, and interactive toys. Similarly, participants may patronize integrated or stand-alone Links-themed restaurants, or existing family or fast-food restaurants promoting Links to receive Links points, etc.
Links preferably includes education in its play media environments, through play elements incorporating educational themes and otherwise. Some Links play elements, discussed in detail below, teach scientific principles, involve engineering or mechanics, include arts and crafts, or have a historic emphasis. Furthermore, Links may work in conjunction with programs such as ODYSSEY OF THE MIND to teach children creativity and problem solving. Preferably, an organized Links educational system includes teams of children from different parts of the country that compete against each other in educational activities simultaneously at different Links facilities.
The Links system preferably supports a wide variety of play elements which can be combined in various ways to provide a very diverse play experience. The following is a description of various examples of Links play elements, which merely representative and not an exhaustive list of all possibilities. One of skill in the art can readily envision additional games and challenges that are suitable for inclusion as Links play elements, as well as the broad scope of play that can be made a part of Links. It is also to be appreciated that most or all of these play elements can be presented in a physical or “live” manner, or can be conducted through computer simulations with which the participant interacts.
Navigate the Maze
This play element involves two participants, one on an upper level platform overlooking a lower level where the other participant is positioned. A number of cards, preferably five, with arrow symbols are located in a pouch or other receptacle on the upper level. The participant on the lower level must travel a course or maze in a particular sequence and push a number, preferably ten, of buttons that are located throughout the course in the proper order. The correct order is shown on a graphic that is visible only to the upper-level participant. The upper-level participant displays the cards to the participant below to indicate which direction he or she is to go and which button to push. Once completed, the participant below and the participant above may insert their cards or otherwise present their indicia at the same time for points.
Station Buttons
This play element involves two participants, one upper and one lower, not within visible range of each other. One participant faces a panel of (preferably) six buttons, each a different color. The other faces a color monitor. An intercom or other simple communication device connects the two stations. The participants insert their cards or otherwise present their indicia to start the play element and have thirty seconds to push the buttons in a proper sequence as shown on the monitor. The sequence may change each time and preferably has more colors for older participants. A similar play element or elements can be operated in another location in a play center, etc. and based on shapes, letters, numbers, textures, object names, etc. instead of colors. This play element may also be run at multiple locations with three or more people attempting to coordinate their actions.
Twenty Questions
This play element involves two participants at two different stations, one with a monitor, and the other with a keyboard or other buttons corresponding to the alphabet, both connected to an intercom. When both insert their cards or otherwise present their indicia, the monitor begins listing clues every few seconds, preferably every five seconds or so. The participants relate the clues to each other and discuss them until one participant keys in the correct name of the object at the station with the keyboard. Preferably, this element uses simple objects and clues for young people, and more difficult ones for older people.
Other Sites
In this play element interlinked video and/or computer stations connect two or more Links facilities via the Internet. Guests can simply chat with each other or solve common problems and puzzles. Some puzzles may require a participant to contact another participant at another site to get assistance, wherein the solution is only available at the remote participant's site.
Build a Wall
A participant must build a wall, preferably between two posts approximately six feet apart, using blocks that are preferably rectangular and approximately the same size as cinder blocks but much lighter in weight. Each age group may be required to complete the wall to a different height. For example, a three year old may build an eighteen inch wall, whereas an adult might build one six feet tall. Horizontal light sensors may be provided at various heights to sense when the job is complete. The size and shape of the blocks may be changed every few weeks so that the task varies and different skills will be required to master the building technique.
Build a Structure
The participant is provided with several pieces of balsa wood, tape, and paper clips. The participant must build a structure out of the materials that is preferably at least two feet high and will hold a fifty pound weight.
Build a Bridge
The participant is provided with several pieces of balsa wood, tape, and paper clips. The participant must build a bridge that preferably spans two concrete blocks three feet apart and will hold a twenty-five pound weight in the middle.
Simultaneous Cooperation
This play element involves several participants at different locations. Each must push a button simultaneously. Signage instructs them that one way to accomplish this is to start counting all together and to keep the count while the participants run to change locations.
Whack-A-Mole
The participant stands at a machine that has a number of openings in a substantially horizontal surface. The machine has a corresponding number of simulated moles that the machine causes to “pop up” out of the openings in a random manner. The participant must “whack” each mole with a mallet or other device as quickly as possible after the mole pops up. After the mole is whacked it lowers back beneath the horizontal surface, until the machine causes it to re-emerge from its opening, at which point the participant must whack it again. Points are awarded based on how quickly the participant can respond to and strike each mole.
Throwing Skills
The participant must throw bean bags or foam balls through different sized holes. Preferably, older participants are required to hit more, smaller holes from a longer distance.
Shooting Skills
Participants shoot blaster or laser guns at moving and stationary targets. Points are awarded for the number of targets hit in a given time period.
Targets
As a multiplayer version of Shooting Skills, a participant moves targets which other participants are attempting to shoot, making the targets harder to hit.
Ball Drop
This play element involves two participants, one on an upper level and one on a lower level. Foam balls are dropped from above, which must be caught in a net or passed through a hoop. The balls drop in to a fenced-off pit and are delivered back to the upper level via a manual conveyor.
Hide and Seek
A map is displayed to a number of participants, preferably five, and indicates where each must go. Each participant is thus sent to a different location. When a participant reaches his or her assigned location, he or she may insert a card in a reader or otherwise present an indicium, and then tries to be the first one back to the starting point.
Board Games
In a game parlor, Pictionary and various similar games may be provided for play, hosted by a Gamemaster. Points are awarded to winning teams accordingly. Preferably, games may be provided for various ages at various times.
Trivia
A monitor is provided with a set of buttons beside it. The participant selects a time period or other topic and is asked a number of questions, preferably six, from the chosen time period or topic. Preferably, difficulty is related to the participant's age. The participant earns points by getting a required number of questions correct.
Re-Creation
A participant dresses up as a figure from the past and helps to re-create a short play depicting a special moment in time. Parents are encouraged to participate as well, and photos of the dressed-up participant(s) may be made available for viewing, printout and purchase.
Rube Goldberg
The participant builds a “Rube Goldberg” contraption out of various parts which are provided, in order to accomplish a particular task. For example, the participant may need to cause a small steel ball to travel to a predetermined location across the room. As another example, the participant may have to raise a weight to a given height with a water jet as a source of power.
Gears
The participant must put a set of gears together in the proper sequence to turn a lever to open a door, passage or chamber leading to another play element or module.
Numbers
The participant must remember and repeat a specific sequence of numbers.
Colors
The participant must remember and repeat a specific sequence of colors.
Shapes
The participant must remember and repeat a specific sequence of shapes.
Musical Notes
An audio or audiovisual system plays a number of notes, preferably six, and the participant must play them back in sequence on a set of colored buttons in a given time, preferably thirty seconds or less.
Good and Bad
A monitor or Gamemaster asks a participant to respond to several ethical problems and scores the participant on his or her response.
Logic
A monitor or Gamemaster asks a participant to make logical assumptions and to draw conclusions from various statements. Points are awarded for drawing conclusions that are the most sound or the least obvious.
Odyssey of the Mind™
Hundreds of standard Odyssey of the Mind™ type problems are made available and materials supplied for completing the problems. Points are awarded for the skill, creativity, and completeness of the solutions made by the participants.
Computerized
A computer station may have many simple problems and games available for play. For example, some may be based on “Rube Goldberg” devices to show the effects of moving or altering various elements of the device. Other problems might be common sense, real-life based.
Piece Puzzles
A participant must fit pieces together in either an actual or computer-simulated puzzle. Preferably, older participants are assigned puzzles with more parts.
Logic Puzzles
A participant must determine how to connect point A to point B/C/D/E/etc. in the shortest possible distance.
Common-Thread Puzzles
The participant must determine what a number of things, preferably three or more, have in common, based on a picture, description or the like.
Keys Quest
A participant must find a number, preferably five, of golden keys, or tools or provisions needed to advance to the next level, module, or arena. The keys, etc. are hidden in many different locations. Some of them may be easy to find along familiar play routes, and the remaining ones may be well-hidden in nooks and crannies. Preferably, points are assigned for each key found. The key locations may be changed every week or so to provide variety.
Skill Quest
A participant must complete at least three of each of the following skills: Strength, Dexterity, Communications, Puzzles, and Memory.
Sequential Quest
A participant goes from one station to another, solving problems in a specific order to get clues for the next problem. Preferably, the participant solves a big problem at the end to win. Some problems might be geared towards boys, such as shoot-em-up's, and others would be for girls.
Scavenger Hunt
A participant must find people and articles. For example: one red-headed boy, one gold VISA card, one pair of penny loafers, etc. A participant must convince the owners to come with him or her, or allow him or her to borrow their belongings. Alternatively, the participant must find out the names of a certain number of the other participants in the area.
Gamemaster Quest
A participant must solve specific quests that the Gamemaster creates for a given day.
Multi-Quest
A participant must accumulate a certain number of points and/or keys to proceed, e.g. 250 points and two keys in Arenas 1 and 2 to enter Arena 3. Or a participant must accumulate 500 points and four keys to enter Arena 5 for a Grand Quest.
Pull Rope
A number, preferably four or five, of participants must pull a rope against a weight and hold the rope for a given time period, preferably thirty seconds or more. Older participants may be required to hold heavier weights.
Sledge Hammer
The standard carnival attraction is themed for Links. Preferably, participants of different ages must hit different levels to collect points.
Pulley Bridge
A wooden “raft” is provided that slides between an upper station and a lower station. Participants on either side must pull the raft back and forth while another participant rides on it. The participant riding the raft cannot move it himself and must work with participants on either side to get the raft across.
Race Cars
A participant must build a race car from materials provided and race against others on a downhill track. The winner of each heat wins points and a chance to race in a final heat.
Boats and Barges
A participant must build a boat from materials provided, that will hold the most people or cargo without sinking. A water tank, preferably a round tank with a diameter of eight feet or more, may be provided with interactive pumps and items for other water experiments.
Break-In
A participant uses an intercom at a special station to break into communications between two other participants who are trying to accomplish a mission.
Fake-Out
A participant controls a monitor at a phony station to play tricks on other participants who believe they are using it for a quest or a mission.
Surveillance
A video camera is located in an area that has an air blaster mounted under a grate. A participant sits in a remote location, waits for someone to walk over the grate and hits a button to activate the blaster and create a blast of air.
Video Gags
Remote cameras are located behind mirrors to catch participants making funny faces. Another participant sits at a console where he or she can select images and project them onto a large screen where everyone can see them.
I Spy
A participant uses glass prisms, periscopes, and telescopes to track and spy on people. Some of the people under observation are given a specific code which they try to keep secret while entering it into a terminal. The participant must try to learn the code for points.
Arena Quest
A participant must complete a new, more difficult quest in each arena. The participant learns of the new quests only after getting to the last arena.
Get the Bad Guy
A participant must shoot the “bad guy” at the end of a quest with laser guns, ball blasters, etc. The participant must have a certain number of strength and dexterity points and receives more shots with increasing points. The “bad guy” may be a character played by another participant or the Gamemaster or a target.
Skills
A participant must increase all of his skills to a pre-determined level to receive a reward.
The modules 204 and elements 206 are labeled according to the system shown in
Each module 202 contains a number of play elements 206, each of which may comprise one of the play elements described above, or other play elements as may be devised in creating a Links arena. Each play element 206 is labeled to identify it according to type.
As detailed above, a number of the play elements 206 require interaction between participants in separate modules 202. Thus
The arena 200 also comprises a Creation Station 210. The arena 200 thus includes creative links 212 joining the Creation Station 210 with the play elements 206 which require the participant to use the station.
With the arena of
New participants may proceed from the ticket counter area to a story booth which instructs the participants on the theme or story underlying the Links game. The story booth is preferably themed with graphics, photos and props, and includes a short video which details the story line of the quest or game that the participants are about to begin.
A programming booth preferably follows the story booth. In the programming booth the participants may enter identifying information (age, gender, hobbies, etc.) and select a character which is to be the participant's alter ego during the game. The character may be a composite of attributes selected by the participant, or it may be selected from a list of ready-made characters, or a combination of the two types. The participant selects an inventory of weapons, personal effects and character skills and may be shown on a video screen a composite photo of the character thus created. The participant may purchase a printout of this photo if so desired. The character information is made part of the record created for the participant, and is loaded onto the participant's indicium if it is of the memory-equipped type, or is saved in the central Links system.
From the programming booth a participant proceeds through a themed tunnel to the playspace entry 214 where the participant may view the arena 200 and identify the starting position and the goal or objective in the arena 200 or the game generally. The participant chooses between starting with the ground level maze/modules, or the upper level modules, and presents his or her indicia to proceed into the first module.
DreamMasters is one example of a preferred theme or plot that can be applied to or carried out by the Links system, to provide a high level of participant involvement and interrelation between different play media encompassed by Links.
Overview
A complete fantasy adventure game is created in which a new toy, developed by a group of scientists, enables users to create, control and master their own dream states. The toy, called the DreamMaster Device (DMD) is, in reality, a major component of the Links play system. This device, which is preferably of a handheld size, emits and receives radio transmissions which activate play elements and record points, and sends and receives messages. By completing various play modules, participants become a part of an evolving fantasy game which encourages repetitive and continuous use of entertainment centers, the Internet, television and other media to reach higher, extreme levels of “dream creation.”
The Story
The ability to master our fantasy dream world is now upon us. A brilliant group of research scientists who have been studying dreams for three decades have developed a unique technology, called the Dream Master Device (DMD). This device allows people of all ages to manipulate, power and create our own fantasy dream states. These scientists created DMD to give people the opportunity to visualize their most fantastic dreams. With intense training a person can use this amazing device to create magnificent worlds where he or she can fly, go on an exciting adventure, visit exotic places, become a super hero, a princess, a firefighter, a millionaire or even live in another time in history.
This powerful device is small enough to fit into the palm of your hand and puts out a highly advanced frequency that allows people to control their dreams. This device, however, is not easy to operate. Designing and creating your own dreams is considered an “art form” that requires many hours of hands-on training and fantasy skill development. Through interactive, highly specialized training methods, individuals learn how to use this miraculous device.
The Evil Force
While creating this technology, this elite group of scientists discovered that an evil force was trying to steal their technology and use it harmfully. If this secret technology was put into the wrong hands, dream making could become someone's nightmare (literally), or even worse, used for mind control. The scientists decided to go into hiding by keeping the location of their laboratory top secret and erasing their identities completely.
The scientists came up with a brilliant plan to share their incredible technology without exposing their identity. They would make the DMD available only to those willing to be specially trained in using the device. The DMD is introduced at special training centers. In order to use the device at its fullest potential, frequent visits to the training center are necessary. These centers then train users to become skillful at manipulating color, sound, communication, conflict resolution, social interaction, story telling, fantasy development, role playing, problem solving, physical agility and intellect and more, all of which are important skills in creating incredible dream states.
The way the training centers work is that dream masters-in-training are given their own DMD which they carry with them at all times while learning dream creation. The device itself is not fully “loaded” with the appropriate software and actually needs to go through the training process with its “owner.” As the owner develops his or her skills in dream creation, the device's technology becomes increasingly more sophisticated and capable of producing vivid dream states realized though audiovisual equipment, virtual reality hardware and software, force and vibratory feedback equipment, scent and temperature generation equipment, etc.
At first, a new DMD user can only achieve very basic dream creation; i.e. silent black and white stick figures. As the user participates in several training sessions and achieves new skill levels, the DMD is programmed to allow for increasingly dynamic visual and auditory dream creation including full color, realistic backgrounds in 3D, high adventure options, auditory and sensory effects, and sophisticated character development. The highest level of dream mastery allows for extremely complex story development with 3D, surround sound and tactile experience (temperature, vibration and scents).
The Dream Masters
A creative, smart and talented group of kids became remarkably proficient in using the Dream Master Device. So proficient that they had reached the most extreme level of dream making and began their own special group over the Internet to chat, share techniques, ideas, and their newest dreams with each other. These kids, aged five through seventeen, live in different countries throughout the world such as the U.S., Australia, Japan, England, Egypt, and Mexico. The kids communicate often and have named themselves the DreamMasters Elite. For several months the research scientists kept a close eye on this talented bunch. The scientists began to make contact with the DreamMasters Elite by sending them secret messages on their DMDs. Given their exceptional abilities to use the technology, the scientists began trusting this group of kids with very guarded information. The Dream Masters Elite are now the scientists' only links to the outside world, and more importantly, their finest protectors against the evil forces.
The Dream Master Device
This unique handheld toy is able to transmit and receive radio frequencies from anything capable of putting out or receiving a signal including television, radio, computer systems and networks linked to RF modems or transmitters, videotape and DVD machines connected to transmitting equipment, fixed locations (Links facilities) and other DMD devices. The DMD preferably has a tiny screen that is able to receive messages and images. For example, while playing with a software program or watching a television show messages can be picked on the DMD and viewed on the tiny screen by the user.
In addition, the DMD device can be programmed like a smart card. More specifically, within the Links facilities, this device can be tracked by an internal system that interfaces with the central Links system to record the play and activities of the participant. A participant's record can be downloaded onto a personal disk or file that can be stored for continued play. The DMD can also transmit signals to other DMDs. When in the company of another DMD owner, a participant's DMD can signal the participant who may then send a message to the other DMD owner.
The Links Play Centers—Dream Zone (DZ)/Fantasy Factory
These specially designed Links play centers become the hub of the interactive game play. In the play centers the Links system combines interactive event arenas based on the DreamMasters story. Preferably, the play center is outfitted with radio frequency reading and transmitting devices that interface with the DMD.
The play center has several play arenas highlighting the development of specific skills in the dream creation process. The climax is a Fantasy Finale where a participant enters a computerized personal viewing booth where he or she can download data from his or her DMD, and create and view a dream fantasy with specially designed software. The content and complexity of the dream fantasy vary with the participant's level of progress in the DreamMasters story or game.
Entrance and Programming Booth
The entertainment experience starts with the purchase of a DMD (repeat participants have the contents of their DMDs downloaded into the central Links system). Participants then proceed to the story booth where new participants are told about the DMD and how to use the play center. Repeat participants are updated with the latest news. The participant may input specific goals that he or she wishes to reach and the DMD is programmed to respond to and receive information corresponding to the selected goals. The participants receive a suggested itinerary to help them reach their goals and may then proceed to the first play arena or module.
Dream Master Modules
The play center has a number of training modules that develop specific skills in dream creation. As the participant completes an interactive training module, his or her DMD is tracked by the RF system and performance and experience information is input into the central Links system.
There may be several training modules to explore and levels to reach. Each module focuses on a set of related dream creation skills. The modules may also have the ability to accommodate different levels of play for specific age groups or repeat users. For example, a very young child will be given less difficult games to play, focusing on simple play and exploration. More complicated game play would be designed for older children and even adults. Repeat participants would be challenged with more difficult games as they increase their skill level within each module. Within a module, the DMD may automatically activate the appropriate game difficulty setting according to age or skill level.
Only an elite group of highly trained dream masters will be given clues to the identity and location of the dream scientists.
Module A: Dream Device Activation and Protection
The DreamMasters storyline applicable to this module states that participants are to learn the basic skills in manipulating their DMD. This includes sharpening their reflexes, increasing their memory skills, and tapping into their creative problem solving and creative capabilities to exploit the full capabilities of the DMD. Special instruction and training is given to the participant to recognize danger and to use conflict resolution skills to protect the technology as well as himself or herself. There are provided several levels within these modules in which repeat visits and acquisition of skills allow the participant to take part in higher level interactive experiences. For example, an advanced level may allow the user to play games that require more sophisticated conflict resolution and/or combat skills for protecting the DMD.
Some of the play elements include: a pong game in which participants wear biofeedback devices that manipulate a control on a video screen that depicts the game; a maze game in which participants can manipulate figures to guide them to the exit; the Station Buttons game described above; reflex oriented games such as Musical Notes; conflict resolution games; problem solving games such as Build a Wall; Whack-A Mole; Shooting Games; Gears; video games to train users on how to recognize the Evil Force and how to protect the technology; and Good and Bad.
Module B: Life Form Creation
In this module individuals learn skills in developing life forms. Starting with a first level, the participant learns how to create a human in their likeness. Participants must go through a process that teaches their DMD about themselves, and as they proceed onto more difficult levels they can add more people, animals, create new identities, and add emotions, humor and other personality traits that make the experience feel very real.
Some of the play elements include: scanning in the participant's image; “describe yourself” games; games in which the participant stands in front of a green screen and a video system makes them appear to fly over mountains, scuba dive, surf a wave, become a king, be older, be younger, etc.; electronically recording a participant's physical movement so that it can be used for dream making; communication games such as Navigate the Maze; interactive, socially oriented games that build skills in conducting conversation or scripting interplay between characters; personality and character development games (such as create a hero, create a joker, create a villain); and group games in which several participants make walking, talking “techno-people” interact with each other on a large display screen.
Module C: Scenery Creation
This module teaches the participant how to create unique backgrounds, color, scenery, environment and visual beauty. The first level is in black and white, and the participant progresses to higher levels that allow him or her to create 3D images and “real time” environments.
Some of the play elements include: Musical Notes; mixing paint colors to get a specified shade; a large paint screen with stations where several people can create scenery as a group; games focusing on learning to create environments using software such as ADOBE PHOTOSHOP or COREL DRAW, programmed adventures to different places to increase awareness about possible escapades; using simulation technology to grow a tree, make a rainstorm/tornado/hurricane, erupt a volcano, etc; and a group scenery creation game in which several people are given specific items to make up a scene and have several minutes to design it.
Module D: Sound and Sensory Creation
This module trains the participant in many experiences of sound development and sensory creation. Lower levels begin with simple percussion sounds, and a final level facilitates full “surround sound” and elaborate sound effects, music and sensory experiences.
Some of the play elements include: games that require a participant to listen and track sound in a “sound maze”; a scent maze; Musical Notes; games that require a participant to read music; silent video to which the participant may add sound effects; orchestra games in which each player interacts to make a musical event or composition; a “Stomp” game in which participants create percussion using household items; games permitting the use of biofeedback technology to control the temperature; and video compositions to which a participant adds special sensory effects such as temperature and wind control.
Module E: Story Creation
This module instructs the participant on how to create a full-length story with a plot, scripting, interaction, characters, events and fantasy.
Some of the play elements include: role-playing games; green-screen character Karaoke games; scriptwriting games like MAD LIBS; plot development games; “end the story” games; “start the story” games; group story telling; games which challenge the participant to tell the best ghost story or the best funny story; and assembling a story line from video captures made of people in the entertainment center over the course of a predetermined time interval, preferably one hour.
Dream Download Center
At the conclusion of play, participants enter the Dream Creation center to download data from their DMDs and see how well they did in reaching their skill development goals. They are then able, according to their newly achieved level, to create a 2-minute dream on a software program. The dream is recorded and given to the participant on a floppy disk. All information is stored in the central Links system. This Dream Creation center has the latest technology including 3D screen viewing, virtual reality, surround sound and sensory effects for the highest levels of dream making.
Internet Cafe
This open-design eating area has a large screen of eight by eight feet or more for participants to join multi-site games, view the Links television show and take part in group Internet chat experiences.
Retail Store
Here a participant can buy the latest software related to the Dream Creation process. Software is available for any game that the participant may have played in the center. The software also interfaces with the participant's DMD. Participants may also buy special carrying pouches, key chain holders, backpacks, etc. that hold, protect and accompany the DMD. Also available are videotapes and DVDs of the Links television series and special toys that are used by the main characters in the TV show.
The Television Series
Every week the group of kids that make up the DreamMasters Elite star in their own television series. The show is about the kids' ordinary lives in their countries, in their homes, going to school, playing with friends and having a normal day. But in a matter of minutes their lives become very unordinary when they receive a secret message on their DMD asking them to participate in a quest. They all assemble via the Internet where the scientists explain the challenge for the day. The kids use their creative powers and DMD abilities to solve the problem and bring balance to the world once again. At the end of the show, one kid from the DreamMasters Elite shares with the other kids his or her latest dream creation the television audience to enjoy. As the series develops, new members (real kids) who have reached DreamMasters Elite levels of dream making are given the opportunity to have their dream shown on TV. Throughout the show, secret messages are also sent to the viewers through their DMDs.
The Computer Software
Software is designed to mimic the experiences in the Links play center as well as quests depicted on the television show. In addition, dream-making software is available for designing very intense dreams and fantasies. The software also interacts with the DMD, sending kids secret messages throughout the game.
Website
The DreamMasters website features chat forums, DreamMasters Elite Club, etc. The DMD may interface with the website as well.
A send/receive radio frequency (“SRRF”) system is provided to facilitate an interface between the Links indicia 506 and the central Links system. The SRRF system comprises (1) an indicium 506 carried by a Links participant 505, (2) a network of fixed transceivers 508 installed throughout the play structure 500 or other Links facility, (3) a standard LAN communications system, and (4) a master computer system (possibly the central Links system itself) interfaced to the transceiver network.
Preferably, the indicium 506 and transceiver 508 use a novel SRRF communications protocol. SRRF is an RF-based communications technology and protocol that allows pertinent information and messages to be sent and received to and from two or more SRRF compatible devices or systems. While the specific embodiments descried herein are specific to RF-based communication systems, those skilled in the art will readily appreciate that the broader interactive play concepts taught herein may be realized using any number of commercially available 2-way and/or 1-way medium range wireless communication devices and communication protocols such as, without limitation, infrared-, digital-, analog, AM/FM-, laser-, visual-, audio-, and/or ultrasonic-based systems, as desired or expedient.
The SRRF system can preferably send and receive signals up to 40-100 feet between indicia 506 and the fixed transceivers 508. The system is preferably able to associate an indicium with a particular zone as defined by an indicium activation area approximately ten to fifteen feet in diameter. Different transceiver and antenna configurations can be utilized depending on the SRRF requirements for each play station or element. The SRRF indicia 506 and transceivers are 508 networked throughout the play structure 500 or other facility. These transceivers 508 can be hidden in or integrated into the facility's infrastructure, such as the walls, floors, ceilings and play element equipment. Therefore, the size and packaging of these transceivers is not particularly critical.
In a preferred embodiment, an entire entertainment facility is configured with SRRF technology to provide a master control system for an interactive entertainment play environment using SRRF-compatible indicia and/or tracking devices. A typical entertainment facility provided with SRRF technology may allow 300-400 or more participants to more-or-less simultaneously send and receive electronic transmissions to and from the master control system using an indicium or other SRRF-compatible tracking device.
In particular, the SRRF system uses a software program and database that can track the locations and activities of up to a hundred or more participants. This information is then used to adjust the play experience for the participant based on “knowing” where the participant/player has been, what objectives that player has accomplished and how many points or levels have been reached. The system can then send messages to the participant throughout the play experience. For example, the system can allow or deny access to a participant into a new play element/module/arena based on how many points or levels have been reached by that participant and/or based on what objectives that participant has accomplished or helped accomplish. It can also indicate, via sending a message to the participant, the amount of points or specific play objectives necessary to complete an element, module, etc. or enter the next level of play. The master control system can also send messages to the participant from other participants.
The system is preferably sophisticated enough that it can allow multiple participants to interact with each other, adjusting the game instantly. The master system can also preferably interface with digital imaging and/or video capture so that the participants' activities can be visually tracked. Thus any participant can locate another participant either through the video capturing system or by sending a message to another device. At the end of a visit, participants are informed of their activities and the system interfaces with printout capabilities to provide a hard copy thereof.
Suitable embodiments of the SRRF technology described above may be obtained from a number of suitable sources, such as AXCESS, Inc. and, in particular, the AXCESS active RFID network system for asset and people tracking applications. In another preferred embodiment the system comprises a network of fixed transceivers 508 installed at specific points throughout a Links facility. Participants are outfitted or provided with a reusable indicium 506—a standard AXCESS personnel tag clipped to their clothing in the upper chest area. As each participant enters a specific interactive play area or “game zone” within the facility, the participant's indicium 506 receives a low frequency activation signal containing a zone identification number (ZID). The indicium 506 then responds to this signal by transmitting both its unique token/indicium identification number (TID) along with the ZID, thus identifying and associating the participant with a particular zone.
The indicium's transmitted signal is received by a transceiver 508 attached to a data network built into the facility. Using the data network, the transceiver 508 forwards the TID/ZID data to a host computer system. The host system uses the SRRF information to log/track the guest's progress through the facility while interfacing with other interactive systems within the venue. For example, upon receipt of a TID/ZID message received from Zone 1, the host system may trigger a digital camera focused on that area, thus capturing a digital image of the player which can now be associated with both their TID and the ZID at a specific time.
In this manner the SRRF technology allows the master control system to uniquely identify and track people as they interact with Links games and activities in a semi-controlled play environment. Optionally, the system may be configured for two-way messaging to enable more complex interactive gaming concepts.
The indicium 506 may also include the ability to produce light, vibration or other sound effects based on signals received through the SRRF module. In a more advanced implementation, the indicium 506 may be configured such that it is able to display preprogrammed messages of up to 50 characters on a LCD screen when triggered by participant action (e.g. button) or via signals received through the SRRF module. This device is also preferably capable of displaying short text messages transmitted over the SRRF wireless link from another Links device.
Preferably, the SRRF transceiver 508 is capable of supporting medium range (10-40 feet) two-way communications between SRRF indicia and a host system, such as a PC running special Links software. This transceiver 508 has an integral antenna and interfaces to the host computer through a dedicated communication port using industry standard RS232 serial communications. It is also desirable that the SRRF transmission method be flexible such that it can be embedded in television or radio signals, videotapes, DVDs, video games and other media, stripped out and re-transmitted using low cost components. The exact method for transposing these signals, as well as the exact interface between the home transceiver and common consumer electronics (i.e. TVs, radios, VCRs, DVD players, NV receivers, etc.) is not particularly important, so long as the basic functionality as described above is achieved. The various components needed to assemble such a SRRF system suitable for use with the present invention are commercially available and their assembly to achieve the desired functionality described above can be readily determined by persons of ordinary skill in the art. If desired, each SRRF transceiver 508 may also incorporate a global positioning (“GPS”) device to track the exact location of each play participant within one or more play environments.
Most desirably, a SRRF module can be provided in “chip” form to be incorporated with other electronics, or designed as a packaged module suitable for the consumer market. If desired, the antenna can be embedded in the module, or integrated into the toy and attached to the module. Different modules and antennas may be required depending on the function, intelligence and interfaces required for different devices. A consumer grade rechargeable or participant replaceable battery may also be used to power both the SRRF module and associated toy electronics.
Preferably, a transmitter/receiver utilizing the SRRF technology is provided in a small and portable package that can be carried or worn by play participants. Most preferably, the SRRF transmitter/receiver is incorporated into or embodied in a Links indicium 506 that can be operated by play participants by waving, shaking, stroking and/or tapping it in a particular manner to actuate a particular desired function or effect. These operational aspects must be learned by play participants as they train in the various play environments. The ultimate goal, of course, is to become a “grand wizard” or master of the indicium 506. This means that the play participant has learned and mastered every aspect of operating the indicium 506 to produce desired effects within each play environment. Of course, additional effects and operational nuances can (and preferably are) always added in order to keep the interactive experience fresh continually changing.
Optionally, the indicium 506 or other SRRF device is configured so that it is able to display 50 or more characters on a LTD or LCD screen. Similarly, the indicium 506 or other SRRF compatible device may also be configured to display desired light, vibration and/or sound effects in order to complement the operation of the indicium and/or the effects achieved. Optionally, the SRRF protocol can use a transmission that can be adapted to computer software, television and video programming so that the SRRF system can be easily implemented using TV, radio and/or computer software. For example, a Links indicium 506 instrumented with SRRF technology can interact with a Links software program running on a PC connected to a SRRF transceiver.
The television 612 is one example of a play medium that is usable with the crystal ball assembly 602. At a predetermined time, for example several minutes, before the Links television show begins, the base 608 receives a signal from the television or from some other signal or data connection. Upon receipt of the signal the base 608 causes the ball 606 to glow (for example) and subsequently display a secret message 614. The secret message 614 may impart certain knowledge to the person watching the program about events that will happen or have already happened that will assist and guide the person through specific adventures, activities, or actions. Upon completion of these or of other actions within a Links game, the participant may obtain additional or more advanced versions 616, 618 of the crystal ball and/or base 618. These more advanced versions may have special abilities beyond the basic versions 606, 608 used previously.
The advanced versions 616, 618 of the ball/base, as well as an updated/enhanced participant level or skill set, facilitate repeat value of a given episode of the Links television show. When a repeat episode is broadcast, a participant who has reached a new level or obtained the upgraded ball/base, will receive a different secret message 614 on the ball/base. The new secret message may contain additional secret information needed to continue in the Links game or adventure, thereby potentially casting the events occurring on the Links television show in an entirely new light.
In addition to engaging in play activities with the television, the participant may take the crystal ball assembly 602 to another location or activity and continue the adventure or actions in a new play medium. The secret-message feature of the crystal ball 606 may be used to direct the participants to one or more of these additional play media or locations. In the new play medium/location the participant can exploit the skills and attributes that have been added, by the completion of prior activities, to her crystal ball assembly/other Links indicium/character. These skills and attributes are thus used in the new medium or location to further the participant's actions in another environment.
One example of such a play medium is a board game 620 in which the participant places her crystal ball assembly 602 on a board 622 next to those belonging to other participants. The bases 608 of each assembly can then communicate with each other to assist or hinder other players in the board game 620. The outcome of the game may then be decided in part by the information that each crystal ball assembly 602 gained while engaging in one of the prior Links activities, or from one of the other assemblies during the board game. For example, a first player's base 608 might send information to a second player's base providing clues to questions or choices that the second player will encounter later in the game. These “clues” may be true (actual clues) or false (bluffs), depending on prior achievements of the first or second player in earlier Links activities, as recorded in his base 608. Or the second player may be able to “call” the “bluff” if he has gained certain knowledge in earlier Links activities.
Another suitable play medium is a computer game, internet chat room, or internet game. In this play medium the crystal ball assembly 602 or other Links indicium is connected to a computer 624 via the base interface 610 or other suitable connection such as a port connection of the type used to connect a keyboard or mouse to the computer 624. Software 626 may be obtained that allows the participant to expand the capabilities of the base 608 or a character associated with the participant by engaging in and completing various activities and challenges on the computer/internet.
A console-type video game 628 is another play medium that may be used with the crystal ball assembly 602, or other Links indicia as detailed above. One or more crystal ball assemblies 602 are connected to the video game 628 via the base interface 610 or other suitable connection. In the video game 628 the participant can further use and develop the skills and attributes gained in prior activities, by participating in a game designed specifically for use with Links and the crystal ball assembly or other Links indicia.
To participate in Links activities in other play media, a participant may be required to travel to different locations, such as Links facilities, play arenas, restaurants, etc. The secret-message feature of the crystal-ball assembly 602 may be used to direct the participant to a “training center” or some other Links facility for skill development, new experiences, etc. Other remote locations include a library or government facility, theme park, family entertainment center, shopping mall, store, etc., that is equipped with electronics supporting Links. To facilitate this travel, the participant might upload the necessary information from the crystal ball assembly or other Links indicium to a more portable Links indicium such as the crystal necklace 604, a radio-frequency card, a magnetic-strip card, or a standard RAM or flash-memory chip small enough to be placed in an item that can be attached to clothing, worn, or placed in a pocket. The crystal necklace 604 or other portable Links indicium is preferably small enough to be easily carried or worn by the participant, but large enough to contain the necessary electronics to interface with the crystal ball assembly 602 and the Links system at a Links facility or other remote location.
When the participant reaches the Links facility, he or she interfaces the crystal necklace 604 or other portable Links indicium with the central Links system 630 (or portion of the central Links system) that serves the Links facility in question. This interface is preferably accomplished by presenting the crystal necklace, swiping a card, plugging in a memory-chip device, etc. Thus the participant/character experience level, attributes skills, points, etc. are transferred to the central Links system 630. These data are used by the central Links system to affect game parameters and outcomes for the participant as he engages in a series of Links play elements in a play structure or arena 632 or other Links play media 634 housed in the Links facility. Alternatively, the participant may purchase or consult a “magic book” or other item at the facility that contains secret knowledge or tricks to be used later in the game, or in operation of the crystal-ball assembly 602. The results of, and experience, points, skills, etc. gained in, the play elements or other experiences are then uploaded to the crystal necklace or other portable Links indicium when the participant exits the Links facility. The updated data could then also be transferred from the crystal necklace 604, etc. to the crystal ball assembly 602.
A further aspect of the play system 600 may be a defined ultimate goal, such as reaching a certain status known as GAMEMASTER, or to earn an appearance on the Links television show. Upon reaching this goal, the participant may be presented with the further goal of becoming one of the best players on the show, either for a given season or for all time.
Each participant is issued a Links indicium in the form of a magnetic strip card 712, a radio-frequency card 714, an I-button 716 or a barcoded wristband 718. The entrance terminal 704 may sell/issue the indicium to new participants and query them on information such as the participant's name, age (used to set difficulty levels, etc.), vital statistics and preferences. These data are then added to a record created for the participant in the central Links system 702 and/or on the indicium itself. Returning participants present their indicia to be read by the entrance terminal 704, which receives data from the indicium. Where the indicium comprises a magnetic-strip card 712, the card is presented to the entrance terminal by (for example) swiping the card through a card reader built into the entrance terminal 704. The data received by the entrance terminal preferably allows it to identify the participant with a record maintained in the central Links system 702 of the participant's skill/experience level, character type/attributes, points, achievements, etc. Alternatively, the received data may comprise this entire record itself.
The play elements 710 preferably define a path along which the participant proceeds after completion of the necessary activities at the entrance terminal 704. Each play element 710 has an associated local terminal 706. Upon the successful completion of each play element, the participant swipes her card 712 or otherwise presents her indicium to be read by the local terminal 706. Depending on the participant's performance in the play element, the local terminal 706 and/or central Links system 702 awards the participant a certain amount or type of experience, points, character attributes, etc.
One play element contemplated for use in the play system 700 requires the participant to push a group of colored buttons 720 in a particular sequence. Successful completion of this task could earn the participant 50 points. In another play element, the participant must find a hidden object such as a piece of jewelry 722. Points may be awarded for simply finding the object or based on the amount of time needed to find it. Another play element requires the participant to answer trivia questions that are presented on a touchscreen device 724. Still another play element involves two or more participants who must work together by pressing a series of buttons 726 simultaneously and in the correct order. Preferably, more points are awarded at such play elements where multiple participants must complete activities together.
At some point during the play sequence, the participant may arrive at a point where he preferably cannot proceed without additional input or information from outside the particular play environment, be it a Links facility or other area that supports Links technology. The participant is then required to visit another play environment or watch a television show 728 to find clues or hints to a question or riddle. The participant may also be required to research a particular subject in books 730 in a library, or play a video game 732 and achieve certain objectives. Once the assigned task is completed, the participant receives a reward 734 and is given the choice of continuing the game 736 or advancing to another play medium 738 to experience the game in a different way. In this manner, the Links system advantageously encourages play participants to engage in different activities and enjoy other experiences.
The play system 800 includes a central Links system 802 which is connected to two or more entrance terminals 804 and to two or more sets of local terminals 806. The central Links system 802 is also connected to two or more redemption terminals 808, two or more ride exit terminals 810, a prize ticket terminal 812, a scoreboard 814, and a ride interface 816. The ride interface 816 is also connected to the redemption terminals 808, the ride exit terminals 810 and the prize ticket terminal 812. A series of data links 818 provides the connections between the central Links system 802 and the other components of the play system 800. The data links 818 preferably comprise serial connections such as RS232 or RS485, ethernet or modem connections, or any other suitable network links. Any of these data links may be hardwired or may have intervening RF connections. The play system 800 is depicted as having a number of mostly direct data links 818 from the various terminals, etc. to the central Links system 802. However, it will be appreciated that the present invention comprehends other patterns for interconnecting the various devices making up the play system 800, so long as the resulting network supports the necessary communications among the devices. For example, a token-ring system could be used, or intervening hubs or controllers could be interposed to handle communications between the central Links system 802 and a number of grouped devices, such as the local terminals 806 serving Team A.
The central Links system 802 preferably comprises a PC server having an advanced Pentium® processor or equivalent. The server should be Fast Ethernet capable with a 56K modem and at least two RS232 ports. An 8 point Fast Ethernet hub is preferred for interlinking the central Links system with some or all of the outlying devices in the play system 800.
The central Links system 802 preferably maintains a database of participant records and other information relevant to operation of the play system 800. For each current participant, the database contains a record that may comprise some or all of the following: first name, last name, a participant “unique key,” age, total point score, points available for redemption, and play station visit information (including numbers of stations visited number and corresponding time stamps). A similar record of historical data may be maintained for past participants, for a predetermined time period such as one year. An all-time top-10 database may be maintained, with a record maintained for each member of the top-10 having some or all of the following fields: rank number, first name, last name, an all-time top-10 “unique key,” age, total point score, and date. The corresponding records in a daily top-10 database have some or all of the following fields: rank number, first name, last name, a daily top-10 “unique key,” age, and total point score.
The play system 800 contemplates an initial division of participants into two teams, Team A and Team B. One alternative player division involves a LOONEY TUNES theme and divides players into Roadrunners and Coyotes. Thus the system includes two or more entrance terminals 804, one for each team of participants. Each entrance terminal 804 accepts the required amount of money from a new participant and queries the participant for personal data such as name, age, etc. The entrance terminal 804 includes a coin/bill acceptor 820 to receive the money and appropriate I/O devices 822 such as a monitor, keyboard, speaker, touchscreen, etc., to communicate with the participant. When this payment/data-entry stage is complete the entrance terminal 804 issues the new participant a Links indicium such as a magnetic-strip card with the participant's name and other data recorded on it. The magnetic-strip card is presented to the participant via a card dispenser 824. The participant data is passed to the central Links system 802 for the creation of a record for that participant. A repeat participant swipes his magnetic card in a Links card reader 826 built into or connected to the entrance terminal 804 to register as a member of Team A or Team B and begin play. The repeat participant may also be required to insert money into the coin/bill acceptor 820.
The local terminals 806 are located in one or more play areas to which the participants proceed after interacting with the entrance terminal 804. The embodiment shown in
Upon successfully finding a local terminal 806 or otherwise completing the play element at the play station associated with the local terminal, the participant swipes her magnetic-strip card in a Links card reader 826 in the local terminal 806. The local terminal 806 passes the participant information to the central Links system 802 for validation and ascertainment that a required time interval has passed since the last time the participant visited the station. If these requirements are met, the local terminal 806 plays a short audiovisual presentation, preferably in the form of an audio message indicating that the participant has just received 50 points and the illumination of a green LED, on I/O devices 822 in the local terminal 806. Of course, other audiovisual presentations, such as a short video or computer animation displayed on a monitor screen, a light show, etc. are possible as well.
The participant accumulates a number of points by finding as many of the local terminals 806 as possible, or otherwise successfully completing the associated play elements. Preferably, signs are posted near the local terminals 806 and elsewhere in the play area that detail the benefits or “power-ups” that the participant receives at the end of the play area for earning a given number of points. These “power-ups” are used by the participant in the ride or attraction associated with the game, to enhance his ride experience or to increase his chances of winning a race (and additional points for victory or beating a set time). Whether the play system 800 has an associated ride or attraction, or functions a stand-alone game, the points may subsequently be used at a booth to purchase prizes.
The participants may purchase the power-ups or other benefits at the redemption terminals 808 located at the end of the play area or at the beginning of the ride. The participant swipes her card in a Links card reader 826 on the redemption terminal 808 and, after the central Links system validates the participant's identification, her total points and other data are displayed via appropriate I/O devices 822. The participant selects one or more of the power-ups for which she is eligible, preferably by pressing one or more of a series of buttons incorporated in the I/O devices 822. The redemption terminal 808 displays the selections made by the participant, who can choose to accept the selections or clear them and start over, by pressing appropriate buttons. When the final power-up selections have been made, the redemption terminal 808 communicates them to the ride interface 816, which causes the ride control system (not shown) to implement the participant's powerups while the participant is on the ride, providing her with additional capabilities or experiences corresponding to the selected powerups. To confirm the selection of powerups, the I/O devices 822 may play a short audio or audiovisual presentation.
Upon completion of the ride, the participant may earn additional points depending on how the participant places in a race or whether the participant beats a predetermined time standard. Thus, at the ride exit terminal, the participant swipes his card in the Links card reader 826 and is awarded a certain number of points corresponding to his performance in the ride. The ride exit terminal may acquire performance and/or points data from the ride interface 816 or the central Links system 802. To confirm the points award, the I/O devices 822 may play a short audio or audiovisual presentation.
At the prize ticket terminal 812 the participant may convert his earned points into prize tickets or other currency that may be used to purchase prizes, or directly into prizes. The prize ticket terminal 812 is equipped with a Links card reader 826, I/O devices 822 to facilitate communication with the participant, and a ticket dispenser 828.
The scoreboard 814 interfaces with the central Links system 802 and can display a variety of statistics to enhance the participants' enjoyment of the game. The displayed statistics may include: an all-time top 10, today's top 10, each team's current point total, points earned by individual members of each team, or any combination of these statistics. The scoreboard 814 may display each of these in turn for a predetermined time interval, or occasionally flash funny or encouraging messages or graphics. The scoreboard 814 may comprise a centralized display or a number of individual displays distributed throughout the play area.
One of skill in the art will appreciate that the play system 800 can be re-configured to support a stand-alone, advanced “treasure hunt” or similar game. To facilitate this game, the central Links system 802 is preferably connected to one entrance terminal 804, one set of local terminals 806 and, optionally, one exit terminal 810 and one scoreboard 814. In the “treasure hunt” game the participants pass through the entrance terminal 804 in the usual manner to the play area, where they must locate the local terminals 806 or hidden objects nearby. The participants swipe their cards in the local terminals 806 in the usual manner to accumulate points. When finished, the participants may visit the exit terminal 810 to claim a final total of points.
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
This application is a continuation of and claims priority benefit under 35 U.S.C. §120 from U.S. patent application Ser. No. 12/829,905, filed Jul. 2, 2010, now U.S. Pat. No. 8,342,929, entitled “SYSTEMS AND METHODS FOR INTERACTIVE GAME PLAY,” which is a continuation of and claims priority benefit under 35 U.S.C. §120 from U.S. patent application Ser. No. 09/545,658, filed Apr. 10, 2000, now U.S. Pat. No. 7,749,089, entitled “MULTI-MEDIA INTERACTIVE PLAY SYSTEM,” which claims priority benefit under 35 U.S.C. §119(e) from U.S. Provisional Application No. 60/128,318, filed Apr. 8, 1999, and is a continuation-in-part of U.S. patent application Ser. No. 09/514,480, filed Feb. 28, 2000, now U.S. Pat. No. 6,634,949, entitled “MULTI-MEDIA INTERACTIVE PLAY SYSTEM,” which claims priority benefit under 35 U.S.C. §119(e) from U.S. Provisional Application No. 60/122,137, filed Feb. 26, 1999, entitled “LINKS INTERACTIVE SYSTEMS,” the entire contents of each of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
973105 | Chamberlain, Jr. | Oct 1910 | A |
1661058 | Theremin | Feb 1928 | A |
1789680 | Gwinnett | Jan 1931 | A |
2001366 | Mittelman | May 1935 | A |
2752725 | Unsworth | Jul 1956 | A |
2902023 | Waller | Sep 1959 | A |
3135512 | Taylor | Jun 1964 | A |
3336030 | Martell et al. | Aug 1967 | A |
3395920 | Moe | Aug 1968 | A |
3454920 | Mehr | Jul 1969 | A |
3456134 | Ko | Jul 1969 | A |
3468533 | House, Jr. | Sep 1969 | A |
3474241 | Kuipers | Oct 1969 | A |
D220268 | Kliewer | Mar 1971 | S |
3572712 | Vick | Mar 1971 | A |
3633904 | Kojima | Jan 1972 | A |
3660648 | Kuipers | May 1972 | A |
3707055 | Pearce | Dec 1972 | A |
3795805 | Swanberg et al. | Mar 1974 | A |
3843127 | Lack | Oct 1974 | A |
3949364 | Clark et al. | Apr 1976 | A |
3949679 | Barber | Apr 1976 | A |
3973257 | Rowe | Aug 1976 | A |
3978481 | Angwin et al. | Aug 1976 | A |
3997156 | Barlow et al. | Dec 1976 | A |
4009619 | Snymann | Mar 1977 | A |
4038876 | Morris | Aug 1977 | A |
4055341 | Martinez | Oct 1977 | A |
4063111 | Dobler et al. | Dec 1977 | A |
4153250 | Anthony | May 1979 | A |
4166406 | Maughmer | Sep 1979 | A |
4171737 | McLaughlin | Oct 1979 | A |
4175665 | Dogliotti | Nov 1979 | A |
4205785 | Stanley | Jun 1980 | A |
4231077 | Joyce et al. | Oct 1980 | A |
4240638 | Morrison et al. | Dec 1980 | A |
4282681 | McCaslin | Aug 1981 | A |
4287765 | Kreft | Sep 1981 | A |
4296929 | Meyer et al. | Oct 1981 | A |
4303978 | Shaw | Dec 1981 | A |
4318245 | Stowell et al. | Mar 1982 | A |
4321678 | Krogmann | Mar 1982 | A |
4325199 | McEdwards | Apr 1982 | A |
4337948 | Breslow | Jul 1982 | A |
4342985 | Desjardins | Aug 1982 | A |
4402250 | Baasch | Sep 1983 | A |
4412205 | Von Kemenczky | Oct 1983 | A |
4425488 | Moskin | Jan 1984 | A |
4443866 | Burgiss | Apr 1984 | A |
4450325 | Luque | May 1984 | A |
4503299 | Henrard | Mar 1985 | A |
4514600 | Lentz | Apr 1985 | A |
4514798 | Lesche | Apr 1985 | A |
4540176 | Baer | Sep 1985 | A |
4546551 | Franks | Oct 1985 | A |
4558604 | Auer | Dec 1985 | A |
4561299 | Orlando | Dec 1985 | A |
4575621 | Dreifus | Mar 1986 | A |
4578674 | Baker et al. | Mar 1986 | A |
4595369 | Downs | Jun 1986 | A |
4623887 | Welles | Nov 1986 | A |
4623930 | Oshima | Nov 1986 | A |
4627620 | Yang | Dec 1986 | A |
4645458 | Williams | Feb 1987 | A |
4672374 | Desjardins | Jun 1987 | A |
4678450 | Scolari et al. | Jul 1987 | A |
4695058 | Carter, III et al. | Sep 1987 | A |
4695953 | Blair et al. | Sep 1987 | A |
4699379 | Chateau et al. | Oct 1987 | A |
4739128 | Grisham | Apr 1988 | A |
4750733 | Foth | Jun 1988 | A |
4761540 | McGeorge | Aug 1988 | A |
4776253 | Downes | Oct 1988 | A |
4787051 | Olson | Nov 1988 | A |
4816810 | Moore | Mar 1989 | A |
4817950 | Goo | Apr 1989 | A |
4819182 | King et al. | Apr 1989 | A |
4839838 | LaBiche et al. | Jun 1989 | A |
4843568 | Kreuger et al. | Jun 1989 | A |
4849655 | Bennett | Jul 1989 | A |
4851685 | Dubgen | Jul 1989 | A |
4858390 | Kenig | Aug 1989 | A |
4858930 | Sato | Aug 1989 | A |
4862165 | Gart | Aug 1989 | A |
4882717 | Hayakawa et al. | Nov 1989 | A |
4891032 | Davis | Jan 1990 | A |
4904222 | Gastgeb et al. | Feb 1990 | A |
4910677 | Remedio et al. | Mar 1990 | A |
4914598 | Krogmann | Apr 1990 | A |
4918293 | McGeorge | Apr 1990 | A |
4924358 | VonHeck | May 1990 | A |
4932917 | Klitsner | Jun 1990 | A |
4957291 | Miffitt | Sep 1990 | A |
4960275 | Magon | Oct 1990 | A |
4961369 | McGill | Oct 1990 | A |
4964837 | Collier | Oct 1990 | A |
4967321 | Cimock | Oct 1990 | A |
4969647 | Mical et al. | Nov 1990 | A |
4980519 | Mathews | Dec 1990 | A |
4988981 | Zimmerman et al. | Jan 1991 | A |
4994795 | MacKenzie | Feb 1991 | A |
5011161 | Galphin | Apr 1991 | A |
5036442 | Brown | Jul 1991 | A |
RE33662 | Blair et al. | Aug 1991 | E |
5045843 | Hansen | Sep 1991 | A |
5048831 | Sides | Sep 1991 | A |
D320624 | Taylor | Oct 1991 | S |
5058480 | Suzuki et al. | Oct 1991 | A |
5059958 | Jacobs et al. | Oct 1991 | A |
5062696 | Oshima | Nov 1991 | A |
5068645 | Drumm | Nov 1991 | A |
D322242 | Cordell | Dec 1991 | S |
5076584 | Openiano | Dec 1991 | A |
D325225 | Adhida | Apr 1992 | S |
5114155 | Tillery et al. | May 1992 | A |
5114344 | Fumagalli et al. | May 1992 | A |
5124938 | Algrain | Jun 1992 | A |
5127657 | Ikezawa et al. | Jul 1992 | A |
5128671 | Thomas, Jr. | Jul 1992 | A |
D328463 | King et al. | Aug 1992 | S |
5136222 | Yamamoto | Aug 1992 | A |
5138154 | Hotelling | Aug 1992 | A |
5145446 | Kuo | Sep 1992 | A |
D331058 | Morales | Nov 1992 | S |
5166502 | Rendleman | Nov 1992 | A |
5170002 | Suzuki et al. | Dec 1992 | A |
5175481 | Kanno | Dec 1992 | A |
5177311 | Suzuki et al. | Jan 1993 | A |
5178477 | Gambaro | Jan 1993 | A |
5181181 | Glynn | Jan 1993 | A |
5184830 | Okada et al. | Feb 1993 | A |
5188368 | Ryan | Feb 1993 | A |
5190285 | Levy et al. | Mar 1993 | A |
5192082 | Inoue et al. | Mar 1993 | A |
5192823 | Suzuki et al. | Mar 1993 | A |
5194006 | Zaenglein, Jr. | Mar 1993 | A |
5194048 | Briggs | Mar 1993 | A |
5202844 | Kamio | Apr 1993 | A |
5207426 | Inoue et al. | May 1993 | A |
5212368 | Hara | May 1993 | A |
5213327 | Kitaue | May 1993 | A |
5223698 | Kapur | Jun 1993 | A |
5231568 | Cohen et al. | Jul 1993 | A |
D338242 | Cordell | Aug 1993 | S |
5232223 | Dornbusch | Aug 1993 | A |
5236200 | McGregor et al. | Aug 1993 | A |
5247651 | Clarisse | Sep 1993 | A |
D340042 | Copper et al. | Oct 1993 | S |
5259626 | Ho | Nov 1993 | A |
5262777 | Low et al. | Nov 1993 | A |
D342256 | Payne et al. | Dec 1993 | S |
5277645 | Kelley et al. | Jan 1994 | A |
5279513 | Connelly | Jan 1994 | A |
5280744 | DeCarlo | Jan 1994 | A |
D345164 | Grae | Mar 1994 | S |
5290964 | Hiyoshi et al. | Mar 1994 | A |
5292124 | Carpenter | Mar 1994 | A |
5292254 | Miller et al. | Mar 1994 | A |
5296871 | Paley | Mar 1994 | A |
5299967 | Gilbert | Apr 1994 | A |
5307325 | Scheiber | Apr 1994 | A |
5310192 | Miyake | May 1994 | A |
5317394 | Hale | May 1994 | A |
5319548 | Germain | Jun 1994 | A |
5320358 | Jones | Jun 1994 | A |
5320362 | Bear et al. | Jun 1994 | A |
5329276 | Hirabayashi | Jul 1994 | A |
5332322 | Gambaro | Jul 1994 | A |
5339095 | Redford | Aug 1994 | A |
D350736 | Takahashi et al. | Sep 1994 | S |
D350782 | Barr | Sep 1994 | S |
D351430 | Barr | Oct 1994 | S |
5354057 | Pruitt et al. | Oct 1994 | A |
5356343 | Lovetere | Oct 1994 | A |
5357267 | Inoue | Oct 1994 | A |
5359321 | Ribic | Oct 1994 | A |
5359348 | Pilcher et al. | Oct 1994 | A |
5363120 | Drumm | Nov 1994 | A |
5365214 | Angott et al. | Nov 1994 | A |
5366229 | Suzuki | Nov 1994 | A |
5369580 | Monji | Nov 1994 | A |
5369889 | Callaghan | Dec 1994 | A |
5372365 | McTeigue et al. | Dec 1994 | A |
5373857 | Travers et al. | Dec 1994 | A |
5378197 | Briggs | Jan 1995 | A |
5382026 | Harvard et al. | Jan 1995 | A |
5393074 | Bear et al. | Feb 1995 | A |
5396227 | Carroll et al. | Mar 1995 | A |
5396265 | Ulrich et al. | Mar 1995 | A |
5403238 | Baxter et al. | Apr 1995 | A |
5405294 | Briggs | Apr 1995 | A |
5411269 | Thomas | May 1995 | A |
5416535 | Sato et al. | May 1995 | A |
5421575 | Triner | Jun 1995 | A |
5421590 | Robbins | Jun 1995 | A |
5422956 | Wheaton | Jun 1995 | A |
5429361 | Raven et al. | Jul 1995 | A |
5430435 | Hoch | Jul 1995 | A |
5432864 | Lu et al. | Jul 1995 | A |
5435561 | Conley | Jul 1995 | A |
5435569 | Zilliox | Jul 1995 | A |
D360903 | Barr et al. | Aug 1995 | S |
5439199 | Briggs et al. | Aug 1995 | A |
5440326 | Quinn | Aug 1995 | A |
5443261 | Lee et al. | Aug 1995 | A |
5452893 | Faulk et al. | Sep 1995 | A |
5453053 | Danta et al. | Sep 1995 | A |
5453758 | Sato | Sep 1995 | A |
D362870 | Oikawa | Oct 1995 | S |
5459489 | Redford | Oct 1995 | A |
5469194 | Clark et al. | Nov 1995 | A |
5481957 | Paley | Jan 1996 | A |
5482510 | Ishii et al. | Jan 1996 | A |
5484355 | King | Jan 1996 | A |
5485171 | Copper et al. | Jan 1996 | A |
5488362 | Ullman et al. | Jan 1996 | A |
5490058 | Yamasaki | Feb 1996 | A |
5498002 | Gechter | Mar 1996 | A |
5502486 | Ueda | Mar 1996 | A |
5506605 | Paley | Apr 1996 | A |
5509806 | Ellsworth | Apr 1996 | A |
5512892 | Corballis et al. | Apr 1996 | A |
5516105 | Eisenbrey et al. | May 1996 | A |
5517183 | Bozeman | May 1996 | A |
5523800 | Dudek | Jun 1996 | A |
5524637 | Erickson | Jun 1996 | A |
5526022 | Donahue et al. | Jun 1996 | A |
5528265 | Harrison | Jun 1996 | A |
5531443 | Cruz | Jul 1996 | A |
5533933 | Garnjost et al. | Jul 1996 | A |
5541860 | Takei et al. | Jul 1996 | A |
5550721 | Rapisarda | Aug 1996 | A |
5551701 | Bouton et al. | Sep 1996 | A |
5554033 | Bizzi et al. | Sep 1996 | A |
5554980 | Hashimoto et al. | Sep 1996 | A |
5561543 | Ogawa | Oct 1996 | A |
5563628 | Stroop | Oct 1996 | A |
5569085 | Igarashi et al. | Oct 1996 | A |
D375326 | Yokoi et al. | Nov 1996 | S |
5573011 | Felsing | Nov 1996 | A |
5574479 | Odell | Nov 1996 | A |
5579025 | Itoh | Nov 1996 | A |
D376826 | Ashida | Dec 1996 | S |
5580319 | Hamilton | Dec 1996 | A |
5581484 | Prince | Dec 1996 | A |
5585584 | Satoshi | Dec 1996 | A |
5586767 | Bohland | Dec 1996 | A |
5587558 | Matsushima | Dec 1996 | A |
5587740 | Brennan | Dec 1996 | A |
5594465 | Poulachon | Jan 1997 | A |
5598187 | Ide et al. | Jan 1997 | A |
5602569 | Kato | Feb 1997 | A |
5603658 | Cohen | Feb 1997 | A |
5605505 | Han | Feb 1997 | A |
5606343 | Tsuboyama | Feb 1997 | A |
5611731 | Bouton et al. | Mar 1997 | A |
5613913 | Ikematsu et al. | Mar 1997 | A |
5615132 | Horton | Mar 1997 | A |
5621459 | Ueda | Apr 1997 | A |
5623581 | Attenberg | Apr 1997 | A |
5624117 | Ohkubo et al. | Apr 1997 | A |
5627565 | Morishita et al. | May 1997 | A |
5632878 | Kitano | May 1997 | A |
D379832 | Ashida | Jun 1997 | S |
5640152 | Copper | Jun 1997 | A |
5641288 | Zzenglein, Jr. | Jun 1997 | A |
5642931 | Gappelberg | Jul 1997 | A |
5643087 | Marcus et al. | Jul 1997 | A |
5645077 | Foxlin | Jul 1997 | A |
5645277 | Cheng | Jul 1997 | A |
5647796 | Cohen | Jul 1997 | A |
5649867 | Briggs | Jul 1997 | A |
5651049 | Easterling et al. | Jul 1997 | A |
5655053 | Renie | Aug 1997 | A |
5662332 | Garfield | Sep 1997 | A |
5662525 | Briggs | Sep 1997 | A |
5666138 | Culver | Sep 1997 | A |
5667217 | Kelly et al. | Sep 1997 | A |
5667220 | Cheng | Sep 1997 | A |
5670845 | Grant | Sep 1997 | A |
5670988 | Tickle | Sep 1997 | A |
5672090 | Liu | Sep 1997 | A |
5674128 | Holch et al. | Oct 1997 | A |
5676450 | Sink et al. | Oct 1997 | A |
5676673 | Ferre et al. | Oct 1997 | A |
5679004 | McGowan et al. | Oct 1997 | A |
5682181 | Nguyen et al. | Oct 1997 | A |
5685776 | Stambolic et al. | Nov 1997 | A |
5685778 | Sheldon et al. | Nov 1997 | A |
5694340 | Kim | Dec 1997 | A |
5698784 | Hotelling et al. | Dec 1997 | A |
5701131 | Kuga | Dec 1997 | A |
5702232 | Moore | Dec 1997 | A |
5702305 | Norman et al. | Dec 1997 | A |
5702323 | Poulton | Dec 1997 | A |
5703623 | Hall et al. | Dec 1997 | A |
5716216 | O'Loughlin et al. | Feb 1998 | A |
5716281 | Dote | Feb 1998 | A |
5724106 | Autry et al. | Mar 1998 | A |
5724497 | San et al. | Mar 1998 | A |
5726675 | Inoue | Mar 1998 | A |
5733131 | Park | Mar 1998 | A |
5734371 | Kaplan | Mar 1998 | A |
5734373 | Rosenberg | Mar 1998 | A |
5734807 | Sumi | Mar 1998 | A |
D393884 | Hayami | Apr 1998 | S |
5736970 | Bozeman | Apr 1998 | A |
5739811 | Rosenberg et al. | Apr 1998 | A |
5741182 | Lipps et al. | Apr 1998 | A |
5741189 | Briggs | Apr 1998 | A |
5742331 | Uomori | Apr 1998 | A |
5745226 | Gigioli | Apr 1998 | A |
D394264 | Sakamoto et al. | May 1998 | S |
5746602 | Kikinis | May 1998 | A |
5751273 | Cohen | May 1998 | A |
5752880 | Gabai et al. | May 1998 | A |
5752882 | Acres et al. | May 1998 | A |
5757305 | Xydis | May 1998 | A |
5757354 | Kawamura | May 1998 | A |
5757360 | Nitta et al. | May 1998 | A |
D395464 | Shiibashi et al. | Jun 1998 | S |
5764224 | Lilja et al. | Jun 1998 | A |
5769719 | Hsu | Jun 1998 | A |
5770533 | Franchi | Jun 1998 | A |
5771038 | Wang | Jun 1998 | A |
5772508 | Sugita et al. | Jun 1998 | A |
D396468 | Schindler et al. | Jul 1998 | S |
5775998 | Ikematsu et al. | Jul 1998 | A |
5779240 | Santella | Jul 1998 | A |
5785317 | Sasaki | Jul 1998 | A |
5785592 | Jacobsen | Jul 1998 | A |
5786626 | Brady et al. | Jul 1998 | A |
D397162 | Yokoi et al. | Aug 1998 | S |
5791648 | Hohl | Aug 1998 | A |
5794081 | Itoh | Aug 1998 | A |
5796354 | Cartabiano et al. | Aug 1998 | A |
5803740 | Gesink et al. | Sep 1998 | A |
5803840 | Young | Sep 1998 | A |
5806849 | Rutkowski | Sep 1998 | A |
5807284 | Foxlin | Sep 1998 | A |
5810666 | Mero et al. | Sep 1998 | A |
5811896 | Grad | Sep 1998 | A |
5819206 | Horton et al. | Oct 1998 | A |
5820462 | Yokoi et al. | Oct 1998 | A |
5820471 | Briggs | Oct 1998 | A |
5820472 | Briggs | Oct 1998 | A |
5822713 | Profeta | Oct 1998 | A |
5825298 | Walter | Oct 1998 | A |
5825350 | Case, Jr. et al. | Oct 1998 | A |
D400885 | Goto | Nov 1998 | S |
5830065 | Sitrick | Nov 1998 | A |
5831553 | Lenssen et al. | Nov 1998 | A |
5833549 | Zur et al. | Nov 1998 | A |
5835077 | Dao et al. | Nov 1998 | A |
5835156 | Blonstein et al. | Nov 1998 | A |
5835576 | Katz | Nov 1998 | A |
5836817 | Acres et al. | Nov 1998 | A |
5838138 | Henty | Nov 1998 | A |
5841409 | Ishibashi et al. | Nov 1998 | A |
D402328 | Ashida | Dec 1998 | S |
5847854 | Benson, Jr. | Dec 1998 | A |
5850624 | Gard | Dec 1998 | A |
5851149 | Xidos et al. | Dec 1998 | A |
5853327 | Gilboa | Dec 1998 | A |
5853332 | Briggs | Dec 1998 | A |
5854622 | Brannon | Dec 1998 | A |
5855483 | Collins et al. | Jan 1999 | A |
D405071 | Gambaro | Feb 1999 | S |
5865680 | Briggs | Feb 1999 | A |
5867146 | Kim et al. | Feb 1999 | A |
5874941 | Yamada | Feb 1999 | A |
5875257 | Marrin et al. | Feb 1999 | A |
D407071 | Keating | Mar 1999 | S |
D407761 | Barr | Apr 1999 | S |
5893562 | Spector | Apr 1999 | A |
5897437 | Nishiumi | Apr 1999 | A |
5898421 | Quinn | Apr 1999 | A |
5900867 | Schindler et al. | May 1999 | A |
5901246 | Hoffberg et al. | May 1999 | A |
5902968 | Sato et al. | May 1999 | A |
5906542 | Neumann | May 1999 | A |
D410909 | Tickle | Jun 1999 | S |
5908996 | Litterst et al. | Jun 1999 | A |
5911634 | Nidata et al. | Jun 1999 | A |
5912612 | DeVolpi | Jun 1999 | A |
5913019 | Attenberg | Jun 1999 | A |
5913727 | Ahdoot | Jun 1999 | A |
5919149 | Allen | Jul 1999 | A |
5923317 | Sayler et al. | Jul 1999 | A |
5924695 | Heykoop | Jul 1999 | A |
5926780 | Fox et al. | Jul 1999 | A |
5929782 | Stark et al. | Jul 1999 | A |
5929841 | Fujii | Jul 1999 | A |
5929848 | Albukerk et al. | Jul 1999 | A |
D412940 | Kato et al. | Aug 1999 | S |
5931739 | Layer et al. | Aug 1999 | A |
5942969 | Wicks | Aug 1999 | A |
5944533 | Wood | Aug 1999 | A |
5946444 | Evans et al. | Aug 1999 | A |
5947789 | Chan | Sep 1999 | A |
5947868 | Dugan | Sep 1999 | A |
5955713 | Titus | Sep 1999 | A |
5955988 | Blonstein | Sep 1999 | A |
5956035 | Sciammarella | Sep 1999 | A |
5957779 | Larson | Sep 1999 | A |
5961386 | Sawaguchi | Oct 1999 | A |
5963136 | O'Brien | Oct 1999 | A |
5964660 | James et al. | Oct 1999 | A |
5967898 | Takasaka et al. | Oct 1999 | A |
5967901 | Briggs | Oct 1999 | A |
5971270 | Barna | Oct 1999 | A |
5971271 | Wynn et al. | Oct 1999 | A |
5973757 | Aubuchon et al. | Oct 1999 | A |
5980254 | Muehle et al. | Nov 1999 | A |
5982352 | Pryor | Nov 1999 | A |
5982356 | Akiyama | Nov 1999 | A |
5984785 | Takeda et al. | Nov 1999 | A |
5984788 | Lebensfeld et al. | Nov 1999 | A |
5986570 | Black et al. | Nov 1999 | A |
5986644 | Herder | Nov 1999 | A |
5989120 | Truchsess | Nov 1999 | A |
5991085 | Rallison et al. | Nov 1999 | A |
5991693 | Zalewski | Nov 1999 | A |
5996033 | Chiu-Hao | Nov 1999 | A |
5999168 | Rosenberg | Dec 1999 | A |
6001014 | Ogata | Dec 1999 | A |
6001015 | Nishiumi et al. | Dec 1999 | A |
6002394 | Schein | Dec 1999 | A |
6009458 | Hawkins et al. | Dec 1999 | A |
D419199 | Cordell et al. | Jan 2000 | S |
D419200 | Ashida | Jan 2000 | S |
6010406 | Kajikawa et al. | Jan 2000 | A |
6011526 | Toyoshima et al. | Jan 2000 | A |
6012980 | Yoshida et al. | Jan 2000 | A |
6012984 | Roseman | Jan 2000 | A |
6013007 | Root et al. | Jan 2000 | A |
6016144 | Blonstein | Jan 2000 | A |
6019680 | Cheng | Feb 2000 | A |
6020876 | Rosenberg | Feb 2000 | A |
6024647 | Bennett et al. | Feb 2000 | A |
6024675 | Kashiwaguchi | Feb 2000 | A |
6025830 | Cohen | Feb 2000 | A |
6037882 | Levy | Mar 2000 | A |
6044297 | Sheldon | Mar 2000 | A |
6049823 | Hwang | Apr 2000 | A |
6052083 | Wilson | Apr 2000 | A |
6057788 | Cummings | May 2000 | A |
6058342 | Orbach | May 2000 | A |
6059576 | Brann | May 2000 | A |
6060847 | Hettema et al. | May 2000 | A |
6066075 | Poulton | May 2000 | A |
6069594 | Barnes et al. | May 2000 | A |
6072467 | Walker | Jun 2000 | A |
6072470 | Ishigaki | Jun 2000 | A |
6075443 | Schepps et al. | Jun 2000 | A |
6075575 | Schein et al. | Jun 2000 | A |
6076734 | Dougherty et al. | Jun 2000 | A |
6077106 | Mish | Jun 2000 | A |
6078789 | Bodenmann | Jun 2000 | A |
6079982 | Meader | Jun 2000 | A |
6080063 | Khosla | Jun 2000 | A |
6081819 | Ogino | Jun 2000 | A |
6084315 | Schmitt | Jul 2000 | A |
6084577 | Sato et al. | Jul 2000 | A |
6085805 | Bates | Jul 2000 | A |
6087950 | Capan | Jul 2000 | A |
6089987 | Briggs | Jul 2000 | A |
6091342 | Janesch et al. | Jul 2000 | A |
D429718 | Rudolph | Aug 2000 | S |
6095926 | Hettema et al. | Aug 2000 | A |
6102406 | Miles et al. | Aug 2000 | A |
6110039 | Oh | Aug 2000 | A |
6110041 | Walker et al. | Aug 2000 | A |
6115028 | Balakrishnan | Sep 2000 | A |
6127990 | Zwern | Oct 2000 | A |
6129549 | Thompson | Oct 2000 | A |
6132318 | Briggs | Oct 2000 | A |
6137457 | Tokuhashi | Oct 2000 | A |
D433381 | Talesfore | Nov 2000 | S |
6142870 | Wada | Nov 2000 | A |
6142876 | Cumbers | Nov 2000 | A |
6144367 | Berstis | Nov 2000 | A |
6146278 | Kobayashi | Nov 2000 | A |
6148100 | Anderson et al. | Nov 2000 | A |
6149490 | Hampton | Nov 2000 | A |
6150947 | Shima | Nov 2000 | A |
6154723 | Cox et al. | Nov 2000 | A |
6155926 | Miyamoto et al. | Dec 2000 | A |
6160405 | Needle | Dec 2000 | A |
6160540 | Fishkin et al. | Dec 2000 | A |
6160986 | Gabai et al. | Dec 2000 | A |
6162122 | Acres et al. | Dec 2000 | A |
6162123 | Woolston | Dec 2000 | A |
6162191 | Foxin | Dec 2000 | A |
6164808 | Shibata | Dec 2000 | A |
6171190 | Thanasack et al. | Jan 2001 | B1 |
6174242 | Briggs et al. | Jan 2001 | B1 |
6176837 | Foxlin | Jan 2001 | B1 |
6181253 | Eschenbach et al. | Jan 2001 | B1 |
6181329 | Stork et al. | Jan 2001 | B1 |
6183364 | Trovato | Feb 2001 | B1 |
6183365 | Tonomura et al. | Feb 2001 | B1 |
6184847 | Fateh et al. | Feb 2001 | B1 |
6184862 | Leiper | Feb 2001 | B1 |
6184863 | Sibert | Feb 2001 | B1 |
6186902 | Briggs | Feb 2001 | B1 |
6191774 | Schena | Feb 2001 | B1 |
6196893 | Casola et al. | Mar 2001 | B1 |
6198295 | Hill | Mar 2001 | B1 |
6198470 | Agam et al. | Mar 2001 | B1 |
6198471 | Cook | Mar 2001 | B1 |
6200216 | Peppel | Mar 2001 | B1 |
6200219 | Rudell et al. | Mar 2001 | B1 |
6200253 | Nishiumi | Mar 2001 | B1 |
6201554 | Lands | Mar 2001 | B1 |
6206745 | Gabai et al. | Mar 2001 | B1 |
6206782 | Walker et al. | Mar 2001 | B1 |
6210287 | Briggs | Apr 2001 | B1 |
6211861 | Rosenberg et al. | Apr 2001 | B1 |
6214155 | Leighton | Apr 2001 | B1 |
6217450 | Meredith | Apr 2001 | B1 |
6217478 | Vohmann | Apr 2001 | B1 |
6220171 | Hettema et al. | Apr 2001 | B1 |
6220964 | Miyamoto | Apr 2001 | B1 |
6220965 | Hanna et al. | Apr 2001 | B1 |
6222522 | Mathews | Apr 2001 | B1 |
D442998 | Ashida | May 2001 | S |
6224486 | Walker et al. | May 2001 | B1 |
6224491 | Hiromi et al. | May 2001 | B1 |
6225987 | Matsuda | May 2001 | B1 |
6226534 | Aizawa | May 2001 | B1 |
6227966 | Yokoi | May 2001 | B1 |
6227974 | Eilat et al. | May 2001 | B1 |
6231451 | Briggs | May 2001 | B1 |
6234803 | Watkins | May 2001 | B1 |
6238289 | Sobota et al. | May 2001 | B1 |
6238291 | Fujimoto et al. | May 2001 | B1 |
6239806 | Nishiumi et al. | May 2001 | B1 |
RE37220 | Rapisarda et al. | Jun 2001 | E |
6241611 | Takeda et al. | Jun 2001 | B1 |
6243491 | Andersson | Jun 2001 | B1 |
6243658 | Raby | Jun 2001 | B1 |
6244987 | Ohsuga et al. | Jun 2001 | B1 |
6245014 | Brainard et al. | Jun 2001 | B1 |
6248019 | Mudie et al. | Jun 2001 | B1 |
6254101 | Young | Jul 2001 | B1 |
6254394 | Draper et al. | Jul 2001 | B1 |
6261180 | Lebensfeld et al. | Jul 2001 | B1 |
6264202 | Briggs | Jul 2001 | B1 |
6264558 | Nishiumi et al. | Jul 2001 | B1 |
6265984 | Molinaroli | Jul 2001 | B1 |
6267673 | Miyamoto et al. | Jul 2001 | B1 |
6273425 | Westfall et al. | Aug 2001 | B1 |
6273819 | Strauss et al. | Aug 2001 | B1 |
6276353 | Briggs et al. | Aug 2001 | B1 |
6280327 | Leifer et al. | Aug 2001 | B1 |
6280328 | Holch et al. | Aug 2001 | B1 |
6283862 | Richter | Sep 2001 | B1 |
6283871 | Briggs | Sep 2001 | B1 |
6287200 | Sharma | Sep 2001 | B1 |
6290565 | Galyean, III et al. | Sep 2001 | B1 |
6290566 | Gabai et al. | Sep 2001 | B1 |
6293684 | Riblett | Sep 2001 | B1 |
6297751 | Fadavi-Ardekani | Oct 2001 | B1 |
6301534 | McDermott | Oct 2001 | B1 |
6302793 | Fertitta, III et al. | Oct 2001 | B1 |
6302796 | Lebensfeld et al. | Oct 2001 | B1 |
6304250 | Yang | Oct 2001 | B1 |
6311982 | Lebensfeld et al. | Nov 2001 | B1 |
6315673 | Kopera | Nov 2001 | B1 |
6320495 | Sporgis | Nov 2001 | B1 |
6322365 | Shechter et al. | Nov 2001 | B1 |
6323614 | Palaxxolo | Nov 2001 | B1 |
6323654 | Needle | Nov 2001 | B1 |
6325718 | Nishiumi et al. | Dec 2001 | B1 |
6328648 | Walker et al. | Dec 2001 | B1 |
6328650 | Fukawa et al. | Dec 2001 | B1 |
6329648 | Delatorre | Dec 2001 | B1 |
6330427 | Tabachnik | Dec 2001 | B1 |
6331841 | Tokuhashi | Dec 2001 | B1 |
6331856 | VanHook | Dec 2001 | B1 |
6332840 | Nishiumi et al. | Dec 2001 | B1 |
6337954 | Soshi | Jan 2002 | B1 |
6342010 | Slifer | Jan 2002 | B1 |
6346047 | Sobota | Feb 2002 | B1 |
6347993 | Kondo et al. | Feb 2002 | B1 |
6347998 | Yoshitomi et al. | Feb 2002 | B1 |
6350199 | Williams et al. | Feb 2002 | B1 |
6352478 | Gabai et al. | Mar 2002 | B1 |
6356867 | Gabai et al. | Mar 2002 | B1 |
6361396 | Snyder | Mar 2002 | B1 |
6361507 | Foxlin | Mar 2002 | B1 |
D456410 | Ashida | Apr 2002 | S |
6364735 | Bristow et al. | Apr 2002 | B1 |
6368177 | Gabai et al. | Apr 2002 | B1 |
6368217 | Kanno | Apr 2002 | B2 |
6369794 | Sakurai et al. | Apr 2002 | B1 |
6369908 | Frey et al. | Apr 2002 | B1 |
6371375 | Ackley et al. | Apr 2002 | B1 |
6371853 | Borta | Apr 2002 | B1 |
6375566 | Yamada | Apr 2002 | B1 |
6375569 | Acres | Apr 2002 | B1 |
6375572 | Masuyama et al. | Apr 2002 | B1 |
6375578 | Briggs | Apr 2002 | B1 |
6377793 | Jenkins | Apr 2002 | B1 |
6377906 | Rowe | Apr 2002 | B1 |
D456854 | Ashida | May 2002 | S |
6383079 | Takeda et al. | May 2002 | B1 |
6386538 | Mejia | May 2002 | B1 |
6392613 | Goto | May 2002 | B1 |
6394904 | Stallker | May 2002 | B1 |
6400480 | Thomas | Jun 2002 | B1 |
6400996 | Hoffberg et al. | Jun 2002 | B1 |
6404409 | Solomon | Jun 2002 | B1 |
6409379 | Gabathuler et al. | Jun 2002 | B1 |
6409604 | Matsuno | Jun 2002 | B1 |
6409687 | Foxlin | Jun 2002 | B1 |
D459727 | Ashida | Jul 2002 | S |
D460787 | Nishikawa | Jul 2002 | S |
6414589 | Angott et al. | Jul 2002 | B1 |
6415223 | Lin | Jul 2002 | B1 |
6421056 | Nishiumi | Jul 2002 | B1 |
6424333 | Tremblay | Jul 2002 | B1 |
6426719 | Nagareda | Jul 2002 | B1 |
6426741 | Goldsmith et al. | Jul 2002 | B1 |
6438193 | Ko | Aug 2002 | B1 |
D462683 | Ashida | Sep 2002 | S |
6445960 | Borta | Sep 2002 | B1 |
6452494 | Harrison | Sep 2002 | B1 |
6456276 | Park | Sep 2002 | B1 |
D464052 | Fletcher | Oct 2002 | S |
D464950 | Fraquelli et al. | Oct 2002 | S |
6462769 | Trowbridge et al. | Oct 2002 | B1 |
6463257 | Wood | Oct 2002 | B1 |
6463859 | Ikezawa et al. | Oct 2002 | B1 |
6466198 | Feinstein | Oct 2002 | B1 |
6466831 | Shibata | Oct 2002 | B1 |
6473070 | Mishra et al. | Oct 2002 | B2 |
6473713 | McCall | Oct 2002 | B1 |
6474159 | Foxlin et al. | Nov 2002 | B1 |
6482067 | Pickens | Nov 2002 | B1 |
6484080 | Breed | Nov 2002 | B2 |
6490409 | Walker | Dec 2002 | B1 |
6492981 | Stork et al. | Dec 2002 | B1 |
6494457 | Conte et al. | Dec 2002 | B2 |
6496122 | Sampsell | Dec 2002 | B2 |
6509217 | Reddy | Jan 2003 | B1 |
6512511 | Willner | Jan 2003 | B2 |
6517438 | Tosaki | Feb 2003 | B2 |
6518952 | Leiper | Feb 2003 | B1 |
6525660 | Surintrspanont | Feb 2003 | B1 |
6526158 | Goldberg | Feb 2003 | B1 |
6527638 | Walker et al. | Mar 2003 | B1 |
6527646 | Briggs | Mar 2003 | B1 |
6530838 | Ha et al. | Mar 2003 | B2 |
6530841 | Bull et al. | Mar 2003 | B2 |
6538675 | Aratani | Mar 2003 | B2 |
D473942 | Motoki et al. | Apr 2003 | S |
6540607 | Mokris et al. | Apr 2003 | B2 |
6540611 | Nagata | Apr 2003 | B1 |
6544124 | Ireland | Apr 2003 | B2 |
6544126 | Sawano | Apr 2003 | B2 |
6545611 | Hayashi et al. | Apr 2003 | B2 |
6545661 | Goschy et al. | Apr 2003 | B1 |
6551165 | Smirnov | Apr 2003 | B2 |
6551188 | Toyama et al. | Apr 2003 | B2 |
6554707 | Sinclair et al. | Apr 2003 | B1 |
6554781 | Carter et al. | Apr 2003 | B1 |
D474763 | Tozaki et al. | May 2003 | S |
6558225 | Rehkemper et al. | May 2003 | B1 |
6560511 | Yokoo et al. | May 2003 | B1 |
6561049 | Akiyama et al. | May 2003 | B2 |
6565438 | Ogino | May 2003 | B2 |
6565444 | Nagata et al. | May 2003 | B2 |
6567536 | McNitt et al. | May 2003 | B2 |
6569023 | Briggs | May 2003 | B1 |
6572108 | Bristow | Jun 2003 | B1 |
6575753 | Rosa et al. | Jun 2003 | B2 |
6577350 | Proehl | Jun 2003 | B1 |
6579098 | Shechter | Jun 2003 | B2 |
6582299 | Matsuyama et al. | Jun 2003 | B1 |
6582380 | Kazlausky et al. | Jun 2003 | B2 |
6583783 | Dietrich | Jun 2003 | B1 |
6585596 | Liefer et al. | Jul 2003 | B1 |
6589120 | Takahashi | Jul 2003 | B1 |
6590536 | Walton | Jul 2003 | B1 |
6591677 | Rothoff | Jul 2003 | B2 |
6592461 | Raviv et al. | Jul 2003 | B1 |
6595863 | Chamberlain et al. | Jul 2003 | B2 |
6597342 | Haruta | Jul 2003 | B1 |
6597443 | Boman | Jul 2003 | B2 |
6598978 | Hasegawa | Jul 2003 | B2 |
6599194 | Smith | Jul 2003 | B1 |
6605038 | Teller et al. | Aug 2003 | B1 |
6607123 | Jollifee et al. | Aug 2003 | B1 |
6608563 | Weston et al. | Aug 2003 | B2 |
6609969 | Luciano et al. | Aug 2003 | B1 |
6609977 | Shimizu | Aug 2003 | B1 |
6616452 | Clark et al. | Sep 2003 | B2 |
6616535 | Nishizak | Sep 2003 | B1 |
6616607 | Hashimoto | Sep 2003 | B2 |
6626728 | Holt | Sep 2003 | B2 |
6628257 | Oka | Sep 2003 | B1 |
6629019 | Legge et al. | Sep 2003 | B2 |
6632142 | Keith | Oct 2003 | B2 |
6633155 | Liang | Oct 2003 | B1 |
6634949 | Briggs et al. | Oct 2003 | B1 |
6636826 | Abe et al. | Oct 2003 | B1 |
6641482 | Masuyama et al. | Nov 2003 | B2 |
6642837 | Vigoda et al. | Nov 2003 | B1 |
6650029 | Johnston | Nov 2003 | B1 |
6650313 | Levine | Nov 2003 | B2 |
6650345 | Saito | Nov 2003 | B1 |
6651268 | Briggs | Nov 2003 | B1 |
6654001 | Su | Nov 2003 | B1 |
6672962 | Ozaki et al. | Jan 2004 | B1 |
6676520 | Nishiumi et al. | Jan 2004 | B2 |
6676524 | Botzas | Jan 2004 | B1 |
6677990 | Kawahara | Jan 2004 | B1 |
6681629 | Foxlin et al. | Jan 2004 | B2 |
6682074 | Weston | Jan 2004 | B2 |
6682351 | Abraham-Fuchs et al. | Jan 2004 | B1 |
6684062 | Gosior et al. | Jan 2004 | B1 |
D486145 | Kaminski et al. | Feb 2004 | S |
6686954 | Kitaguchi | Feb 2004 | B1 |
6692170 | Abir | Feb 2004 | B2 |
6693622 | Shahoian et al. | Feb 2004 | B1 |
6702672 | Angell et al. | Mar 2004 | B1 |
6709336 | Siegel et al. | Mar 2004 | B2 |
6712692 | Basson | Mar 2004 | B2 |
6716102 | Whitten et al. | Apr 2004 | B2 |
6717573 | Shahoian et al. | Apr 2004 | B1 |
6717673 | Janssen | Apr 2004 | B1 |
6718280 | Hermann | Apr 2004 | B2 |
6725107 | MacPherson | Apr 2004 | B2 |
6725173 | An | Apr 2004 | B2 |
6726099 | Becker et al. | Apr 2004 | B2 |
D489361 | Mori et al. | May 2004 | S |
6729934 | Driscoll et al. | May 2004 | B1 |
6733390 | Walker et al. | May 2004 | B2 |
6736009 | Schwabe | May 2004 | B1 |
6739874 | Marcus et al. | May 2004 | B2 |
6739979 | Tracy | May 2004 | B2 |
D491924 | Kaminski et al. | Jun 2004 | S |
D492285 | Ombao et al. | Jun 2004 | S |
6743104 | Ota et al. | Jun 2004 | B1 |
6746334 | Barney | Jun 2004 | B1 |
6747632 | Howard | Jun 2004 | B2 |
6747690 | Molgaard | Jun 2004 | B2 |
6749432 | French et al. | Jun 2004 | B2 |
6752719 | Himoto et al. | Jun 2004 | B2 |
6753849 | Curran et al. | Jun 2004 | B1 |
6753888 | Kamiwada | Jun 2004 | B2 |
6757068 | Foxlin | Jun 2004 | B2 |
6757446 | Li | Jun 2004 | B1 |
6761637 | Weston et al. | Jul 2004 | B2 |
6765553 | Odamura | Jul 2004 | B1 |
D495336 | Andre et al. | Aug 2004 | S |
6770863 | Walley | Aug 2004 | B2 |
6773325 | Mawle et al. | Aug 2004 | B1 |
6773344 | Gabai et al. | Aug 2004 | B1 |
6785539 | Hale | Aug 2004 | B2 |
6786877 | Foxlin | Sep 2004 | B2 |
6796177 | Mori | Sep 2004 | B2 |
6796908 | Weston | Sep 2004 | B2 |
6797895 | Lapstun | Sep 2004 | B2 |
6811489 | Shimizu | Nov 2004 | B1 |
6811491 | Levenberg et al. | Nov 2004 | B1 |
6812583 | Cheung et al. | Nov 2004 | B2 |
6812881 | Mullaly et al. | Nov 2004 | B1 |
6813525 | Reid | Nov 2004 | B2 |
6813574 | Yedur | Nov 2004 | B1 |
6813584 | Zhou et al. | Nov 2004 | B2 |
6816151 | Dellinger | Nov 2004 | B2 |
6821204 | Aonuma et al. | Nov 2004 | B2 |
6821206 | Ishida et al. | Nov 2004 | B1 |
6835135 | Silverbrook et al. | Dec 2004 | B1 |
6836705 | Hellman | Dec 2004 | B2 |
6836751 | Paxton et al. | Dec 2004 | B2 |
6836971 | Wang | Jan 2005 | B1 |
6842991 | Levi | Jan 2005 | B2 |
6846238 | Wells | Jan 2005 | B2 |
6850221 | Tickle | Feb 2005 | B1 |
6850844 | Walters | Feb 2005 | B1 |
6852032 | Ishino | Feb 2005 | B2 |
6856327 | Choi | Feb 2005 | B2 |
D502468 | Knight et al. | Mar 2005 | S |
6868738 | Moscrip | Mar 2005 | B2 |
6872139 | Sato et al. | Mar 2005 | B2 |
6873406 | Hines | Mar 2005 | B1 |
D503750 | Kit et al. | Apr 2005 | S |
D504298 | Hedderich et al. | Apr 2005 | S |
6878066 | Leifer | Apr 2005 | B2 |
6882824 | Wood | Apr 2005 | B2 |
D504677 | Kaminski et al. | May 2005 | S |
D505424 | Ashida et al. | May 2005 | S |
6890262 | Oishi | May 2005 | B2 |
6891526 | Gombert | May 2005 | B2 |
6894686 | Stamper et al. | May 2005 | B2 |
6897845 | Ozawa | May 2005 | B2 |
6897854 | Cho | May 2005 | B2 |
6902483 | Lin | Jun 2005 | B2 |
6903725 | Nacson | Jun 2005 | B2 |
6905411 | Nguyen et al. | Jun 2005 | B2 |
6906700 | Armstrong | Jun 2005 | B1 |
6908386 | Suzuki et al. | Jun 2005 | B2 |
6908388 | Shimizu | Jun 2005 | B2 |
6918833 | Emmerson et al. | Jul 2005 | B2 |
6921332 | Fukunaga | Jul 2005 | B2 |
6922632 | Foxlin | Jul 2005 | B2 |
6924787 | Kramer et al. | Aug 2005 | B2 |
6925410 | Narayanan | Aug 2005 | B2 |
6929543 | Ueshima et al. | Aug 2005 | B1 |
6929548 | Wang | Aug 2005 | B2 |
6932698 | Sprogis | Aug 2005 | B2 |
6932706 | Kaminkow | Aug 2005 | B1 |
6933861 | Wang | Aug 2005 | B2 |
6933923 | Feinstein | Aug 2005 | B2 |
6935864 | Shechter et al. | Aug 2005 | B2 |
6935952 | Walker et al. | Aug 2005 | B2 |
6939232 | Tanaka et al. | Sep 2005 | B2 |
6948999 | Chan | Sep 2005 | B2 |
6954980 | Song | Oct 2005 | B2 |
6955606 | Taho et al. | Oct 2005 | B2 |
6956564 | Williams | Oct 2005 | B1 |
6965374 | Villet et al. | Nov 2005 | B2 |
6966775 | Kendir et al. | Nov 2005 | B1 |
6967563 | Bormaster | Nov 2005 | B2 |
6967566 | Weston et al. | Nov 2005 | B2 |
6982697 | Wilson et al. | Jan 2006 | B2 |
6983219 | Mantyjarvi | Jan 2006 | B2 |
6984208 | Zheng | Jan 2006 | B2 |
6990639 | Wilson | Jan 2006 | B2 |
6993451 | Chang et al. | Jan 2006 | B2 |
6995748 | Gordon et al. | Feb 2006 | B2 |
6998966 | Pedersen | Feb 2006 | B2 |
7000469 | Foxlin et al. | Feb 2006 | B2 |
7002591 | Leather | Feb 2006 | B1 |
7004847 | Henry | Feb 2006 | B2 |
7029400 | Briggs | Apr 2006 | B2 |
7031875 | Ellenby et al. | Apr 2006 | B2 |
7040986 | Koshima | May 2006 | B2 |
7040993 | Lovitt | May 2006 | B1 |
7040998 | Jolliffe et al. | May 2006 | B2 |
7052391 | Luciano, Jr. | May 2006 | B1 |
7055101 | Abbott et al. | May 2006 | B2 |
7056221 | Thirkettle et al. | Jun 2006 | B2 |
7059974 | Golliffe et al. | Jun 2006 | B1 |
7066781 | Weston | Jun 2006 | B2 |
D524298 | Hedderich et al. | Jul 2006 | S |
7081033 | Mawle et al. | Jul 2006 | B1 |
7081051 | Himoto et al. | Jul 2006 | B2 |
7086645 | Hardie | Aug 2006 | B2 |
7090582 | Danieli et al. | Aug 2006 | B2 |
7094147 | Nakata | Aug 2006 | B2 |
7098891 | Pryor | Aug 2006 | B1 |
7098894 | Yang | Aug 2006 | B2 |
7102615 | Marks | Sep 2006 | B2 |
7102616 | Sleator | Sep 2006 | B1 |
7107168 | Oystol | Sep 2006 | B2 |
D531228 | Ashida et al. | Oct 2006 | S |
7115032 | Cantu et al. | Oct 2006 | B2 |
7117009 | Wong et al. | Oct 2006 | B2 |
7118482 | Ishihara et al. | Oct 2006 | B2 |
7126584 | Nishiumi et al. | Oct 2006 | B1 |
7127370 | Kelly | Oct 2006 | B2 |
D531585 | Weitgasser et al. | Nov 2006 | S |
7133026 | Horie et al. | Nov 2006 | B2 |
7136674 | Yoshie et al. | Nov 2006 | B2 |
7136826 | Alsafadi | Nov 2006 | B2 |
7137899 | Hiei | Nov 2006 | B2 |
7139983 | Kelts | Nov 2006 | B2 |
7140962 | Okuda et al. | Nov 2006 | B2 |
7142191 | Idesawa et al. | Nov 2006 | B2 |
7145551 | Bathiche | Dec 2006 | B1 |
7149627 | Ockerse | Dec 2006 | B2 |
7154475 | Crew | Dec 2006 | B2 |
7155604 | Kawai | Dec 2006 | B2 |
7158116 | Poltorak | Jan 2007 | B2 |
7158118 | Liberty | Jan 2007 | B2 |
7160196 | Thirkettle et al. | Jan 2007 | B2 |
7168089 | Nguyen et al. | Jan 2007 | B2 |
7173604 | Marvit | Feb 2007 | B2 |
7176919 | Drebin | Feb 2007 | B2 |
7180414 | Nyfelt | Feb 2007 | B2 |
7180503 | Burr | Feb 2007 | B2 |
7182691 | Schena | Feb 2007 | B1 |
7183480 | Nishitani et al. | Feb 2007 | B2 |
7184059 | Fouladi | Feb 2007 | B1 |
D543246 | Ashida et al. | May 2007 | S |
7220220 | Stubbs et al. | May 2007 | B2 |
7223173 | Masuyama et al. | May 2007 | B2 |
7225101 | Usuda et al. | May 2007 | B2 |
7231063 | Naimark | Jun 2007 | B2 |
7233316 | Smith et al. | Jun 2007 | B2 |
7236156 | Liberty et al. | Jun 2007 | B2 |
7239301 | Liberty et al. | Jul 2007 | B2 |
7252572 | Wright et al. | Aug 2007 | B2 |
7261690 | Teller et al. | Aug 2007 | B2 |
7262760 | Liberty | Aug 2007 | B2 |
RE39818 | Slifer | Sep 2007 | E |
7288028 | Rodriguez et al. | Oct 2007 | B2 |
D556201 | Ashida et al. | Nov 2007 | S |
7291014 | Chung et al. | Nov 2007 | B2 |
7292151 | Ferguson et al. | Nov 2007 | B2 |
7297059 | Vancura et al. | Nov 2007 | B2 |
7301527 | Marvit | Nov 2007 | B2 |
7301648 | Foxlin | Nov 2007 | B2 |
D556760 | Ashida et al. | Dec 2007 | S |
7307617 | Wilson et al. | Dec 2007 | B2 |
D559847 | Ashida et al. | Jan 2008 | S |
D561178 | Azuma | Feb 2008 | S |
7331857 | MacIver | Feb 2008 | B2 |
7335134 | LaVelle | Feb 2008 | B1 |
D563948 | d-Hoore | Mar 2008 | S |
7337965 | Thirkettle et al. | Mar 2008 | B2 |
7339105 | Eitaki | Mar 2008 | B2 |
7345670 | Armstrong | Mar 2008 | B2 |
D567243 | Ashida et al. | Apr 2008 | S |
7359121 | French et al. | Apr 2008 | B2 |
7359451 | McKnight | Apr 2008 | B2 |
7361073 | Martin | Apr 2008 | B2 |
RE40324 | Crawford | May 2008 | E |
7371177 | Ellis et al. | May 2008 | B2 |
7379566 | Hildreth | May 2008 | B2 |
7387559 | Sanchez-Castro et al. | Jun 2008 | B2 |
7395181 | Foxlin | Jul 2008 | B2 |
7398151 | Burrell et al. | Jul 2008 | B1 |
7408453 | Breed | Aug 2008 | B2 |
7414611 | Liberty | Aug 2008 | B2 |
7419428 | Rowe | Sep 2008 | B2 |
7424388 | Sato | Sep 2008 | B2 |
7428499 | Philyaw | Sep 2008 | B1 |
7435179 | Ford | Oct 2008 | B1 |
7441151 | Whitten et al. | Oct 2008 | B2 |
7442108 | Ganz | Oct 2008 | B2 |
7445550 | Barney et al. | Nov 2008 | B2 |
7465212 | Ganz | Dec 2008 | B2 |
7488231 | Weston | Feb 2009 | B2 |
7488254 | Himoto | Feb 2009 | B2 |
7489299 | Liberty et al. | Feb 2009 | B2 |
7492268 | Ferguson et al. | Feb 2009 | B2 |
7492367 | Mahajan et al. | Feb 2009 | B2 |
7500917 | Barney et al. | Mar 2009 | B2 |
7502759 | Hannigan et al. | Mar 2009 | B2 |
7519537 | Rosenberg | Apr 2009 | B2 |
7524246 | Briggs et al. | Apr 2009 | B2 |
7535456 | Liberty et al. | May 2009 | B2 |
7536156 | Tischer | May 2009 | B2 |
7556563 | Ellis et al. | Jul 2009 | B2 |
7564426 | Poor | Jul 2009 | B2 |
7568289 | Burlingham et al. | Aug 2009 | B2 |
7572191 | Weston et al. | Aug 2009 | B2 |
7582016 | Suzuki | Sep 2009 | B2 |
7596466 | Ohta | Sep 2009 | B2 |
7614958 | Weston et al. | Nov 2009 | B2 |
7623115 | Marks | Nov 2009 | B2 |
7627139 | Marks | Dec 2009 | B2 |
7627451 | Vock et al. | Dec 2009 | B2 |
7645178 | Trotto et al. | Jan 2010 | B1 |
7662015 | Hui | Feb 2010 | B2 |
7663509 | Shen | Feb 2010 | B2 |
7674184 | Briggs et al. | Mar 2010 | B2 |
7704135 | Harrison | Apr 2010 | B2 |
7704146 | Ellis | Apr 2010 | B2 |
7727090 | Gant | Jun 2010 | B2 |
7749089 | Briggs et al. | Jul 2010 | B1 |
7774155 | Sato et al. | Aug 2010 | B2 |
7775882 | Kawamura et al. | Aug 2010 | B2 |
7775884 | McCauley | Aug 2010 | B1 |
7789741 | Fields | Sep 2010 | B1 |
7796116 | Salsman et al. | Sep 2010 | B2 |
7828295 | Matsumoto et al. | Nov 2010 | B2 |
7850527 | Barney et al. | Dec 2010 | B2 |
7878905 | Weston et al. | Feb 2011 | B2 |
7883420 | Bradbury | Feb 2011 | B2 |
7896742 | Barney et al. | Mar 2011 | B2 |
7927216 | Ikeda | Apr 2011 | B2 |
7942745 | Ikeda | May 2011 | B2 |
7989971 | Lemieux | Aug 2011 | B2 |
8021239 | Weston et al. | Sep 2011 | B2 |
8025573 | Stenton et al. | Sep 2011 | B2 |
8033901 | Wood | Oct 2011 | B2 |
8089458 | Barney et al. | Jan 2012 | B2 |
8164567 | Barney et al. | Apr 2012 | B1 |
8169406 | Barney et al. | May 2012 | B2 |
8184097 | Barney et al. | May 2012 | B1 |
8206223 | Marans et al. | Jun 2012 | B2 |
8226493 | Briggs et al. | Jul 2012 | B2 |
8248367 | Barney et al. | Aug 2012 | B1 |
8287372 | Hong et al. | Oct 2012 | B2 |
8287373 | Marks et al. | Oct 2012 | B2 |
8330284 | Weston et al. | Dec 2012 | B2 |
8342929 | Briggs et al. | Jan 2013 | B2 |
8368648 | Barney et al. | Feb 2013 | B2 |
8373659 | Barney et al. | Feb 2013 | B2 |
8384668 | Barney et al. | Feb 2013 | B2 |
8439757 | Hornsby et al. | May 2013 | B2 |
8469766 | Zheng | Jun 2013 | B2 |
8475275 | Weston et al. | Jul 2013 | B2 |
8491389 | Weston et al. | Jul 2013 | B2 |
8491489 | Weston et al. | Jul 2013 | B2 |
8531050 | Barney et al. | Sep 2013 | B2 |
8535153 | Bradbury et al. | Sep 2013 | B2 |
8602857 | Morichau-Beauchant et al. | Dec 2013 | B2 |
8608535 | Weston et al. | Dec 2013 | B2 |
8686579 | Barney et al. | Apr 2014 | B2 |
20010010514 | Ishino | Aug 2001 | A1 |
20010015123 | Nishitani et al. | Aug 2001 | A1 |
20010018361 | Acres | Aug 2001 | A1 |
20010024973 | Meredith | Sep 2001 | A1 |
20010031662 | Larian | Oct 2001 | A1 |
20010034257 | Weston et al. | Oct 2001 | A1 |
20010039206 | Peppel | Nov 2001 | A1 |
20010040591 | Abbott et al. | Nov 2001 | A1 |
20010049302 | Hagiwara et al. | Dec 2001 | A1 |
20010054082 | Rudolph et al. | Dec 2001 | A1 |
20020005787 | Gabai et al. | Jan 2002 | A1 |
20020008622 | Weston et al. | Jan 2002 | A1 |
20020024500 | Howard | Feb 2002 | A1 |
20020024675 | Foxlin | Feb 2002 | A1 |
20020028071 | Molgaard | Mar 2002 | A1 |
20020028710 | Ishihara et al. | Mar 2002 | A1 |
20020032067 | Barney | Mar 2002 | A1 |
20020036617 | Pryor | Mar 2002 | A1 |
20020038267 | Can et al. | Mar 2002 | A1 |
20020052238 | Muroi | May 2002 | A1 |
20020058459 | Holt | May 2002 | A1 |
20020068500 | Gabai et al. | Jun 2002 | A1 |
20020072418 | Masuyama | Jun 2002 | A1 |
20020075335 | Relimoto | Jun 2002 | A1 |
20020090985 | Tochner et al. | Jul 2002 | A1 |
20020090992 | Legge et al. | Jul 2002 | A1 |
20020098887 | Himoto et al. | Jul 2002 | A1 |
20020103026 | Himoto et al. | Aug 2002 | A1 |
20020107069 | Ishino | Aug 2002 | A1 |
20020107591 | Gabai et al. | Aug 2002 | A1 |
20020116615 | Nguyen et al. | Aug 2002 | A1 |
20020118147 | Solomon | Aug 2002 | A1 |
20020123377 | Shulman | Sep 2002 | A1 |
20020126026 | Lee et al. | Sep 2002 | A1 |
20020128056 | Kato | Sep 2002 | A1 |
20020137427 | Peters | Sep 2002 | A1 |
20020137567 | Cheng | Sep 2002 | A1 |
20020140745 | Ellenby | Oct 2002 | A1 |
20020158751 | Bormaster | Oct 2002 | A1 |
20020158843 | Levine | Oct 2002 | A1 |
20020183961 | French et al. | Dec 2002 | A1 |
20020193047 | Weston | Dec 2002 | A1 |
20220193047 | Weston | Dec 2002 | |
20030013513 | Rowe | Jan 2003 | A1 |
20030022736 | Cass | Jan 2003 | A1 |
20030027634 | Matthews, III | Feb 2003 | A1 |
20030036425 | Kaminkow et al. | Feb 2003 | A1 |
20030037075 | Hannigan et al. | Feb 2003 | A1 |
20030038778 | Noguera | Feb 2003 | A1 |
20030040347 | Roach et al. | Feb 2003 | A1 |
20030052860 | Park et al. | Mar 2003 | A1 |
20030057808 | Lee et al. | Mar 2003 | A1 |
20030060286 | Walker et al. | Mar 2003 | A1 |
20030063068 | Anton | Apr 2003 | A1 |
20030064812 | Rappaport et al. | Apr 2003 | A1 |
20030069077 | Korienek | Apr 2003 | A1 |
20030073505 | Tracy | Apr 2003 | A1 |
20030095101 | Jou | May 2003 | A1 |
20030096652 | Siegel et al. | May 2003 | A1 |
20030106455 | Weston | Jun 2003 | A1 |
20030107178 | Weston | Jun 2003 | A1 |
20030107551 | Dunker | Jun 2003 | A1 |
20030114233 | Hiei | Jun 2003 | A1 |
20030134679 | Siegel et al. | Jul 2003 | A1 |
20030144047 | Sprogis | Jul 2003 | A1 |
20030144056 | Leifer et al. | Jul 2003 | A1 |
20030166416 | Ogata | Sep 2003 | A1 |
20030171145 | Rowe | Sep 2003 | A1 |
20030171190 | Rice | Sep 2003 | A1 |
20030190967 | Henry | Oct 2003 | A1 |
20030193572 | Wilson et al. | Oct 2003 | A1 |
20030195037 | Vuong et al. | Oct 2003 | A1 |
20030195041 | McCauley | Oct 2003 | A1 |
20030195046 | Bartsch | Oct 2003 | A1 |
20030204361 | Townsend | Oct 2003 | A1 |
20030214259 | Dowling et al. | Nov 2003 | A9 |
20030216176 | Shimizu | Nov 2003 | A1 |
20030222851 | Lai | Dec 2003 | A1 |
20030234914 | Solomon | Dec 2003 | A1 |
20040028258 | Naimark | Feb 2004 | A1 |
20040033833 | Briggs et al. | Feb 2004 | A1 |
20040034289 | Teller et al. | Feb 2004 | A1 |
20040043806 | Kirby et al. | Mar 2004 | A1 |
20040048666 | Bagley | Mar 2004 | A1 |
20040063480 | Wang | Apr 2004 | A1 |
20040070564 | Dawson | Apr 2004 | A1 |
20040075650 | Paul | Apr 2004 | A1 |
20040077423 | Weston et al. | Apr 2004 | A1 |
20040081313 | McKnight et al. | Apr 2004 | A1 |
20040092311 | Weston et al. | May 2004 | A1 |
20040095317 | Zhang | May 2004 | A1 |
20040102247 | Smoot et al. | May 2004 | A1 |
20040119693 | Kaemmler | Jun 2004 | A1 |
20040121834 | Libby et al. | Jun 2004 | A1 |
20040134341 | Sandoz | Jul 2004 | A1 |
20040140954 | Faeth | Jul 2004 | A1 |
20040143413 | Oystol | Jul 2004 | A1 |
20040147317 | Ito et al. | Jul 2004 | A1 |
20040152499 | Lind et al. | Aug 2004 | A1 |
20040152515 | Wegmuller et al. | Aug 2004 | A1 |
20040174287 | Deak | Sep 2004 | A1 |
20040193413 | Wilson | Sep 2004 | A1 |
20040198158 | Driscoll et al. | Oct 2004 | A1 |
20040198517 | Briggs | Oct 2004 | A1 |
20040203638 | Chan | Oct 2004 | A1 |
20040204240 | Barney | Oct 2004 | A1 |
20040207597 | Marks | Oct 2004 | A1 |
20040214642 | Beck | Oct 2004 | A1 |
20040218104 | Smith | Nov 2004 | A1 |
20040222969 | Buchenrieder | Nov 2004 | A1 |
20040227725 | Calarco | Nov 2004 | A1 |
20040229693 | Lind | Nov 2004 | A1 |
20040229696 | Beck | Nov 2004 | A1 |
20040236453 | Szoboszlay | Nov 2004 | A1 |
20040239626 | Noguera | Dec 2004 | A1 |
20040252109 | Trent et al. | Dec 2004 | A1 |
20040254020 | Dragusin | Dec 2004 | A1 |
20040259651 | Storek | Dec 2004 | A1 |
20040268393 | Hunleth | Dec 2004 | A1 |
20050017454 | Endo et al. | Jan 2005 | A1 |
20050020369 | Davis | Jan 2005 | A1 |
20050032582 | Mahajan et al. | Feb 2005 | A1 |
20050047621 | Cranfill | Mar 2005 | A1 |
20050054457 | Eyestone | Mar 2005 | A1 |
20050059488 | Larsen et al. | Mar 2005 | A1 |
20050059503 | Briggs et al. | Mar 2005 | A1 |
20050060586 | Burger | Mar 2005 | A1 |
20050076161 | Albanna | Apr 2005 | A1 |
20050085298 | Woolston | Apr 2005 | A1 |
20050116020 | Smolucha et al. | Jun 2005 | A1 |
20050125826 | Hunleth | Jun 2005 | A1 |
20050127868 | Calhoon et al. | Jun 2005 | A1 |
20050130739 | Argentar | Jun 2005 | A1 |
20050134555 | Liao | Jun 2005 | A1 |
20050138851 | Ingraselino | Jun 2005 | A1 |
20050143173 | Barney et al. | Jun 2005 | A1 |
20050156883 | Wilson et al. | Jul 2005 | A1 |
20050162389 | Obermeyer | Jul 2005 | A1 |
20050164601 | McEachen | Jul 2005 | A1 |
20050170889 | Lum et al. | Aug 2005 | A1 |
20050172734 | Alsio | Aug 2005 | A1 |
20050174324 | Liberty | Aug 2005 | A1 |
20050176485 | Ueshima | Aug 2005 | A1 |
20050179644 | Alsio | Aug 2005 | A1 |
20050202866 | Luciano et al. | Sep 2005 | A1 |
20050210418 | Marvit | Sep 2005 | A1 |
20050210419 | Kela | Sep 2005 | A1 |
20050212749 | Marvit | Sep 2005 | A1 |
20050212750 | Marvit | Sep 2005 | A1 |
20050212751 | Marvit | Sep 2005 | A1 |
20050212752 | Marvit | Sep 2005 | A1 |
20050212753 | Marvit | Sep 2005 | A1 |
20050212754 | Marvit | Sep 2005 | A1 |
20050212755 | Marvit | Sep 2005 | A1 |
20050212756 | Marvit | Sep 2005 | A1 |
20050212757 | Marvit | Sep 2005 | A1 |
20050212758 | Marvit | Sep 2005 | A1 |
20050212759 | Marvit | Sep 2005 | A1 |
20050212760 | Marvit | Sep 2005 | A1 |
20050212764 | Toba | Sep 2005 | A1 |
20050212767 | Marvit | Sep 2005 | A1 |
20050215295 | Arneson | Sep 2005 | A1 |
20050215322 | Himoto et al. | Sep 2005 | A1 |
20050217525 | McClure | Oct 2005 | A1 |
20050227579 | Yamaguchi et al. | Oct 2005 | A1 |
20050233808 | Himoto et al. | Oct 2005 | A1 |
20050239548 | Ueshima et al. | Oct 2005 | A1 |
20050243061 | Liberty | Nov 2005 | A1 |
20050243062 | Liberty | Nov 2005 | A1 |
20050253806 | Liberty | Nov 2005 | A1 |
20050256675 | Kurata | Nov 2005 | A1 |
20050266907 | Weston et al. | Dec 2005 | A1 |
20050277465 | Whitten et al. | Dec 2005 | A1 |
20050278741 | Robarts | Dec 2005 | A1 |
20060007115 | Furuhashi | Jan 2006 | A1 |
20060028446 | Liberty | Feb 2006 | A1 |
20060030385 | Barney et al. | Feb 2006 | A1 |
20060040720 | Harrison | Feb 2006 | A1 |
20060046849 | Kovacs | Mar 2006 | A1 |
20060092133 | Touma | May 2006 | A1 |
20060094502 | Katayama et al. | May 2006 | A1 |
20060122474 | Teller et al. | Jun 2006 | A1 |
20060123146 | Wu et al. | Jun 2006 | A1 |
20060148563 | Yang | Jul 2006 | A1 |
20060152487 | Grunnet-Jepsen | Jul 2006 | A1 |
20060152488 | Salsman | Jul 2006 | A1 |
20060152489 | Sweetser | Jul 2006 | A1 |
20060154726 | Weston et al. | Jul 2006 | A1 |
20060178212 | Penzias | Aug 2006 | A1 |
20060205507 | Ho | Sep 2006 | A1 |
20060229134 | Briggs et al. | Oct 2006 | A1 |
20060231794 | Sakaguchi et al. | Oct 2006 | A1 |
20060234601 | Weston | Oct 2006 | A1 |
20060246403 | Monpouet et al. | Nov 2006 | A1 |
20060252475 | Zalewski | Nov 2006 | A1 |
20060252477 | Zalewski et al. | Nov 2006 | A1 |
20060256081 | Zalewski | Nov 2006 | A1 |
20060258452 | Hsu | Nov 2006 | A1 |
20060258471 | Briggs et al. | Nov 2006 | A1 |
20060264258 | Zalewski et al. | Nov 2006 | A1 |
20060264260 | Zalewski | Nov 2006 | A1 |
20060267935 | Corson | Nov 2006 | A1 |
20060273907 | Heiman | Dec 2006 | A1 |
20060282873 | Zalewski | Dec 2006 | A1 |
20060284842 | Poltorak | Dec 2006 | A1 |
20060287030 | Briggs et al. | Dec 2006 | A1 |
20060287084 | Mao et al. | Dec 2006 | A1 |
20060287085 | Mao | Dec 2006 | A1 |
20060287086 | Zalewski | Dec 2006 | A1 |
20060287087 | Zalewski | Dec 2006 | A1 |
20070015588 | Matsumoto et al. | Jan 2007 | A1 |
20070021208 | Mao et al. | Jan 2007 | A1 |
20070049374 | Ikeda et al. | Mar 2007 | A1 |
20070050597 | Ikeda et al. | Mar 2007 | A1 |
20070052177 | Ikeda et al. | Mar 2007 | A1 |
20070060391 | Ikeda et al. | Mar 2007 | A1 |
20070066394 | Ikeda et al. | Mar 2007 | A1 |
20070066396 | Weston et al. | Mar 2007 | A1 |
20070072680 | Ikeda et al. | Mar 2007 | A1 |
20070082720 | Bradbury et al. | Apr 2007 | A1 |
20070087837 | Bradbury et al. | Apr 2007 | A1 |
20070087838 | Bradbury et al. | Apr 2007 | A1 |
20070087839 | Bradbury et al. | Apr 2007 | A1 |
20070091084 | Ueshima et al. | Apr 2007 | A1 |
20070093170 | Zheng | Apr 2007 | A1 |
20070093291 | Hulvey | Apr 2007 | A1 |
20070093293 | Osnato | Apr 2007 | A1 |
20070100696 | Illingworth | May 2007 | A1 |
20070159362 | Shen | Jul 2007 | A1 |
20070173705 | Teller et al. | Jul 2007 | A1 |
20070249425 | Weston et al. | Oct 2007 | A1 |
20070252815 | Kuo | Nov 2007 | A1 |
20070257884 | Taira | Nov 2007 | A1 |
20070265075 | Zalewski | Nov 2007 | A1 |
20070265076 | Lin | Nov 2007 | A1 |
20070265088 | Nakada et al. | Nov 2007 | A1 |
20080014835 | Weston et al. | Jan 2008 | A1 |
20080015017 | Ashida et al. | Jan 2008 | A1 |
20080039202 | Sawano et al. | Feb 2008 | A1 |
20080119270 | Ohta | May 2008 | A1 |
20080121782 | Hotelling et al. | May 2008 | A1 |
20080174550 | Laurila | Jul 2008 | A1 |
20080183678 | Weston | Jul 2008 | A1 |
20080273011 | Lin | Nov 2008 | A1 |
20080278445 | Sweester | Nov 2008 | A1 |
20090009294 | Kupstas | Jan 2009 | A1 |
20090033621 | Quinn | Feb 2009 | A1 |
20090051653 | Barney et al. | Feb 2009 | A1 |
20090124165 | Weston | May 2009 | A1 |
20090156309 | Weston et al. | Jun 2009 | A1 |
20090203446 | Bradbury et al. | Aug 2009 | A1 |
20090215534 | Wilson et al. | Aug 2009 | A1 |
20090273560 | Kalanithi et al. | Nov 2009 | A1 |
20090305799 | Weston et al. | Dec 2009 | A1 |
20090326851 | Tanenhaus | Dec 2009 | A1 |
20100056285 | Weston et al. | Mar 2010 | A1 |
20100105475 | Mikhailov | Apr 2010 | A1 |
20100144436 | Marks et al. | Jun 2010 | A1 |
20100203932 | Briggs et al. | Aug 2010 | A1 |
20100273556 | Briggs et al. | Oct 2010 | A1 |
20100289744 | Cohen | Nov 2010 | A1 |
20110081969 | Ikeda | Apr 2011 | A1 |
20110081970 | Barney et al. | Apr 2011 | A1 |
20110177853 | Ueshima | Jul 2011 | A1 |
20110190052 | Takeda | Aug 2011 | A1 |
20110300941 | Weston et al. | Dec 2011 | A1 |
20120004031 | Barney et al. | Jan 2012 | A1 |
20120034980 | Weston et al. | Feb 2012 | A1 |
20120094759 | Barney et al. | Apr 2012 | A1 |
20120122575 | Barney et al. | May 2012 | A1 |
20120190452 | Weston et al. | Jul 2012 | A1 |
20120208638 | Barney et al. | Aug 2012 | A1 |
20120258802 | Weston et al. | Oct 2012 | A1 |
20120270657 | Barney et al. | Oct 2012 | A1 |
20120295710 | Barney et al. | Nov 2012 | A1 |
20120309528 | Barney et al. | Dec 2012 | A1 |
20130079141 | Barney et al. | Mar 2013 | A1 |
20130116020 | Barney et al. | May 2013 | A1 |
20130116048 | Briggs et al. | May 2013 | A1 |
20130116051 | Barney et al. | May 2013 | A1 |
20130150155 | Barney et al. | Jun 2013 | A1 |
20130165228 | Barney et al. | Jun 2013 | A1 |
20130196727 | Barney et al. | Aug 2013 | A1 |
20130217453 | Briggs et al. | Aug 2013 | A1 |
20130303276 | Weston et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
1032246 | Apr 1989 | CN |
1338961 | Mar 2002 | CN |
1559644 | Jan 2005 | CN |
3930581 | Mar 1991 | DE |
19701374 | Jul 1997 | DE |
19632273 | Feb 1998 | DE |
19648487 | Jun 1998 | DE |
19814254 | Oct 1998 | DE |
19937307 | Feb 2000 | DE |
10029173 | Jan 2002 | DE |
10219198 | Nov 2003 | DE |
0264782 | Apr 1988 | EP |
0570999 | Dec 1988 | EP |
0322825 | Jul 1989 | EP |
0 546 844 | Jun 1993 | EP |
0695565 | Feb 1996 | EP |
0835676 | Apr 1998 | EP |
0848226 | Jun 1998 | EP |
0852961 | Jul 1998 | EP |
1062994 | Dec 2000 | EP |
1279425 | Jan 2003 | EP |
1293237 | Mar 2003 | EP |
0993845 | Dec 2005 | EP |
2547093 | Dec 1984 | FR |
2244546 | Dec 1991 | GB |
2310481 | Aug 1997 | GB |
2325558 | Nov 1998 | GB |
2388418 | Nov 2003 | GB |
62-14527 | Jan 1987 | JP |
63-186687 | Aug 1988 | JP |
03-210622 | Sep 1991 | JP |
06-154422 | Jun 1994 | JP |
06-190144 | Jul 1994 | JP |
06-198075 | Jul 1994 | JP |
H0677387 | Oct 1994 | JP |
06-308879 | Nov 1994 | JP |
07-028591 | Jan 1995 | JP |
07-107573 | Apr 1995 | JP |
07-115690 | May 1995 | JP |
07-146123 | Jun 1995 | JP |
07-200142 | Aug 1995 | JP |
07-262797 | Oct 1995 | JP |
07-302148 | Nov 1995 | JP |
07-318332 | Dec 1995 | JP |
08-095704 | Apr 1996 | JP |
08-106352 | Apr 1996 | JP |
08-111144 | Apr 1996 | JP |
08-114415 | May 1996 | JP |
08-122070 | May 1996 | JP |
08-152959 | Jun 1996 | JP |
08-191953 | Jul 1996 | JP |
08-211993 | Aug 1996 | JP |
08-221187 | Aug 1996 | JP |
08-305355 | Nov 1996 | JP |
08-335136 | Dec 1996 | JP |
09-149915 | Jun 1997 | JP |
09-164273 | Jun 1997 | JP |
09-34456 | Jul 1997 | JP |
09-225137 | Sep 1997 | JP |
09-230997 | Sep 1997 | JP |
09-237087 | Sep 1997 | JP |
09-274534 | Oct 1997 | JP |
09-319510 | Dec 1997 | JP |
10 021000 | Jan 1998 | JP |
10-033831 | Feb 1998 | JP |
10-043349 | Feb 1998 | JP |
10-099542 | Apr 1998 | JP |
10-154038 | Jun 1998 | JP |
10-235019 | Sep 1998 | JP |
10-254614 | Sep 1998 | JP |
11-053994 | Feb 1999 | JP |
11-099284 | Apr 1999 | JP |
11-114223 | Apr 1999 | JP |
2000-033184 | Feb 2000 | JP |
2000-176150 | Jun 2000 | JP |
2000-208756 | Jul 2000 | JP |
2000-270237 | Sep 2000 | JP |
2000-300839 | Oct 2000 | JP |
2000-308756 | Nov 2000 | JP |
2000-325653 | Nov 2000 | JP |
2001-038052 | Feb 2001 | JP |
2001-058484 | Mar 2001 | JP |
2001-104643 | Apr 2001 | JP |
U20009165 | Apr 2001 | JP |
2001-175412 | Jun 2001 | JP |
2001-251324 | Sep 2001 | JP |
2001-265521 | Sep 2001 | JP |
2001-306245 | Nov 2001 | JP |
2002-007057 | Jan 2002 | JP |
2002-062981 | Feb 2002 | JP |
2002-78969 | Mar 2002 | JP |
2002-082751 | Mar 2002 | JP |
2002-091692 | Mar 2002 | JP |
2002-126375 | May 2002 | JP |
2002-136694 | May 2002 | JP |
2002-153673 | May 2002 | JP |
2002-202843 | Jul 2002 | JP |
2002-224444 | Aug 2002 | JP |
2002-233665 | Aug 2002 | JP |
2002-298145 | Oct 2002 | JP |
2003-053038 | Feb 2003 | JP |
2003-140823 | May 2003 | JP |
2003-208263 | Jul 2003 | JP |
2003 236246 | Aug 2003 | JP |
2003-325974 | Nov 2003 | JP |
2004-062774 | Feb 2004 | JP |
2004-313429 | Nov 2004 | JP |
2004-313492 | Nov 2004 | JP |
2005-040493 | Feb 2005 | JP |
2005-063230 | Mar 2005 | JP |
2006-113019 | Apr 2006 | JP |
2006-136694 | Jun 2006 | JP |
2006-216569 | Aug 2006 | JP |
2007-083024 | Apr 2007 | JP |
9300171 | Aug 1994 | NL |
2077358 | Apr 1997 | RU |
2125853 | Feb 1999 | RU |
2126161 | Feb 1999 | RU |
WO 9007961 | Jul 1990 | WO |
WO 9402931 | Mar 1994 | WO |
WO 9511730 | May 1995 | WO |
WO 9605766 | Feb 1996 | WO |
WO 9614115 | May 1996 | WO |
WO 9614121 | May 1996 | WO |
WO 9709101 | Mar 1997 | WO |
WO 9712337 | Apr 1997 | WO |
WO 9717598 | May 1997 | WO |
WO 9720305 | Jun 1997 | WO |
WO 9728864 | Aug 1997 | WO |
WO 9732641 | Sep 1997 | WO |
WO 9811528 | Mar 1998 | WO |
WO 9836400 | Aug 1998 | WO |
WO 9958214 | Nov 1999 | WO |
WO 0033168 | Jun 2000 | WO |
WO 0035345 | Jun 2000 | WO |
WO 0061251 | Oct 2000 | WO |
WO 0063874 | Oct 2000 | WO |
WO 0067863 | Nov 2000 | WO |
WO 0187426 | Nov 2001 | WO |
WO 0191042 | Nov 2001 | WO |
WO 0217054 | Feb 2002 | WO |
WO 0234345 | May 2002 | WO |
WO 0247013 | Jun 2002 | WO |
WO 03015005 | Feb 2003 | WO |
WO 03043709 | May 2003 | WO |
WO 03044743 | May 2003 | WO |
WO 03088147 | Oct 2003 | WO |
WO 03107260 | Dec 2003 | WO |
WO 2004039055 | May 2004 | WO |
WO 2004051391 | Jun 2004 | WO |
WO 2004087271 | Oct 2004 | WO |
WO 2006039339 | Apr 2006 | WO |
WO 2006101880 | Sep 2006 | WO |
WO 2007058996 | May 2007 | WO |
WO 2007120880 | Oct 2007 | WO |
Entry |
---|
“At-home fishing”, http:www.virtualpet.com/vp/media/fishing/homef.jpg (accessed on Jan. 14, 2010). |
“Coleco Vision: Super Action™ Controller Set,” www.vintagecomputing.com/wp-content/images/retroscan/ coleco—sac—1—large.jpg., Sep. 2006. |
“Controllers—Atari Space Age Joystic,” AtariAge: Have You Played Atari Today? www.atariage.com/controller—page.html?SystemID=2600& ControllerID-12., Sep. 1, 2006. |
“Controllers—Booster Grip,” AtariAge: Have You Played Atari Today? www.atariage.com/controller—page.html?SystemID=2600& ControllerID=18., Sep. 1, 2006. |
“Electronic Plastic: Bandai—Power Fishing” “Power Fishing Company: Bandai,” 1 page, http://www.handhelden.com/Bandai/ PowerFishing.html., 1984 (accessed on Jul. 29, 2011). |
“Game Controller” Wikipedia, Jan. 5, 2005. |
“Get Bass,” Videogame by Sega, The International Arcade Museum and the KLOV (accessed at http://www.arcade-museum.com/game—detail.php?game—id=7933 on Jul. 29, 2011). |
“Glove-based input interfaces” Cyberglove/Cyberforce, http://www.angelfire.com/ca7/mellott124/glove1.htm (accessed on Jul. 29, 2011). |
“Harry Potter Magic Spell Challenge,” Tiger Electronics, 2001. |
“Imp Coexists With Your Mouse,” Byte, p. 255 (Jan. 1994). |
“Kirby Tilt ‘n’ Tumble 2” http://www.unseen64.net/2008/04/08/koro-koro-kirby-2-kirby-tilt-n-tumble-2-gc-unreleased/, Apr. 8, 2008 (accessed on Jul. 29, 2011). |
“MEMS enable smart golf clubs,” Small Times, Jan. 6, 2005, accessed at http://dpwsa.electroiq.com/index/display/semiconductors-article-display/269788/articles/small-times/consumer/2005/01/mems-enable-smart-golf-clubs.html on Jul. 29, 2011. |
“Miacomet and Interact Announce Agreement to Launch Line of Reel Feel™ Sport Controllers”, PR Newswire (May 13, 1999), accessed at http://www.thefreelibrary.com/—print/PrintArticle.aspx?id=54621351 on Sep. 7, 2011. |
“The N.I.C.E. Project,” YouTube video uploaded by evltube on Nov. 20, 2007 (accessed at http://www.youtube.com/watch?v=ihGXa21qLms on Sep. 8, 2011; digital video available upon request). |
“212 Series of Decoders” HT12D/HT12F by Holtek—Product Specification (Nov. 2002). |
“212” Series Encoders HT12A/HT12E by Holtek—Product Specification (Apr. 2000). |
“ASCII Entertainment releases the Grip,” ASCII Entertainment Software—Press News—Coming Soon Magazine, May 1997 (electronic version accessed at http://www.csoon.com/issue25/p—ascii4.htm on Sep. 6, 2011). |
“Enchanted Spell-Casting Sorcerers Wand” by Ken Holt as featured on www.inventionconnection.com online advertisement (Dec. 2002). |
“Interview with Pat Goschy, the “Real” Nintendo Wii Inventor,” YouTube video uploaded by agbulls on Jan. 14, 2008 (accessed at http://www.youtube.com/watch?v=oKtZysYGDLE on Feb. 11, 2011; digital video available upon request). |
“Micro Tilt Switch” D6B by Omron® Product Specification, Jan. 2007. |
“Nintendo Wii Controller Invented by Americans: Midway Velocity Controller Technology Brief,” You Tube Video presentation dated Jun. 28, 2000; uploaded by drjohniefever on Sep. 8, 2007 (accessed at http://www.youtube.com/watch?v=wjLhSrSxFNw on Jun. 30, 2010; digital video available upon request). |
“Ollivanders: Makers of Fine Wands.” Dec. 2, 2002. [online] [retrieved on Mar. 30, 2005], Retrieved from Internet (URL:http//www.cim.mcgill.edu/!jer/courses/hci/assignments/2002/www.ece.mcgill.ca/%7Eeuryd). |
“Serial-in Parallel-out Shift Register” SN54/74LS164 by Motorola—Product Specification, Fifth Edition, 1992. |
“Sony PS2 Motion Controller 5 years ago (2004),” YouTube Video uploaded by r1oot on Jul. 8, 2009 (accessed at http://www.youtube.com/watch?v=JbSzmRt7HhQ&feature=related on Sep. 6, 2011; digital video available upon request). |
“The Big Ideas Behind Nintendo's Wii,” Business Week, Nov. 16, 2006 (accessed at http://www.businessweek.com/technology/content/nov2006/tc20061116—750580.htm on Aug. 31, 2011). |
“The Magic Labs Conjure Wands” as featured on www.magic-lab.com Product Specification Dec. 2002. |
“Tilt Switch” by Fuji & Co. as featured on www.fuji-piezo.com online advertisement May 2001. |
“Toy Wand Manufacturer Selects MEMSIC Sensor: Magic Labs cuts costs with MEMSIC sensor” Press Release by MEMSIC, Inc. as featured on www.memsic.com May 2002. |
“Wii Mailbag,” IGN.com, Jan. 26, 2006 (accessed at http://uk.wii.ign.com/mail/2006-01-26.html on Aug. 31, 2011). |
Acar, et al., “Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers,” Journal of Micromechanics and Microengineering, vol. 13 (1), pp. 634-645, May 2003. |
Achenbach, “Golf's New Measuring Stick,” Golfweek, 1 page., Jun. 11, 2005. |
Act Labs, Miacomet Background, Jan. 27, 2001, http://web.archive.org/web/200101271753/http://www.act-labs.com/ realfeel—background.htm, (accessed on Sep. 7, 2011). |
Agard, “Advances in Strapdown Inertial Systems,” Agard Lecture Series No. 133, Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France) (1984). |
AirPad Controller Manual, (AirPad Corp. 2000). |
Airpad Motion Reflex Controller for Sony Playstation—Physical Product, (AirPad Corp. 2000). |
Algrain, “Estimation of 3-D Angular Motion Using Gyroscopes and Linear Accelerometers,” IEEE Transactions on Aerospace and Electronic Systems, vol. 27, No. 6, pp. 910-920 (Nov. 1991). |
Algrain, et al., “Accelerometer Based Line-of-Sight Stabilization Approach for Pointing and Tracking System,” Second IEEE Conference on Control Applications, Sep. 13-16, 1993 Vancouver, B.C.., pp. 159-163 (1993). |
Algrain, et al., “Interlaced Kalman Filtering of 3-D Angular Motion Based on Euler's Nonlinear Equations,” IEEE Transactions on Aerospace and Electronic Systems, vol. 30, No. 1 (Jan. 1994). |
Allen, et al., “A General Method for Comparing the Expected Performance of Tracing and Motion Capture Systems,” {VRST} '05: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, Nov. 7-9, 2005 Monterey, California (2005). |
Allen, et al., “Tracking: Beyond 15 Minutes of Thought,” SIGGRAPH 2001 Course 11 (2001). |
Analog Devices “ADXL202E Low-Cost .+−.2 g Dual-Axis Accelerometer with Duty Cycle Output” Data Sheet, Rev. A (2000). |
Analog Devices “ADXL330 Small, Low Power, 3-Axis ±2 g iMEMS Accelerometer” Data Sheet, Rev. PrA (2005). |
Analog Devices “ADXL50 Monolithic Accelerometer with Signal Conditioning” Data Sheet (1996). |
Analog Devices “ADXL50 Single Axis Accelerometer” Data Sheet, Rev. B (1996), available at http://www.analog.com/en/obsolete/adxl50/products/product.html. |
Analog Devices “ADXRS150±150° /s Single Chip Yaw Rate Gyro with Signal Conditioning” Data Sheet, Rev. B (2004). |
Analog Devices “ADXRS401 ±75° /s Single Chip Yaw Rate Gyro with Signal Conditioning” Data Sheet, Rev. O (2004). |
Analog Devices “MicroConverter®, Multichannel 12-Bit ADC with Embedded Flash MCU, ADuC812” Data Sheet (2003), available at http://www.analog.com/static/imported-files/data—sheets/ADUC812.pdf. |
Analog Devices, “ADXL150/ADXL250, ±5g to ±50g, Low Noise, Low Power, Single/Dual Axis iMEMS® Accelerometers,” Data Sheet, Rev. 0 (1998). |
Ang, et al., “Design and Implementation of Active Error Canceling in Hand-held Microsurgical Instrument,” Paper presented at 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (2001). |
Ang, et al., “Design of All-Accelerometer Inertial Measurement Unit for Tremor Sensing in Hand-held Microsurgical Instrument,” Proceedings of the 2003 IEEE International Conference on Robotics & Automation, Sep. 14-19, 2003, Taipei, Taiwan, pp. 1781-1786 (2003). |
Apostolyuk, Vladislav, “Theory and Design of Micromechanical Vibratory Gyroscopes,” MEMS/NEMS Handbook, Springer, vol. 1, pp. 173-195 (2006). |
Ascension Technology, 6D Bird Class B Installation and Operation Guide (2003). |
ASCII, picture of one-handed controller, 2 pages, Feb. 6, 2006. |
Ator, “Image-Velocity Sensing with Parallel-Slit Reticles,” Journal of the Optical Society of America, vol. 53, No. 12, pp. 1416-1422 (Dec. 1963). |
Azarbayejani, et al, “Real-Time 3-D Tracking of the Human Body,” M.I.T. Media Laboratory Perceptual Computing Section Technical Report No. 374, Appears in Proceedings of Image'Com 96, Bordeaux, France, May 1996. |
Azarbayejani, et al., “Visually Controlled Graphics,” M.I.T. Media Laboratory Perceptual Computing Section Technical Report No. 374, Appears in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, No. 6, pp. 602-605 (Jun. 1993). |
Azuma et al., “Improving Static and Dynamic Registration in an Optical See-Through HMD,” Paper Presented at SIGGRAPH '94 Annual Conference in Orlando, FL (1994). |
Azuma et al., “Making Augmented Reality Work Outdoors Requires Hybrid Tracking,” Proceedings of the International Workshop on Augmented Reality, San Francisco, CA, Nov. 1, 1998. |
Azuma, “Predictive Tracking for Augmented Reality,” Ph.D. Dissertation, University of North Carolina at Chapel Hill, Department of Computer Science (1995). |
Azuma, et al., “A Frequency-Domain Analysis of Head-Motion Prediction,” Paper Presented at SIGGRAPH '95 Annual Conference in Los Angeles, CA (1995). |
Azuma, et al., “A motion-stabilized outdoor augmented reality system,” Proceedings of IEEE Virtual Reality '99, Houston, TX, Mar. 13-17, 1999, pp. 252-259. |
Bachmann et al., “Inertial and Magnetic Posture Tracking for Inserting Humans into Networked Virtual Environments,” Virtual Reality Software and Technology archive, Paper Presented at ACM Symposium on Virtual Reality Software and Technology in Banff, Alberta, Canada (2001). |
Bachmann et al., “Orientation Tracking for Humans and Robots Using Inertial Sensors” Paper Presented at 199 International Symposium on Computational Intelligence in Robotics & Automation (CIRA '99) (1999). |
Bachmann, “Inertial and Magnetic Angle Tracking of Limb Segments for Inserting Humans into Synthetic Environments,” Dissertation, Naval Postgraduate School, Monterey, CA (Dec. 2000). |
Baker et al., “Active Multimodal Control of a ‘Floppy’ Telescope Structure,” Proc. SPIE, vol. 4825, pp. 74-81 (2002). |
Balakrishnan, “The Rockin' Mouse: Integral 3D Manipulation on a Plane,” Published in Proceedings of 1997 ACM Conference on Human Factors in Computing Systems (CHI'97), pp. 311-318, (1997). |
Ballagas, et al., “iStuff: A Physical User Interface Toolkit for Ubiquitous Computer Environments,” Paper presented at SIGCHI Conference on Human Factors in Computing Systems (2003). |
Baraff, “An Introduction to Physically Based Modeling: Rigid Body Simulation I—Unconstrained Rigid Body Dynamics,” SIGGRAPH 97 Course Notes, Robotics Institute, Carnegie Mellon University (1997). |
Baudisch, et al., “Soap: a Pointing Device that Works in Mid-air,” Proc. UIST'06, Oct. 15-18, 2006, Montreux, Switzerland (2006). |
BBN Report No. 7661, “Virtual Environment Technology for Training (VETT),” The Virtual Environment and Teleoperator Research Consortium (VETREC), pp. III-A-27 to III-A-40 (Mar. 1992). |
Behringer, “Improving the Registration Precision by Visual Horizon Silhouette Matching,” Paper presented at First IEEE Workshop on Augmented Reality (1998). |
Behringer, “Registration for Outdoor Augmented Reality Applications Using Computer Vision Techniques and Hybrid Sensors,” Paper presented at IEEE Virtual Reality (VR '99) Conference in Houston, TX (1999). |
BEI GyrochipTM Model QRS11 Data Sheet, BEI Systron Donner Inertial Division, BEI Technologies, Inc., (Sep. 1998). |
Benbasat, “An Inertial Measurement Unit for User Interfaces,” Massachusetts Institute of Technology Masters Thesis, (Sep. 2000). |
Benbasat, et al., “An Inertial Measurement Framework for Gesture Recognition and Applications,” Paper Presented at International Gesture Workshop on Gesture and Sign Languages in Human-Computer Interaction (GW '01), London, UK (2001). |
Bhatnagar, “Position trackers for Head Mounted Display systems: A survey” (Technical Report), University of North Carolina at Chapel Hill (Mar. 1993). |
Bianchi, “A Tailless Mouse, New cordless Computer Mouse Invented by ArcanaTech,” Inc.com, Jun. 1, 1992 (accessed at http://www.inc.com/magazine/19920601/4115.html on Jun. 17, 2010). |
Bishop, “The Self-Tracker: A Smart Optical Sensor on Silicon,” Ph.D. Dissertation, Univ. Of North Carolina at Chapel Hill (1984), 65 pages. |
Bjork, Staffan et al., “Pirates! Using the Physical World as a Game Board,” Reportedly presented as part of INTERACT 2001: 8th TC.13 IFIP International Conference on Human-Computer Interaction, Tokyo Japan (Jul. 9-13, 2001). |
Bluffing Your Way in Pokemon, Oct. 14, 2002, 7 pages. |
Bona, et al., “Optimum Reset of Ship's Inertial Navigation System,” IEEE Transactions on Aerospace and Electronic Systems, Abstract only (1965) (accessed at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0908193 on Jun. 17, 2010). |
Borenstein, et al., “Where am I? Sensors and Methods for Mobile Robot Positioning” (1996). |
Boser, “3-Axis Accelerometer with Differential Sense Electronics,” Berkeley Sensor & Actuator Center, available at http://www.eecs.berkeley.edu/.about.boser/pdf/3axis.pdf (1997). |
Boser, “Accelerometer Design Example: Analog Devices XL-05/5,” Berkeley Sensor & Actuator Center, available at http://wvvw.eecs.berkeley.edu/.about.boser/pdf/xl05.pdf (1996). |
Boulanger et al., “The 1997 Mathews Radio Baton and Improvisation Modes,” Music Synthesis Department, Berklee College of Music (1997). |
Bowman, et al., “An Introduction to 3-D User Interface Design,” MIT Presence, vol. 10, No. 1, pp. 96-108 (Feb. 2001). |
Briefs, (New & Improved), (Brief Article), PC Magazine, Oct. 26, 1993. |
Britton et al., “Making Nested Rotations Convenient for the User,” SIGGRAPH '78 Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, vol. 12, Issue 3, pp. 222-227 (Aug. 1978). |
Britton, “A Methodology for the Ergonomic Design of Interactive Computer Graphic Systems, and its Application to Crystallography” Ph.D. Dissertation, University of North Carolina at Chapel Hill, Dept. of Computer Science (1977). |
Brownell, Richard, Review: Peripheral-GameCube-G3 Wireless Controller, gamesarefun.com, Jul. 13, 2003 (accessed at http://www.gamesarefun.com/gamesdb/perireview.php?perireviewid=1 on Jul. 29, 2011). |
Buchanan, Levi: “Happy Birthday, Rumble Pak,” IGN.com, Apr. 3, 2008 (accessed at http://retro.ign.com/articles/864/864231p1.html on Jul. 29, 2011). |
Business Wire, “Feature/Virtual reality glasses that interface to Sega channel,Time Warner, TCI; project announced concurrent with COMDEX,” Nov. 14, 1994 (accessed at http://findarticles.com/p/articles/mi—m0EIN/is—1994—Nov—14/ai—15923497/?tag=content;col1 on Jul. 7, 2010). |
Business Wire, “Free-space ‘Tilt’ Game Controller for Sony Playstation Uses Scenix Chip; SX Series IC Processes Spatial Data in Real Time for On-Screen,” Dec. 6, 1999 (accessed at http://findarticles.com/p/articles/mi—m0EIN/is—1999—Dec—6/ai—58042965/?tag=content;col1 on Jul. 7, 2010)). |
Business Wire, “Logitech Magellan 3D Controller,” Apr. 14, 1997 (accessed at http://www.thefreelibrary.com/—/print/PrintArticle.aspx?id=19306114 on Feb. 10, 2011). |
Business Wire, “Mind Path Introduces Gyropoint RF Wireless Remote,” Jan. 27, 2000 (accessed at http://www.allbusiness.com/company-activities-management/operations-office/6381880-1.html on Jun. 17, 2010). |
Business Wire, “Pegasus' Wireless PenCell Writes On Thin Air with ART's Handwriting Recognition Solutions,” Business Editors/High Tech Writers Telecom Israel 2000 Hall 29, Booth 19-20, Nov. 7, 2000 (accessed at http://www.highbeam.com/doc/1G1-66658008.html on Jun. 17, 2010). |
Business Wire, “RPI ships low-cost pro HMD Plus 3D Mouse and VR PC graphics card system for CES,” Jan. 9, 1995 (accessed at http://www.highbeam.com/doc/1G1-16009561.html on Jun. 17, 2010). |
Business Wire, “InterSense Inc. Launches InertiaCube2—The World's Smallest Precision Orientation Sensor with Serial Interface,” Aug. 14, 2001 (accessed at http://www.highbeam.com/doc/1G1-77183067.html/print on Sep. 7, 2011. |
Buxton et al., “A Study in Two-Handed Input,” Proceedings of CHI '86, pp. 321-326 (1986) (accessed at http://www.billbuxton.com/2hands.html on Jul. 29, 2011). |
Buxton, Bill, “Human input/output devices,” In M. Katz (ed.), Technology Forecast: 1995, Menlo Park, CA: Price Waterhouse World Firm Technology Center, pp. 49-65 (1994). |
Buxton, Bill, A Directory of Sources for Input Technologies (last updated Apr. 19, 2001), http://web.archive.org/web/20010604004849/http://www.billbuxton.com/InputSources.html (accessed on Sep. 8, 2011). |
Canaday, “R67-26 The Lincoln Wand,” IEEE Transactions on Electronic Computers, vol. EC-16, No. 2, p. 240 (Apr. 1967) (downloaded from IEEE Xplore on Jul. 7, 2010). |
Caruso et al., “A New Perspective on Magnetic Field Sensing,” Sensors Magazine, Dec. 1, 1998 (accessed at http://www.sensorsmag.com/sensors/electric-magnetic/a-new-perspective-magnetic-field-sensing-855 on Jun. 17, 2010). |
Caruso et al., “Vehicle Detection and Compass Applications using AMR Magnetic Sensors”, Paper presented at 1999 Sensors Expo in Baltimore, Maryland (May 1999), available at http://masters.donntu.edu.ua/2007/kita/gerus/library/amr.pdf. |
Caruso, “Application of Magnetoresistive Sensors in Navigation Systems,” Sensors and Actuators, SAE SP-1220, pp. 15-21 (Feb. 1997); text of article accessed at http://www.ssec.honeywell.com/position-sensors/datasheets/sae.pdf. |
Caruso, “Applications of Magnetic Sensors for Low Cost Compass Systems,” Honeywell, SSEC, Paper presented at IEEE 2000 Position Location and Navigation Symposium (2000), accessed at http://www.ssec.honeywell.com/magnetic/datasheets/lowcost.pdf. |
Chatfield, “Fundamentals of High Accuracy Inertial Navigation,” vol. 174 Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics, Inc. (1997). |
Cheng, “Direct interaction with Large-Scale Display Systems using Infrared Laser Tracking Devices,” Paper presented at Australasian Symposium on Information Visualisation, Adelaide, Australia (2003). |
Cheok, et al., “Micro-Accelerometer Based Hardware Interfaces for Wearable Computer Mixed Reality Applications,” 6th International Symposium on Wearable Computers (ISWC'02), 8 pages. |
Cho et al., “Magic Wand: A Hand-Drawn Gesture Input Device in 3-D Space with Inertial Sensors,” Proceedings of the 9th Intl Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004), IEEE (2004). |
Clark, James H. , “Three Dimensional Man Machine Interaction,” Siggraph '76, Jul. 14-16 Philadelphia, Pennsylvania, 1 page. |
CNET News.com, “Nintendo Wii Swings Into Action,” May 25, 2006 (accessed at http://news.cnet.com/2300-1043—3-6070295-4.html on Aug. 5, 2011). |
Complainants' Petition for Review, dated Sep. 17, 2012. |
Complainants' Response to Commission's Request for Statements on the Public Interest, dated Oct. 10, 2012. |
Complainants' Response to Respondents' Petition for Review, dated Sep. 25, 2012. |
Cooke, et al., “NPSNET: Flight simulation dynamic modeling using quaternions,” Presence, vol. 1, No. 4, pp. 404-420, (Jan. 25, 1994). |
Crecente, Brian, “Motion Gaming Gains Momentum,” kotaku.com, Sep. 17, 2010 (accessed at http://kotaku.com/5640867/motion-gaming-gains-momentum on Aug. 31, 2011). |
CSIDC Winners—“Tablet-PC Classroom System Wins Design Competition,” IEEE Computer Society Press, vol. 36, Issue 8, pp. 15-18, IEEE Computer Society, Aug. 2003. |
Cutrone, “Hot products: Gyration GyroPoint Desk, GyroPoint Pro gyroscope-controlled wired and wireless mice,” Results from the Comdex Show Floor, Computer Reseller News, Dec. 4, 1995 (accessed from LexisNexis research database on Feb. 17, 2011; see pp. 8 and 9 of reference submitted herewith). |
Deering, Michael F. , “HoloSketch A Virtual Reality Sketching Animation Tool,” ACM Transactions on Computer-Human Interaction, Sep. 1995; vol. 2, No. 3; pp. 220-238. |
Deruyck, et al., “An Electromagnetic Position Sensor,” Polhemus Navigation Sciences, Inc., Burlington, VT (Nov. 1973) (Abstract from DTIC Online). |
Dichtburn, “Camera in Direct3D” Toymaker (Feb. 6, 2005), http://web.archive.org/web/20050206032104/http:/toymaker.info/games/html/camera.html (accessed on Jul. 29, 2011). |
Donelson, et al., “Spatial Management of Information”, Proceedings of 1978 ACM SIGGRAPH Conference in Atlanta, Georgia, pp. 203-209 (1978). |
Drzymala, Robert E., et al., “A Feasibility Study Using a Stereo-Optical Camera System to Verify Gamma Knife Treatment Specification,” Proceedings of 22nd Annual EMBS International Conference, Jul. 2000; pp. 1486-1489. |
Durlach, et al., “Virtual Reality: Scientific and Technological Challenges,” National Academy Press (1995). |
Emura, et al., “Sensor Fusion based Measurement of Human Head Motion,” 3rd IEEE International Workshop on Robot and Human Communication (1994). |
Ewalt, David M., “Nintendo's Wii is a Revolution,” Review, Forbes.com, Nov. 13, 2006 (accessed at http://www.forbes.com/2006/11/13/wii-review-ps3-tech-media-cx—de—1113wii.html on Jul. 29, 2011). |
Exintaris, et al., “Ollivander's Magic Wands : HCI Development,” available at http://www.cim.mcgill.ca/˜jer/courses/hci/project/2002/www.ece.mcgill.ca/%257Eeurydice/hci/notebook/final/MagicWand.pdf (2002). |
Expert Report of Branimir R. Vojcic, Ph.D. on Behalf of Complainants Creative Kingdoms, LLC and New Kingdoms, LLC, dated Nov. 17, 2011. |
Expert Report of Kenneth Holt on Behalf of Respondents Nintendo of America, Inc. and Nintendo Co., Ltd., dated Nov. 3, 2011. |
Expert Report of Nathaniel Polish, Ph.D. on Behalf of Respondents Nintendo of America, Inc. and Nintendo Co., Ltd., dated Nov. 3, 2011. |
Ferrin, “Survey of Helmet Tracking Technologies,” Proc. SPIE vol. 1456, p. 86-94 (Apr. 1991). |
Fielder, Lauren “E3 2001: Nintendo unleashes GameCube software, a new Miyamoto game, and more,” GameSpot, May 16, 2001 (accessed at http://www.gamespot.com/news/2761390/e3-2001-nintendo-unleashes-gamecube-software-a-new-miyamoto-game-and-more?tag=gallery—summary%3Bstory on Jul. 29, 2011). |
U.S. Appl. No. 09/520,148, filed Mar. 7, 2000 by Miriam Mawle. |
Foremski, T., “Remote Control Mouse Aims at Interactive TV” Electronics Weekly, Mar. 9, 1994. |
Foxlin et al., “An Inertial Head-Orientation Tracker with Automatic Drift Compensation for Use with HMD's,” Proceedings of the 1994 Virtual Reality Software and Technology Conference, Aug. 23-26, 1994, Singapore, pp. 159-173 (1994). |
Foxlin et al., “Miniature 6-DOF Inertial System for Tracking HMDs,” SPIE vol. 3362, Helmet and Head-Mounted Displays III, AeroSense 98, Orlando, FL, Apr. 13-14, 1998. |
Foxlin et al., “WearTrack: A Self-Referenced Head and Hand Tracker for Wearable Computers and Portable VR,” Proceedings of International Symposium on Wearable Computers (ISWC 2000), Oct. 16-18, 2000, Atlanta, GA (2000). |
Foxlin et al., “FlightTracker: A Novel Optical/Inertial Tracker for Cockpit Enhanced Vision, Symposium on Mixed and Augmented Reality,” Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR 2004), Nov. 2-5, 2004, Washington, D.C. (2004). |
Foxlin, “Head-tracking Relative to a Moving Vehicle or Simulator Platform Using Differential Inertial Sensors,” Proceedings of Helmet and Head-Mounted Displays V, SPIE vol. 4021, AeroSense Symposium, Orlando, FL, Apr. 24-25, 2000. |
Foxlin, “Inertial Head Tracker Sensor Fusion by a Complementary Separate-bias Kalman Filter,” Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium, pp. 185-194, 267 (1996). |
Foxlin, “Generalized architecture for simultaneous localization, auto-calibration, and map-building,” IEEE/RSJ Conf. on Intelligent Robots and Systems (IROS 2002), Oct. 2-4, 2002, Lausanne, Switzerland (2002). |
Foxlin, “Motion Tracking Requirements and Technologies,” Chapter 7, from Handbook of Virtual Environment Technology, Kay Stanney, Ed., Lawrence Erlbaum Associates (2002) (extended draft version available for download at http://www.intersense.com/pages/44/119/). |
Foxlin, “Pedestrian Tracking with Shoe-Mounted Inertial Sensors,” IEEE Computer Graphics and Applications, vol. 25, No. 6, pp. 38-46, (2005). |
Foxlin, et al., “Constellation™: A Wide-Range Wireless Motion-Tracking System for Augmented Reality and Virtual Set Applications,” ACM SIGGRAPH 98, Orlando, Florida, Jul. 19-24, 1998. |
Foxlin, et al., “Miniaturization, Calibration & Accuracy Evaluation of a Hybrid Self-Tracker,” IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR 2003), Oct. 7-10, 2003, Tokyo, Japan (2003). |
Foxlin, et al., “VIS-Tracker: A Wearable Vision-Inertial Self-Tracker,” IEEE VR2003, Mar. 22-26, 2003, Los Angeles, CA (2003). |
Frankle, “E3 2002: Roll O Rama,” Roll-o-Rama GameCube Preview at IGN, May 23, 2002 (accessed at http://cube.ign.com/articles/360/360662p1.html on Sep. 7, 2011). |
Friedmann, et al., “Device Synchronization Using an Optimal Linear Filter,” SI3D '92: Proceedings of the 1992 symposium on Interactive 3D graphics, pp. 57-62 (1992). |
Friedmann, et al., “Synchronization in virtual realities,” M.I.T. Media Lab Vision and Modeling Group Technical Report No. 157, Jan. 1991 To appear in Presence, vol. 1, No. 1, MIT Press, Cambridge, MA (1991). |
FrontSide Field Test, “Get This!” Golf Magazine, Jun. 2005, p. 36. |
Fuchs, Eric, “Inertial Head-Tracking,” MS Thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science (Sep. 1993). |
Furniss, Maureen, “Motion Capture,” posted at http://web.mit.edu/m-i-t/articles/index—furniss.html on Dec. 19, 1999; paper presented at the Media in Transition Conference at MIT on Oct. 8, 1999 (accessed on Sep. 8, 2011). |
gamecubicle.com News Article, Nintendo WaveBird Controller, http://www.gamecubicle.com/news-Nintendo—gamecube—wavebird—controller.htm, May 14, 2002 (accessed on Aug. 5, 2011). |
Geen et al., “New iMEMS® Angular-Rate-Sensing Gyroscope,” Analog Dialogue 37-03, pp. 1-3 (2003). |
Gelmis, J., “Ready to Play, The Future Way,” Buffalo News, Jul. 23, 1996 (accessed from LexisNexis research database on Sep. 6, 2011). |
Green, Jonathan, et al., “Camping in the Digital Wilderness: Tents and Flashlights As Interfaces to Virtual Worlds,” Chi 2002, Apr. 2002, pp. 780-781. |
Grimm, et al., “Real-Time Hybrid Pose Estimation from Vision and Inertial Data,” Proceedings of the First Canadian Conference on Computer and Robot Vision (CRV'04), IEEE Computer Society (2004). |
Gyration Ultra Cordless Optical Mouse, Setting Up Ultra Mouse, Gyration Quick Start Card part No. DL-00071-0001 Rev. A. Gyration, Inc., Jun. 2003. |
Gyration Ultra Cordless Optical Mouse, User Manual, Gyration, Inc., Saratoga, CA (2003). |
Gyration, “Gyration MicroGyro 100 Developer Kit Data Sheet,” http://web.archive.org/web/19980708122611/www.gyration.com/html/devkit.ht- ml (Jul. 1998). |
Gyration, Inc., GyroRemote GP240-01 Professional Series (2003). |
Harada et al., “Portable Absolute Orientation Estimation Device with Wireless Network Under Accelerated Situation” Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA, Apr. 2004, pp. 1412-1417(2004). |
Harada et al., “Portable orientation estimation device based on accelerometers, magnetometers and gyroscope sensors for sensor network,” Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2003), pp. 191-196, (2003). |
Haykin, et al., “Adaptive Tracking of Linear Time-Variant Systems by Extended RLS Algorithms, IEEE Transactions on Signal Processing,” vol. 45, No. 5, pp. 1118-1128 (May 1997). |
Heath, “Virtual Reality Resource Guide AI Expert,” v9 n5 p. 32(14) (May 1994) (accessed at http://ftp.hitl.washington.edu/scivw-ftp/commercial/VR-Resource-Guide.txt on Jun. 17, 2010). |
HiBall-3100—“Wide-Area, High-Precision Tracker and 3D Digitizer,” www.3rdtech.com/HiBall.htm (accessed on Jul. 29, 2011). |
Hinckley, “Synchronous Gestures for Multiple Persons and Computers,” Paper presented at ACM UIST 2003 Symposium on User Interface Software & Technology in Vancouver, BC, Canada (Nov. 2003). |
Hinckley, et al., “A Survey of Design Issues in Spatial Input,” Paper presented at 7th Annual ACM Symposium on User Interface Software and Technology (1994). |
Hinckley, et al., “Sensing Techniques for Mobile Interaction,” Proceedings of the 13th Annual ACM Symposium on User Interface Software and Technology (ACM UIST), San Diego, CA, (2000). |
Hinckley, et al., “The VideoMouse: A Camera-Based Multi-Degree-of-Freedom Input Device” ACM UIST'99 Symposium on User Interface Software & Technology, CHI Letters vol. 1 No. 1, pp. 103-112 (1999). |
Hinckley, Ken “Haptic Issues for Virtual Manipulation,” Ph.D. Dissertation University of Virginia, Dept. of Computer Science (1997). |
Hind, Nicholas, “Cosmos: A composition for Live Electronic Instruments Controlled by the Radio Baton and Computer Keyboard (Radio Baton and Magic Glove),” A Final Project Submitted to the Department of Music of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor Musical Arts/UMI Microform 9837187, Jan. 1998. |
Hogue, Andrew, “MARVIN: A Mobile Automatic Realtime visual and Inertial tracking system,” Master's Thesis, York University (2003), available at http://www.cse.yorku.ca/˜hogue/marvin.pdf. |
Holden, Maureen K. et al., “Use of Virtual Environments in Motor Learning and Rehabilitation,” Department of Brain and Cognitive Sciences, Handbook of Virtual Environments: Design, Implementation, and Applications, Chap. 49, pp. 999-1026, Stanney (ed), Lawrence Erlbaum Associates (2002). |
Holloway, Richard Lee, “Registration Errors in Augmented Reality Systems,” Ph.D. Dissertation, University of North Carolina at Chapel Hill, Dept. of Computer Science (1995). |
IGN Article—Mad Catz Rumble Rod Controller, Aug. 20, 1999. |
Immersion CyberGlove product, Immersion Corporation, http://www.cyberglovesystem.com (2001). |
Immersion, “Immersion Ships New Wireless CyberGlove(R) II Hand Motion-Capture Glove; Animators, Designers, and Researchers Gain Enhanced Efficiency and Realism for Animation, Digital Prototyping and Virtual Reality Projects,” Business Wire, Dec. 7, 2005 (available at http://ir.immersion.com/releasedetail.cfm?releaseid=181278). |
Initial Determination on Violation of Section 337 and Recommended Determination on Rememdy and Bond, dated Aug. 31, 2012. |
Interfax Press Release, “Tsinghua Tongfang Releases Unique Peripheral Hardware for 3D Gaming,” 2002, 1 page. |
Intersense, “InterSense InertiaCube2 Manual for Serial Port Model” (2001). |
Intersense, “IS-900 Product Technology Brief,” http://www.intersense.com/uploadedFiles/Products/White—Papers/IS900—Tech—Overview—Enhanced.pdf (1999). |
Intersense, “InterSense Inc., The New Standard in Motion Tracking,” Mar. 27, 2004, http://web.archive,org!web12004040500550Z/http://intersense.com (accessed on May 19, 2009). |
Intersense, “InterSense Mobile Mixed Reality Demonstration,” YouTube Video dated Oct. 2006 on opening screen; uploaded by InterSenseInc. on Mar. 14, 2008 (accessed at http://www.youtube.com/watch?v=daVdzGK0nUE&feature=channel—page on Sep. 8, 2011; digital video available upon request). |
Intersense, “IS-900 Precision Motion Trackers,” Jun. 14, 2002, http://web.archive.org/web/20020614110352/http://www.isense.com/products/prec/is900/ (accessed on Sep. 8, 2011). |
Intersense, Inc., “Comparison of Intersense IS-900 System and Optical Systems,” Whitepaper, Jul. 12, 2004., available at http://www.jazdtech.com/techdirect/research/InterSense-Inc.htm?contentSetId=60032939&supplierId=60018705. |
Jacob, “Human-Computer Interaction—Input Devices,” ACM Computing Surveys, vol. 28, No. 1, pp. 177-179 (Mar. 1996); link to text of article provided at http://www.cs.tufts.edu/˜jacob/papers/. |
Jakubowski, et al., “Increasing Effectiveness of Human Hand Tremor Separation Process by Using Higher-Order Statistics,” Measurement Science Review, vol. 1, No. 1 (2001). |
Ji, H. “Study on the Infrared Remote-Control Lamp-Gesture Device,” Yingyong Jiguang/Applied Laser Technology, v. 17, n. 5, p. 225-227, Language: Chinese-Abstract only, Oct. 1997. |
Jiang, “Capacitive position-sensing interface for micromachined inertial sensors,” Dissertation at Univ. of Cal. Berkeley, 2003. |
Ju, et al., “The Challenges of Designing a User Interface for Consumer Interactive Television Consumer Electronics Digest of Technical Papers.,” IEEE 1994 International Conference on Volume , Issue , Jun. 21-23, 1994 pp. 114-115 (Jun. 1994) (downloaded from IEEE Xplore on Jul. 13, 2010). |
Keir et al., “Gesture-recognition with Nonreferenced Tracking,” IEEE Symposium on 3D User Interfaces, pp. 151-158, Mar. 25-26, 2006. |
Kennedy, P.J. “Hand-held Data Input Device,” IBM Technical Disclosure Bulletin, vol. 26, No. 11, pp. 5826-5827, Apr. 1984. |
Kessler, et al., “The Simple Virtual Environment Library: an Extensible Framework for Building VE Applications,” Presence, MIT Press (2000). |
Kindratenko, “A Comparison of the Accuracy of an Electromagnetic and a Hybrid Ultrasound-Inertia Position Tracking System,” MIT Presence, vol. 10, No. 6, pp. 657-663, Dec. 2001. |
Klein et al., “Tightly Integrated Sensor Fusion for Robust Visual Tracking,” British Machine Vision Computing, vol. 22, No. 10, pp. 769-776, 2004. |
Kohlhase, “NASA Report, The Voyager Neptune travel guide,” Jet Propulsion Laboratory Publication 89-24, (Jun. 1989). |
Kosak, Dave, “Mind-Numbing New Interface Technologies,” Gamespy.com, Feb. 1, 2005 (accessed at http://www.gamespy.com/articles/584/584744p1.html on Aug. 31, 2011). |
Krumm et al., “How a Smart Environment can Use Perception,” Paper presented at UBICOMP 2001 Workshop on Perception for Ubiquitous Computing (2001). |
Kuipers, Jack B., “SPASYN—An Electromagnetic Relative Position and Orientation Tracking System,” IEEE Transactions on Instrumentation and Measurement, vol. 29, No. 4, pp. 462-466 (Dec. 1980). |
Kunz, Andreas M. et al., “Design and Construction of a New Haptic Interface,” Proceedings of DETC '00, ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Baltimore, Maryland, Sep. 10-13, 2000. |
La Scala, et al., “Design of an Extended Kalman Filter Frequency Tracker,” IEEE Transactions on Signal Processing, vol. 44, No. 3 (Mar. 1996). |
Laser Tag: General info: History of Laser Tag, http://lasertag.org/general/history.html (accessed on Mar. 13, 2008; historical dates start on Mar. 1984). |
Laser Tag: Lazer Tag Branded Gear; last update Sep. 26, 2006, http://home.comcast.net/˜ferret1963/Lazer—Tag—Brand.HTML (accessed on Mar. 13, 2008; historical dates start in 1986). |
Laughlin et al., “Inertial Angular Rate Sensors: Theory and Applications,” Sensors Magazine Oct. 1992. |
Lee et al, “Tilta-Pointer: the Free-Space Pointing Device,” Princeton COS 436 Project (Fall 2004); retrieved from Google's cache of http://www.milyehuang.com/cos436/project/specs.html on May 27, 2011. |
Lee et al., “Innovative Estimation Method with Measurement Likelihood for all-Accelerometer Type Inertial Navigation System,” IEEE Transactions on Aerospace and Electronic Systems, vol. 38, No. 1, Jan. 2002. |
Lee et al., “Two-Dimensional Position Detection System with MEMS Accelerometer for Mouse Applications,” Design Automation Conference, 2001, Proceedings, 2001 pp. 852-857, Jun. 2001. |
Leganchuk et al., “Manual and Cognitive Benefits of Two-Handed Input: An Experimental Study,” ACM Transactions on Computer-Human Interaction, vol. 5, No. 4, pp. 326-259, Dec. 1998. |
Liang, et al., “On Temporal-Spatial Realism in the Virtual Reality Environment,” ACM 1991 Symposium on User Interface Software and Technology (Nov. 1991). |
Link, “Field-Qualified Silicon Accelerometers from 1 Milli g to 200,000 g,” Sensors, Mar. 1993. |
Liu, et al., “Enhanced Fisher Linear Discriminant Models for Face Recognition,” Paper presented at 14th International Conference on Pattern Recognition (ICPR'98), Queensland, Australia (Aug. 1998). |
Lobo et al., “Vision and Inertial Sensor Cooperation Using Gravity as a Vertical Reference,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25, No. 12, pp. 1597-1608, Dec. 2003. |
Logitech, “Logitech Tracker—Virtual Reality Motion Tracker,” downloaded from http://www.vrealities.com/logitech.html on Jun. 18, 2010. |
Logitech, Inc. “3D Mouse & Head Tracker Technical Reference Manual,” 1992. |
Logitech's WingMan Cordless RumblePad Sets PC Gamers Free, Press Release, Sep. 2, 2001 (accessed at http://www.logitech.com/en-us/172/1373 on Aug. 5, 2011). |
Louderback, J. “Nintendo Wii”, Reviews by PC Magazine, Nov. 13, 2006 (accessed at http://www.pcmag.com/article/print/193909 on Sep. 8, 2011). |
Luethi, P. et al., “Low Cost Inertial Navigation System” (2000); downloaded from http://www.electronic-engineering.ch/study/ins/ins.html on Jun. 18, 2010. |
Luinge, “Inertial sensing of human movement,” Thesis, University of Twente, Twente University Press, 2002. |
Luinge, et al., “Estimation of orientation with gyroscopes and accelerometers,” Proceedings of the First Joint BMES/EMBS Conference, 1999., vol. 2, p. 844 (Oct. 1999). |
Mackenzie et al., “A two-ball mouse affords three degrees of freedom,” Extended Abstracts of the CHI '97 Conference on Human Factors in Computing Systems, pp. 303-304. New York: ACM (1997). |
Mackinlay, “Rapid Controlled Movement Through a Virtual 3D Workspace,” ACM SIGGRAPH Computer Graphics archive, vol. 24, No. 4, pp. 171-176 (Aug. 1990). |
Maclean, “Designing with Haptic Feedback”, Paper presented at IEEE Robotics and Automation (ICRA '2000) Conference in San Francisco, CA, Apr. 22-28, 2000. |
Maggioni, C., “A novel gestural input device for virtual reality,” IEEE Virtual Reality Annual International Symposium (Cat. No. 93CH3336-5), 118-24, 1993. |
Marks, Richard (Jan. 21, 2004) (Windows Media v7). EyeToy: A New Interface for Interactive Entertainment, Stanford University (accessed at http://lang.stanford.edu/courses/ee380/2003-2004/040121-ee380-100.wmv on Sep. 7, 2011; digital video available upon request). |
Marrin, “Possibilities for the Digital Baton as a General Purpose Gestural Interface,” Late-Breaking/Short Talks, Paper presented at CHI 97 Conference in Atlanta Georgia, Mar. 22-27, 1997 (accessed at http://www.sigchi.org/chi97/proceedings/short-talk/tm.htm on Aug. 5, 2011). |
Marrin, Teresa et al., “The Digital Baton: A Versatile Performance Instrument,” Paper presented at International Computer Music Conference, Thessaloniki, Greece (1997) (text of paper available at http://quod.lib.umich.edu/cgi/p/pod/dod-idx?c=icmc;idno=bbp2372.1997.083). |
Marrin, Teresa, “Toward an Understanding of Musical Gesture: Mapping Expressive Intention with the Digital Baton,” Masters Thesis, Massachusetts Institute of Technology, Program in Media Arts and Sciences (1996). |
Marti et al., “Biopsy navigator: a smart haptic interface for interventional radiological gestures” Proceedings of the Computer Assisted Radiology and Surgery (CARS 2003) Conference, International Congress Series, vol. 1256, pp. 788-793 (2003) (text of paper available at http://infoscience.epfl.ch/record/29966/files/CARS03-GM.pdf). |
Masliah, “Measuring the Allocation of Control in 6 Degree of Freedom Docking Experiment,” Paper presented at SIGCHI Conference on Human Factors in Computing Systems, The Hague, Netherlands (2000). |
Maybeck, “Stochastic Models, Estimation and Control,” vol. 1, Chapter 1, Introduction (1979). |
Merians, et al., “Virtual Reality-Augmented Rehabilitation for Patients Following Stroke,” Physical Therapy, vol. 82, No. 9, Sep. 2002. |
Merrill, “FlexiGesture: A sensor-rich real-time adaptive gesture and affordance learning platform for electronic music control,” Thesis, Massachusetts Institute of Technology, Jun. 2004. |
Meyer et al., “A Survey of Position Tracker,” MIT Presence, vol. 1, No. 2, pp. 173-200, (1992). |
Miller, Paul, “Exclusive shots of Goschy's prototype ‘Wiimote’ controllers,” Engadget, Jan. 15, 2008 (accessed at http://www.engadget.com/2008/01/15/exclusive-shots-of-goschys-prototype-wiimote-controllers/ on Aug. 31, 2011). |
Miller, Ross, “Joystiq interview: Patrick Goschy talks about Midway, tells us he ‘made the Wii’,” Joystiq.com, Jan. 16, 2008 (accessed at http://www.joystiq.com/2008/01/16/joystiq-interview-patrick-goschy-talks-about-midway-tells-us-h/ on Aug. 31, 2011). |
Mizell, “Using Gravity to Estimate Accelerometer Orientation,” Proceedings of the Seventh IEEE International Symposium on Wearable Computers (ISWC '03), IEEE Computer Society (2003). |
Morgan, C., “Still chained to the overhead projector instead of the podium,” (TV Interactive Corp's LaserMouse Remote Pro infrared mouse) (clipboard) (brief article) (product announcement) Government Computer News, Jun. 13, 1994. |
Morris, “Accelerometry—a technique for the measurement of human body movements,” J Biomechanics vol. 6, pp. 729-736 (1973). |
Moser, “Low Budget Inertial Navigation Platform (2000),” www.tmoser.ch/typo3/11.0.html (accessed on Jul. 29, 2011). |
Mulder, “Human movement tracking technology,” Technical Report, NSERC Hand Centered Studies of Human Movement project, available through anonymous ftp in fas.sfu.ca:/pub/cs/graphics/vmi/HMTT.pub.ps.Z., Burnab, B.C, Canada: Simon Fraser University (Jul. 1994). |
Myers et al., “Interacting at a Distance: Measuring the Performance of Laser Pointers and Other Devices,” CHI 2002, Apr. 2002. |
Naimark et al., “Circular Data Matrix Fiducial System and Robust Image Processing for a Wearable Vision-Inertial Self-Tracker,” IEEE International Symposium on Mixed and Augmented Reality (ISMAR 2002), Darmstadt, Germany (2002). |
Naimark, et al., “Encoded LED System for Optical Trackers,” Paper presented at Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2005), Oct. 5-8, 2005, Vienna Austria (2005) (electronic version of text of paper available for download at http://www.intersense.com/pages/44/129/). |
Navarrete, et al., “Eigenspace-based Recognition of Faces: Comparisons and a new Approach,” Paper Presented at 11th International Conference on Image Analysis and Processing (2001). |
News Article, “New Game Controllers Using Analog Devices' G-Force Tilt to be Featured at E3”, Norwood, MA (May 10, 1999) (accessed at http://www.thefreelibrary.com/—/print/PrintArticle.aspx?id=54592268 on Jun. 17, 2010). |
Nintendo N64 Controller Pak Instruction Booklet, 1997. |
Nintendo, Game Boy Advance SP System Instruction Booklet (2003). |
Nintendo, Nintendo Game Boy Advance System Instruction Booklet (2001-2003). |
Nintendo, Nintendo Game Boy Advance Wireless Adapter, Sep. 26, 2003. |
Nishiyama, “A Nonlinear Filter for Estimating a Sinusoidal Signal and its Parameters in White Noise: On the Case of a Single Sinusoid,” IEEE Transactions on Signal Processing, vol. 45, No. 4, pp. 970-981 (Apr. 1997). |
Nishiyama, “Robust Estimation of a Single Complex Sinusoid in White Noise-H∞ Filtering Approach,” IEEE Transactions on Signal Processing, vol. 47, No. 10, pp. 2853-2856 (Oct. 1999). |
Odell, “An Optical Pointer for Infrared Remote Controllers,” (1995) (downloaded from IEEE Xplore on Jul. 7, 2010). |
Ojeda, et al., “No GPS? No Problem!” University of Michigan Develops Award-Winning Personal Dead-Reckoning (PDR) System for Walking Users, available at http://www.engin.umich.edu/research/mrl/urpr/In—Press/P135.pdf, (2004 or later). |
Omelyan, “On the numerical integration of motion for rigid polyatomics: The modified quaternion approach” Computers in Physics, vol. 12 No. 1, pp. 97-103 (1998). |
Ovaska, “Angular Acceleration Measurement: A Review,” Paper presented at IEEE Instrumentation and Measurement Technology Conference, St. Paul, MN, May 18-21, 1998. |
Pai, et al., “The Tango: A Tangible Tangoreceptive Whole-Hand Interface,” Paper presented at Joint Eurohaptics and IEEE Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Pisa, Italy, Mar. 18-20, 2005. |
Pajama Sam: No Need To Hide When It's Dark Outside Infogames, Sep. 6, 2002. |
Paley, W. Bradford, “Interaction in 3D Graphics,” SIGGRAPH Computer Graphics Newsletter, col. 32, No. 4 (Nov. 1998) (accessed at http://www.siggraph.org/publications/newsletter/v32n4/contributions/paley.html on Aug. 2, 2011). |
Paradiso, et al., “Interactive Therapy with Instrumented Footwear,” CHI 2004, Apr. 24-29, 2004, Vienna, Austria. |
Paradiso, et al., “Musical Applications of Electric Field Sensing”, available at http://pubs.media.mit.edu/pubs/papers/96—04—cmj.pdf (1996). |
Paradiso, Joseph A., “The Brain Opera Technology: New Instruments and Gestural Sensors for Musical Interaction and Performance” (Nov. 1998) (available at http://pubs.media.mit.edu/pubs/papers/98—3—JNMR—Brain—Opera.pdf). |
Park, Adaptive control strategies for MEMS gyroscopes (Dissertation), Univ. Cal. Berkley (Dec. 2000). |
PC World, “The 20 Most Innovative Products of the Year,” Dec. 27, 2006 (accessed at http://www.pcworld.com/printable/article/id,128176/printable.html on Aug. 2, 2011). |
PCTracker, Technical Overview, available at http://www.est-kl.com/fileadmin/media/pdf/InterSense/PCTracker—Tech—Overview.pdf (date unknown). |
Perry, Simon, “Nintendo to Launch Wireless Game Boy Adaptor,” Digital Lifestyles, http://digital-lifestyles.info/2003/09/26/Nintendo-to-launch-wireless-game-boy-adaptor/, Sep. 26, 2003 (accessed on Jul. 29, 2011). |
Petition of the Office of Unfair Import Investigations for Review-in-Part of the Final Initial Determination, dated Sep. 17, 2012. |
Phillips, “Forward/Up Directional Incompatibilities During Cursor Placement Within Graphical User Interfaces,” Ergonomics, vol. 48, No. 6, May 15, 2005. |
Phillips, “LPC2104/2105/2106, Single-chip 32-bit microcontrollers; 128 kB ISP/IAP Flash with 64 kB/32 kB/16 kB RAM,” 32 pages, Dec. 22, 2004. |
Phillips, “Techwatch: On the Right Track: A unique optical tracking system gives users greater freedom to explore virtual worlds,” Computer Graphics World, vol. 23, Issue 4 (Apr. 2000). |
Pierce et al., “Image Plane Interaction Techniques in 3D Immersive Environments,” Paper presented at 1997 symposium on Interactive 3D graphics, Providence, RI (1997). |
Pilcher, “AirMouse Remote Controls,” IEEE Conference on Consumer Electronics (1992). |
Pique, “Semantics of Interactive Rotations,” Interactive 3D Graphics, Proceedings of the 1986 workshop on Interactive 3D graphics, pp. 259-269 (Oct. 1986). |
Piyabongkarn, “The Development of a MEMS Gyroscope For Absolute Angle Measurement,” Dissertation, Univ. Minnesota, Nov. 2004 (Abstract only). |
Polhemus, “Polhemus 3Space Fastrak devices” (image) (2001). |
PowerGlove product Program Guide, Mattel, 1989 (Text of Program Guide provided from http://hiwaay.net/˜lkseitz/cvtg/power—glove.shtml; the text was typed in by Lee K. Sietz; document created Aug. 25, 1988; accessed on Aug. 2, 2011). |
PR Newswire, “Five New Retailers to Carry Gyration's Gyropoint Point and Gyropoint Pro,” Jul. 8, 1996 (accessed at http://www.thefreelibrary.com/—/print/PrintArticle.aspx?id=54592268 on Jun. 18, 2010). |
PR Newswire, “Three-Axis MEMS-based Accelerometer From STMicroelectronics Targets Handheld Terminals,” Feb. 18, 2003 (accessed at http://www.thefreelibrary.com/—/print/PrintArticle.aspx?id=54592268 on Aug. 3, 2011). |
Pre-Hearing Statement of Complainants Creative Kingdoms, LLC and New Kingdoms, LLC, dated Jan. 13, 2012. |
Pryor et al., “A Reusable Software Architecture for Manual Controller Integration,” IEEE Conf. on Robotics and Automation, Univ of Texas, pp. 3583-3588 (Apr. 1997). |
Raab, et al., “Magnetic Position and Orientation Tracking System,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-15, No. 5, pp. 709-718 (Sep. 1979). |
Radica Legends of the Lake™ Instruction Manual (2003). |
Regan, “Smart Golf Clubs,” baltimoresun.com, Jun. 17, 2005. |
Rekimoto, “Tilting Operations for Small Screen Interfaces,” Tech Note presented at 9th Annual ACM Symposium on User Interface Software and Technology (UIST'96) (1996) (available for download at http://www.sonycsl.co.jp/person/rekimoto/papers/uist96.pdf. |
Resnick, Mitchel et al., “Digital Manipulatives: New Toys to Think With,” Chi 98; Apr. 1998; pp. 281-287. |
Respondents Nintendo Co., Ltd. and Nintendo of America Inc.'s Contingent Petition for Review of Initial Determination, dated Sep. 17, 2012. |
Respondents Nintendo Co., Ltd. and Nintendo of America Inc.'s Objections and Supplemental Responses to Complainants Creative Kingdoms, LLC and New Kingdoms, LLC's Interrogatory Nos. 35, 44, 47, 53, and 78, dated Oct. 13, 2011. |
Respondents Nintendo Co., Ltd. and Nintendo of America Inc.'s Response to Complainants' and Staff's Petitions for Review, dated Sep. 25, 2012. |
Response of the Office of Unfair Import Investigations to the Petitions for Review, dated Sep. 25, 2012. |
Response to Office Action dated Sep. 18, 2009 for U.S. Appl. No. 11/404,844. |
Reunert, “Fiber-Optic Gyroscopes: Principles and Applications,” Sensors, Aug. 1993, pp. 37-38. |
Ribo, et al., “Hybrid Tracking for Outdoor Augmented Reality Applications,” IEEE Computer Graphics and Applications, vol. 22, No. 6, pp. 54-63, Nov./Dec. 2002. |
Riviere, et al., “Adaptive Canceling of Physiological Tremor for Improved Precision in Microsurgery,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 7, pp. 839-846 (Jul. 1998). |
Roberts, “The Lincoln Wand,” 1966 Proceedings of the Fall Joint Computer Conference (1966), available for electronic download at http://www.computer.org/portal/web/csdl/doi/10.1109/AFIPS.1966.105. |
Robinett et al., “Implementation of Flying, Scaling, and Grabbing in Virtual Worlds,” ACM Symposium (1992). |
Robinett et al., “The Visual Display Transformation for Virtual Reality,” University of North Carolina at Chapel Hill (1994). |
Roetenberg, “Inertial and magnetic sensing of human motion,” Thesis, University of Twente (2006). |
Roetenberg, et al., “Inertial And Magnetic Sensing Of Human Movement Near Ferromagnetic Materials,” Paper presented at Second IEEE and ACM International Symposium on Mixed and Augmented Reality, Mar. 2003 (available at http://www.xsens.com/images/stories/PDF/Inertial%20and%20magnetic%20sensing%20of%20human%20movement%20near%20ferromagnetic%20materials.pdf. |
Rolland, et al., “A Survey of Tracking Technology for Virtual Environments,” University of Central Florida, Center for Research and Education in Optics Lasers (CREOL) (2001 ). |
Romer, Kay et al., Smart Playing Cards: A Ubiquitous Computing Game, Personal and Ubiquitous Computing, Dec. 2002, vol. 6, Issue 5-6, pp. 371-377, London, England. |
Rothman, Wilson, “Unearthed: Nintendo's Pre-Wiimote Prototype,” gizmodo.com, Aug. 29, 2007 (accessed at http://gizmodo.com/gadgets/exclusive/unearthed-nintendo-2001-prototype-motion+sensing-one+handed-controller-by-gyration-294642.php on Aug. 31, 2011). |
Rothman, Wilson, “Wii-mote Prototype Designer Speaks Out, Shares Sketchbook,” Gizmodo.com, Aug. 30, 2007 (accessed at http://gizmodo.com/gadgets/exclusive/wii+mote-prototype-designer-speaks-out-shares-sketchbook-295276.php on Aug. 31, 2011). |
Sakai, et al., “Optical Spatial Filter Sensor for Ground Speed,” Optical Review, vol. 2, No. 1, pp. 65-67 (1995). |
Santiago, “Extended Kalman filtering applied to a full accelerometer strapdown inertial measurement unit,” M.S. Thesis, Massachusetts Institute of Technology, Dept. Of Aeronautics and Astronautics, Santiago (1992). |
Satterfield, Shane, “E3 2002: Nintendo announces new GameCube games,” GameSpot, http://www.gamespot.com/gamecube/action/rollorama/news/2866974/e3-2002-nintendo-announces-new-gamecube-games, May 21, 2002 (accessed on Aug. 11, 2011). |
Sawada, et al., “A Wearable Attitude-Measurement System Using a Fiberoptic Gyroscope,” MIT Presence, vol. 11, No. 2, pp. 109-118, Apr. 2002. |
Saxena, et al., “In Use Parameter Estimation of Inertial Sensors by Detecting Multilevel Quasi-Static States,” Berlin: Springer-Verlag, pp. 595-601 (2005). |
Sayed, “A Framework for State-Space Estimation with Uncertain Models,” IEEE Transactions on Automatic Control, vol. 46, No. 7, Jul. 2001. |
Schofield, Jack et al., Games reviews, “Coming up for airpad,” The Guardian (Feb. 3, 2000) (accessed at http://www.guardian.co.uk/technology/2000/feb/03/online supplement5/print on Jun. 18, 2010). |
Sega/Sports Sciences, Inc., “Batter Up, It's a Hit,” Instruction Manual, Optional Equipment Manual (1994). |
Sega/Sports Sciences, Inc., “Batter Up, It's a Hit,” Photos of baseball bat (1994). |
Selectech Airmouse, “Mighty Mouse”, Electronics Today International, p. 11 (Sep. 1990). |
Shoemake, Ken, “Quaternions,” available online at http://campar.in.tum.de/twiki/pub/Chair/DwarfTutorial/quatut.pdf (date unknown). |
Skiens, Mike, “Nintendo Announces Wireless GBA Link”, Bloomberg, Sep. 25, 2003 (accessed at http://www.nintendoworldreport.com/news/9011). |
Smartswing, “SmartSwing: Intelligent Golf Clubs that Build a Better Swing,” http://web.archive.org/web/20040728221951/http://www.smartswinggolf.com/ (accessed on Sep. 8, 2011). |
Smartswing, “The SmartSwing Learning System Overview,” Apr. 26, 2004, http://web.archive.org/web/2004426215355/http://www.smartswinggolf.com/tls/index.html (accessed on Jul. 29, 2011). |
Smartswing, “The SmartSwing Learning System: How it Works,” 3 pages, Apr. 26, 2004, http://web.archive.org/web/20040426213631/http://www.smartswinggolf.com/tls/how—it—works.html (accessed on Jul. 29, 2011). |
Smartswing, “The SmartSwing Product Technical Product: Technical Information,” Apr. 26, 2004, http://web.archive.org/web/20040426174854/http://www.smartswinggolf.com/products/technical—info.html (accessed on Jul. 29, 2011). |
Smartswing, Training Aid, Austin, Texas, Apr. 2005. |
Sorenson, et al., “The Minnesota Scanner: A Prototype Sensor for Three-Dimensional Tracking of Moving Body Segments,” IEEE Transactions on Robotics and Animation, vol. 5, No. 4 (Aug. 1989). |
Specification of the Bluetooth System—Core v1.0b, Dec. 1, 1999. |
Star Wars Action Figure with CommTech Chip by Hasbro (1999). |
Stars Wars Episode 1 CommTech Reader Instruction Manual (1998). |
Stovall, “Basic Inertial Navigation,” NAWCWPNS TM 8128, Navigation and Data Link Section, Systems Integration Branch (Sep. 1997). |
Sulic, “Logitech Wingman Cordless Rumblepad Review,” Gear Review at IGN, Jan. 14, 2002 (accessed at http://gear.ign.com/articles/317/317472p1.html on Aug. 1, 2011). |
Sutherland, “A Head-Mounted Three Dimensional Display,” Paper presented at AFIPS '68 Fall Joint Computer Conference, Dec. 9-11, 1968; paper available at www.cise.ufl.edu/˜lok/teaching/dcvef05/papers/sutherland-headmount.pdf. |
Sutherland, Ivan E., “Sketchpad: A Man-Machine Graphical Communication System,” Proceedings of the AFIPS Spring Joint Computer Conference, Detroit, Michigan, May 21-23, 1963, pp. 329-346 (source provided is reprinting of text accessed at http://www.guidebookgallery.org/articles/sketchpadamanmachinegraphicalcommunicationsystem on Sep. 8, 2011). |
Templeman, James N., “Virtual Locomotion: Walking in Place through Virtual Environments,” Presence, vol. 8, No. 6, pp. 598-617, Dec. 1999. |
Timmer, “Modeling Noisy Time Series: Physiological Tremor,” International Journal of Bifurcation and Chaos, vol. 8, No. 7 (1998). |
Timmer, et al, “Pathological Tremors: Deterministic Chaos or Nonlinear Stochastic Oscillators?” Chaos, vol. 10, No. 1 pp. 278-288 (Mar. 2000). |
Timmer, et al., “Characteristics of Hand Tremor Time Series,” Biological Cybernetics, vol. 70, No. 1, pp. 75-80 (1993). |
Timmer, et al., “Cross-Spectral Analysis of Tremor Time Series,” International Journal of Bifurcation and Chaos, vol. 10, No. 11 pp. 2595-2610 (2000); text available at http://www.fdmold.uni-freiburg.de/groups/timeseries/tremor/pubs/cs—review.pdf. |
Timmer, et al., Cross-Spectral Analysis of Physiological Tremor and Muscle Activity: II Application to Synchronized Electromyogram, Biological Cybernetics, vol. 78 (1998) (obtained from http://arxiv.org/abs/chao-dyn/9805012). |
Titterton et al., “Strapdown Inertial Navigation Technology,” Peter Peregrinus Ltd., pp. 1-56 and pp. 292-321 (1997). |
Toy Designers Use Technology in New Ways as Sector Matures, WSJ.com, Dec. 17, 2001. |
Traq 3D, “Healthcare,” http: //www.traq3d.com/Healthcare/Healthcare.aspx (accessed on Jan. 21, 2010). |
U.S. Appl. No. 60/214,317, filed Jun. 27, 2000. |
U.S. Appl. No. 60/730,659 to Marks et al., filed Oct. 25, 2005. |
Ulanoff, Lance, “Nintendo's Wii is the Best Product Ever,” PC Magazine, Jun. 21, 2007 (accessed at http://www.pcmag.com/print—article2/0,1217,a=210070,00.asp?hidPrint=true on Aug. 1, 2011). |
UNC Computer Science Department, “News & Notes from Sitterson Hall,” UNC Computer Science, Department Newsletter, Issue 24, Spring 1999 (Apr. 1999) (accessed at http://www.cs.unc.edu/NewsAndNotes/Issue24/ on Jun. 18, 2010). |
Urban, “BAA 96-37 Proposer Information,” DARPA/ETO (1996) (accessed at http://www.fbodaily.com/cbd/archive/1996/08(August)/19-Aug-1996/Aso1001.htm on Jul. 27, 2010). |
US Dynamics Corp, “Spinning Mass Mechanical Gyroscopes,” Aug. 2006. |
US Dynamics Corp, “The Concept of ‘Rate’, (more particularly, angular rate pertaining to rate gyroscopes) (rate gyro explanation),” Aug. 2006. |
US Dynamics Corp, “US Dynamics Model 475 Series Rate Gyroscope Technical Brief,” Dec. 2005. |
US Dynamics Corp, “US Dynamics Rate Gyroscope Interface Brief (rate gyro IO)” Aug. 2006. |
Van Den Bogaard, Thesis, “Using linear filters for real-time smoothing of rotational data in virtual reality application,” dated Aug. 2, 2004, available at http://www.science.uva.nl/research/ias/alumni/m.sc.theses/theses/RobvandenBogaarad.pdf. |
Van Laerhoven et al., “Using an Autonomous Cube for Basic Navigation and Input,” Proceedings of the 5th International Conference on Multimodal interfaces, Vancouver, British Columbia, Canada, pp. 203-210, Nov. 5-7, 2003. |
Van Rheeden, et al., “Noise Effects on Centroid Tracker Aim Point Estimation,” IEEE Trans. On Aerospace and Electronic Systems, vol. 24, No. 2, pp. 177-185 (Mar. 1988). |
Vaz, et al., “An Adaptive Estimation of Periodic Signals Using a Fourier Linear Combiner,” IEEE Transactions on Signal Processing, vol. 42, No. 1, pp. 1-10 (Jan. 1994). |
Verplaetse, “Inertial Proprioceptive Devices: Self-Motion Sensing Toys and Tools,” IBM Systems Journal, vol. 35, Nos. 3&4 (Sep. 1996). |
Verplaetse, “Inertial-Optical Motion-Estimating Camera for Electronic Cinematography,” Masters Thesis, MIT, Media Arts and Sciences (1997). |
Villoria, Gerald, “Hands on Roll-O-Rama Game Cube,” Game Spot, http://www.gamespot.com/gamecube/action/rollorama/news.html?sid=2868421&com—act=convert&om—clk=newsfeatures&tag=newsfeatures;title;1&m, May 29, 2002 (accessed on Jul. 29, 2011). |
Virtual Fishing, Operational Manual, 2 pages, Tiger Electronics, Inc. (1998). |
Vorozcovs et al., “The Hedgehog: A Novel Optical Tracking Method for Spatially Immersive Displays,” MIT Presence, vol. 15, No. 1, pp. 108-121, Feb. 2006. |
Vti, Mindflux-Vti CyberTouch, http://www.mindflux.com/au/products/vti/cybertouch.html (1996). |
Wang, et al., “Tracking a Head-Mounted Display in a Room-Sized Environment with Head-Mounted Cameras,” Paper presented at SPIE 1990 Technical Symposium on Optical Engineering and Photonics in Aerospace Sensing (1990). |
Ward, et al., “A Demonstrated Optical Tracker With Scalable Work Area for Head-Mounted Display Systems,” Paper presented at 1992 Symposium on Interactive 3D Graphics (1992). |
Watt, Alan, 3D Computer Graphics, Chapter 1: “Mathematical fundamentals of computer graphics,” 3rd ed. Addison-Wesley, pp. 1-26 (2000). |
Welch et al., “Complementary Tracking and Two-Handed Interaction for Remote 3D Medical Consultation with a PDA,” Paper presented at Trends and Issues in Tracking for Virtual Environments Workshop at IEEE Virtual Reality 2007 Conference (2007), available at http://www.cs.unc.edu/˜welch/media/pdf/Welch2007—TwoHanded.pdf. |
Welch et al., “Motion Tracking: No Silver Bullet, but a Respectable Arsenal,” IEEE Computer Graphics and Applications, vol. 22, No. 6, pp. 24-38 (2002), available at http://www.cs.unc.edu/˜tracker/media/pdf/cga02—welch—tracking.pdf. |
Welch, “Hawkeye Zooms in on Mac Screens with Wireless Infrared Penlight Pointer,” MacWeek, May 3, 1993 (excerpt of article accessed at http://www.accessmylibrary.com/article/print/1G1-13785387 on Jun. 18, 2010). |
Welch, et al., “High-Performance Wide-Area Optical Tracking: The HiBall Tracking System,” MIT Presence: Teleoperators & Virtual Environments (Feb. 2001). |
Welch, et al., “SCAAT: Incremental Tracking with Incomplete Information,” Paper presented at SIGGRAPH 97 Conference on Computer Graphics and Interactive Techniques (1997), available at http://www.cs.unc.edu/˜welch/media/pdf/scaat.pdf. |
Welch, et al., “The HiBall Tracker: High-Performance Wide-Area Tracking for Virtual and Augmented Environments,” Paper presented at 1999 Symposium on Virtual Reality Software and Technology in London, Dec. 20-22, 1999, available at http://www.cs.unc.edu/˜welch/media/pdf/VRST99—HiBall.pdf. |
Welch, Hybrid Self-Tracker: An Inertial/Optical Hybrid Three-Dimensional Tracking System, University of North Carolina Chapel Hill Department of Computer Science, TR 95-048 (1995). |
Widrow, et al., “Fundamental Relations Between the LMS Algorithm and the DFT,” IEEE Transactions on Circuits and Systems, vol. CAS-34, No. 7 (Jul. 1987). |
Wiley, M., “Nintendo Wavebird Review,” Jun. 11, 2002, http://gear.ign.com/articles/361/361933p1.html (accessed on Aug. 1, 2011). |
Williams et al., “Implementation and Evaluation of a Haptic Playback System,” vol. 3, No. 3, Haptics-e, 2004. |
Williams et al., “The Virtual Haptic Back Project,” presented at the IMAGE 2003 Conference, Scottsdale, Arizona, Jul. 14-18, 2003. |
Williams, et al., “Physical Presence: Palettes in Virtual Spaces,” Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 3639, No. 374-384 (May 1999), available at http://www.fakespacelabs.com/papers/3639—46—LOCAL.pdf. |
Wilson “WorldCursor: Pointing in Intelligent Environments with the World Cursor,” http://www.acm.org/uist/archive/adjunct/2003/pdf/demos/d4-wilson.pdf (2003). |
Wilson et al., “Demonstration of the Xwand Interface for Intelligent Spaces,” UIST '02 Companion, pp. 37-38 (2002). |
Wilson et al., “Gesture Recognition Using the Xwand,” http://www.ri.cmu.edu/pub—files/pub4/wilson—daniel—h—2004—1/wilson—daniel—h—2004—1.pdf (2004). |
Wilson et al., “Xwand: UI for Intelligent Spaces,” Paper presented at CHI 2003 Conference, Ft. Lauderdale, FL, Apr. 5-10, 2003, available at http://research.microsoft.com/en-us/um/people/awilson/publications/WilsonCHI2003/CHI%202003%20XWand.pdf (2003). |
Wilson, “Wireless User Interface Devices for Connected Intelligent Environments,” http://research.microsoft.com/en-us/um/people/awilson/publications/old/ubicomp%202003.pdf (2003). |
Wired Glove, Wikipedia article, 4 pages, http://en.wikipedia.org/wiki/Wired—glove, Nov. 18, 2010. |
Wormell et al., “Advancements in 3D Interactive Devices for Virtual Environments,” Presented at the Joint International Immersive Projection Technologies (IPT)/Eurographics Workshop on Virtual Environments (EGVE) 2003 Workshop, Zurich, Switzerland, May 22-23, 2003 (available for download at http://www.intersense.com/pages/44/123/) (2003). |
Wormell, “Unified Camera, Content and Talent Tracking in Digital Television and Movie Production,” Presented at NAB 2000, Las Vegas, NV, Apr. 8-13, 2000 (available for download at http://www.intersense.com/pages/44/116/) (2003). |
Worringham, et al., “Directional Stimulus-Response Compatibility: A Test of Three Alternative Principles,” Ergonomics, vol. 41, Issue 6, pp. 864-880 (Jun. 1998). |
Yang et al., “Implementation and Evaluation of ‘Just Follow Me’: An Immersive, VR-Based, Motion-Training System,” MIT Presence: Teleoperators and Virtual Environments, vol. 11, No. 3, at 304-23 (MIT Press), Jun. 2002. |
You, et al., “Hybrid Inertial and Vision Tracking for Augmented Reality Registration,” http://graphics.usc.edu/cgit/pdf/papers/Vr1999.PDF (1999). |
You, et al., “Orientation Tracking for Outdoor Augmented Reality Registration,” IEEE Computer Graphics and Applications, IEEE, vol. 19, No. 6, pp. 36-42 (Nov. 1999). |
Youngblut, et al., “Review of Virtual Environment Interface Technology,” Institute for Defense Analyses (Mar. 1996). |
Yun et al., “Recent Developments in Silicon Microaccelerometers,” Sensors, 9(10) University of California at Berkeley, Oct. 1992. |
Zhai, “Human Performance in Six Degree of Freedom Input Control,” Ph.D. Thesis, University of Toronto (1995). |
Zhai, “User Performance in Relation to 3D Input Device Design,” Computer Graphics 32(4), pp. 50-54, Nov. 1998; text downloaded from http://www.almaden.ibm.com/u/zhai/papers/siggraph/final.html on Aug. 1, 2011. |
Zhou et al., “A survey—Human Movement Tracking and Stroke Rehabilitation,” Technical Report: CSM-420, ISSN 1744-8050, Dept. of Computer Sciences, University of Essex, UK, Dec. 8, 2004. |
Zhu et al., “A Real-Time Articulated Human Motion Tracking Using Tri-Axis Inertial/Magnetic Sensors Package,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, No. 2, Jun. 2004. |
Zowie Playsets, http://www.piernot.com/proj/zowie/ (accessed on Jul. 29, 2011). |
“Gatemaster Features”, internet article; http://web.archive.org/web/19970709135000/www.gatemaster.com/gmfeat.htm. |
James H. Clark, “Designing Surfaces in 3-D,” Graphics and Image Processing—Communications of the ACM, Aug. 1976; vol. 19; No. 8; pp. 454-460. |
Public Version of Commission Opinion from United States International Trade Commission, dated Oct. 28, 2013. |
“HyperScan”, release date Oct., 2006. Source http://www.giantbomb.com/hyperscan/3045-1 041. |
“Smart Card News Online”, published Oct. 25, 2006, source www.smartcard.co.ukINOLARCH/2006/Oct./251006.html. |
“Emerald Forest Toys” [online] [retrieved on Sep. 14, 2005], retrieved from Internet <URL:http://www.pathworks.net/print—eft.html>. |
“Gatemaster Features”, internet article; http://web.archive.org/web/19970709135000/www.gatemaster.com/gmfeat.htm, Jul. 9, 1997. |
“Owl Magic Wand and Owl Magic Orb” Press Release by Emerald Forest Toys (Nov. 2001). |
Badler et al; “Multi-Dimensional Input Techniques and Articulated Figure Positioning by Multiple Constraints”, Interactive 3D Graphics, Oct. 1986; pp. 151-169. |
D.W. Kormos et al., “Intraoperative, Real-Time 3-D Digitizer for Neurosurgical Treatment and Planning,” 1993; 1 page. |
Digital ID Cards the Next generation of “smart cards” will have more than a one-track mind, Wall Street Journal, Jun. 25, 2001. |
Druin et al; Robots: Exploring New Technologies for Learning for Kids; 2000; Chapter One: To Mindstorms and Beyond; 27 pages. |
Hunter G. Hoffman, “Physically Touching Virtual Objects Using Tactile Augmentation Enhances the Realism of Virtual Environments,” IEEE Virtual Reality Annual International Symposium '98, Atlanta, Georgia, 1998, 5 pages. |
International Preliminary Examination Report, International App. No. PCT/US00/09482; dated Apr. 24, 2001; 4 pages. |
International Search Report and Written Opinion, International App. No. PCT/US04/08912; mailed Aug. 26, 2004; 10 pages. |
International Search Report and Written Opinion, International App. No. PCT/US05/34831; mailed Jul. 2, 2008; 11 pages. |
International Search Report and Written Opinion; International Appl. No. PCT/US2006/043915; mailed Mar. 9, 2007; 8 pages. |
James H. Clark, “Designing Surfaces in 3-D,” Graphics and Image Processing-Communications of the ACM, Aug. 1976; vol. 19; No. 8; pp. 454-460. |
James H. Clark, “Three Dimensional Man Machine Interaction,” Siggraph '76, Jul. 14-16 Philadelphia, Pennsylvania, 1 page. |
Michael F. Deering, “HoloSketch a Virtual Reality Sketching Animation Tool,” ACM Transactions on Computer-Human Interaction, Sep. 1995; vol. 2, No. 3; pp. 220-238. |
New Strait Times Press Release, “Microsoft's New Titles,” 1998, 1 page. |
Nintendo Tilt Controller AD, Electronic Gaming Monthly, 1994, 1 page. |
R. Borovoy et al., “Things that Blink: Computationally Augmented Name Tags,” IBM Systems Journal, vol. 35, Nos. 3 & 4, 1996; pp. 488-495. |
Raise High the 3D Roof Beam Business Week Nov. 26, 2001. |
Resnick et al; Digital Manipulatives: New Toys to Think With; Apr. 1998; 7 pages. |
Richard Borovoy et al., “Groupwear: Nametags That Tell About Relationships,” Chi 98, Apr. 1998, pp. 329-330. |
Tech Designers Rethink Toys: Make Them Fun Wall Street Journal, Dec. 17, 2001. |
Vanessa Colella et al., “Participatory Simulations: Using Computational Objects to Learn about Dynamic Systems,” Chi 98; Apr. 1998, pp. 9-10. |
Number | Date | Country | |
---|---|---|---|
20130116048 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
60128318 | Apr 1999 | US | |
60122137 | Feb 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12829905 | Jul 2010 | US |
Child | 13723717 | US | |
Parent | 09545658 | Apr 2000 | US |
Child | 12829905 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09514480 | Feb 2000 | US |
Child | 09545658 | US |