This patent application also makes reference to:
Each of the above stated applications is hereby incorporated herein by reference in its entirety.
Aspects of the present application relate to electronic communications.
Existing communications methods and systems are overly power hungry and/or spectrally inefficient. Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such approaches with some aspects of the present method and system set forth in the remainder of this disclosure with reference to the drawings.
Methods and systems are provided for low-complexity, highly-spectrally efficient communications, substantially as illustrated by and/or described in connection with at least one of the figures, as set forth more completely in the claims.
As utilized herein the terms “circuits” and “circuitry” refer to physical electronic components (i.e. hardware) and any software and/or firmware (“code”) which may configure the hardware, be executed by the hardware, and or otherwise be associated with the hardware. As used herein, for example, a particular processor and memory may comprise a first “circuit” when executing a first one or more lines of code and may comprise a second “circuit” when executing a second one or more lines of code. As utilized herein, “and/or” means any one or more of the items in the list joined by “and/or”. As an example, “x and/or y” means any element of the three-element set {(x), (y), (x, y)}. As another example, “x, y, and/or z” means any element of the seven-element set {(x), (y), (z), (x, y), (x, z), (y, z), (x, y, z)}. As utilized herein, the term “exemplary” means serving as a non-limiting example, instance, or illustration. As utilized herein, the terms “e.g.,” and “for example” set off lists of one or more non-limiting examples, instances, or illustrations. As utilized herein, circuitry is “operable” to perform a function whenever the circuitry comprises the necessary hardware and code (if any is necessary) to perform the function, regardless of whether performance of the function is disabled, or not enabled, by some user-configurable setting.
The mapper 102 may be operable to map bits of the Tx_bitstream to be transmitted to symbols according to a selected modulation scheme. The symbols may be output via signal 103. For example, for an quadrature amplitude modulation scheme having a symbol alphabet of N (N-QAM), the mapper may map each Log2(N) bits of the Tx_bitstream to single symbol represented as a complex number and/or as in-phase (I) and quadrature-phase (Q) components. Although N-QAM is used for illustration in this disclosure, aspects of this disclosure are applicable to any modulation scheme (e.g., amplitude shift keying (ASK), phase shift keying (PSK), frequency shift keying (FSK), etc.). Additionally, points of the N-QAM constellation may be regularly spaced (“on-grid”) or irregularly spaced (“off-grid”). Furthermore, the symbol constellation used by the mapper may be optimized for best bit-error rate performance that is related to log-likelihood ratio (LLR) and to optimizing mean mutual information bit (MMIB). The Tx_bitstream may, for example, be the result of bits of data passing through a forward error correction (FEC) encoder and/or an interleaver. Additionally, or alternatively, the symbols out of the mapper 102 may pass through an interleaver.
The pulse shaper 104 may be operable to adjust the waveform of the signal 103 such that the waveform of the resulting signal 113 complies with the spectral requirements of the channel over which the signal 113 is to be transmitted. The spectral requirements may be referred to as the “spectral mask” and may be established by a regulatory body (e.g., the Federal Communications Commission in the United States or the European Telecommunications Standards Institute) and/or a standards body (e.g., Third Generation Partnership Project) that governs the communication channel(s) and/or standard(s) in use. The pulse shaper 104 may comprise, for example, an infinite impulse response (IIR) and/or a finite impulse response (FIR) filter. The number of taps, or “length,” of the pulse shaper 104 is denoted herein as LTx, which is an integer. The impulse response of the pulse shaper 104 is denoted herein as hTx. The pulse shaper 104 may be configured such that its output signal 113 intentionally has a substantial amount of inter-symbol interference (ISI). Accordingly, the pulse shaper 104 may be referred to as a partial response pulse shaping filter, and the signal 113 may be referred to as a partial response signal or as residing in the partial response domain, whereas the signal 103 may be referred to as residing in the symbol domain. The number of taps and/or the values of the tap coefficients of the pulse shaper 104 may be designed such that the pulse shaper 104 is intentionally non-optimal for additive white Gaussian noise (AWGN) in order to improve tolerance of non-linearity in the signal path. In this regard, the pulse shaper 104 may offer superior performance in the presence of non-linearity as compared to, for example, a conventional near zero positive ISI pulse shaping filter (e.g., root raised cosine (RRC) pulse shaping filter). The pulse shaper 104 may be designed as described in one or more of: the United States patent application titled “Design and Optimization of Partial Response Pulse Shape Filter,” the United States patent application titled “Constellation Map Optimization For Highly Spectrally Efficient Communications,” and the United States patent application titled “Dynamic Filter Adjustment For Highly-Spectrally-Efficient Communications,” each of which is incorporated herein by reference, as set forth above.
It should be noted that a partial response signal (or signals in the “partial response domain”) is just one example of a type of signal for which there is correlation among symbols of the signal (referred to herein as “inter-symbol-correlated (ISC) signals”). Such ISC signals are in contrast to zero (or near-zero) ISI signals generated by, for example, raised-cosine (RC) or root-raised-cosine (RRC) filtering. For simplicity of illustration, this disclosure focuses on partial response signals generated via partial response filtering. Nevertheless, aspects of this disclosure are applicable to other ISC signals such as, for example, signals generated via matrix multiplication (e.g., lattice coding), and signals generated via decimation below the Nyquist frequency.
The timing pilot insertion circuit 105 may insert a pilot signal which may be utilized by the receiver for timing synchronization. The output signal 115 of the timing pilot insertion circuit 105 may thus comprise the signal 113 plus an inserted pilot signal (e.g., a sine wave at ¼×fbaud, where fbaud is the symbol rate). An example implementation of the pilot insertion circuit 105 is described in the United States patent application titled “Timing Synchronization for Reception of Highly-Spectrally-Efficient Communications,” which is incorporated herein by reference, as set forth above.
The transmitter front-end 106 may be operable to amplify and/or upconvert the signal 115 to generate the signal 116. Thus, the transmitter front-end 106 may comprise, for example, a power amplifier and/or a mixer. The front-end may introduce non-linear distortion and/or phase noise (and/or other non-idealities) to the signal 116. The non-linearity of the circuit 106 may be represented as FnlTx which may be, for example, a polynomial, or an exponential (e.g., Rapp model). The non-linearity may incorporate memory (e.g., Voltera series).
The channel 107 may comprise a wired, wireless, and/or optical communication medium. The signal 116 may propagate through the channel 107 and arrive at the receive front-end 108 as signal 118. Signal 118 may be noisier than signal 116 (e.g., as a result of thermal noise in the channel) and may have higher or different ISI than signal 116 (e.g., as a result of multi-path).
The receiver front-end 108 may be operable to amplify and/or downconvert the signal 118 to generate the signal 119. Thus, the receiver front-end may comprise, for example, a low-noise amplifier and/or a mixer. The receiver front-end may introduce non-linear distortion and/or phase noise to the signal 119. The non-linearity of the circuit 108 may be represented as FnlRx which may be, for example, a polynomial, or an exponential (e.g., Rapp model). The non-linearity may incorporate memory (e.g., Voltera series).
The timing pilot recovery and removal circuit 110 may be operable to lock to the timing pilot signal inserted by the pilot insertion circuit 105 in order to recover the symbol timing of the received signal. The output 122 may thus comprise the signal 120 minus (i.e., without) the timing pilot signal. An example implementation of the timing pilot recovery and removal circuit 110 is described in the United States patent application titled “Timing Synchronization for Reception of Highly-Spectrally-Efficient Communications,” which is incorporated herein by reference, as set forth above.
The input filter 109 may be operable to adjust the waveform of the partial response signal 119 to generate partial response signal 120. The input filter 109 may comprise, for example, an infinite impulse response (IIR) and/or a finite impulse response (FIR) filter. The number of taps, or “length,” of the input filter 109 is denoted herein as LRx, an integer. The impulse response of the input filter 109 is denoted herein as hRx. The number of taps, and/or tap coefficients of the input filter 109 may be configured based on: a non-linearity model, , signal-to-noise ratio (SNR) of signal 120, the number of taps and/or tap coefficients of the Tx partial response filter 104, and/or other parameters. The number of taps and/or the values of the tap coefficients of the input filter 109 may be configured such that noise rejection is intentionally compromised (relative to a perfect match filter) in order to improve performance in the presence of non-linearity. As a result, the input filter 109 may offer superior performance in the presence of non-linearity as compared to, for example, a conventional near zero positive ISI matching filter (e.g., root raised cosine (RRC) matched filter). The input filter 109 may be designed as described in one or more of: the United States patent application titled “Design and Optimization of Partial Response Pulse Shape Filter,” the United States patent application titled “Constellation Map Optimization For Highly Spectrally Efficient Communications,” and the United States patent application titled “Dynamic Filter Adjustment For Highly-Spectrally-Efficient Communications,” each of which is incorporated herein by reference, as set forth above.
As utilized herein, the “total partial response (h)” may be equal to the convolution of hTx and hRx, and, thus, the “total partial response length (L)” may be equal to LTx+LRx−1. L may, however, be chosen to be less than LTx+LRx−1 where, for example, one or more taps of the Tx pulse shaper 104 and/or the Rx input filter 109 are below a determined level. Reducing L may reduce decoding complexity of the sequence estimation. This tradeoff may be optimized during the design of the system 100.
The equalizer and sequence estimator 112 may be operable to perform an equalization process and a sequence estimation process. Details of an example implementation of the equalizer and sequence estimator 112 are described below with respect to
The de-mapper 114 may be operable to map symbols to bit sequences according to a selected modulation scheme. For example, for an N-QAM modulation scheme, the mapper may map each symbol to Log2(N) bits of the Rx_bitstream. The Rx_bitstream may, for example, be output to a de-interleaver and/or an FEC decoder. Alternatively, or additionally, the de-mapper 114 may generate a soft output for each bit, referred as LLR (Log-Likelihood Ratio). The soft output bits may be used by a soft-decoding forward error corrector (e.g. a low-density parity check (LDPC) dedecoder). The soft output bits may be generated using, for example, a Soft Output Viterbi Algorithm (SOVA) or similar. Such algorithms may use additional information of the sequence decoding process including metrics levels of dropped paths and/or estimated bit probabilities for generating the LLR, where
where Pb is the probability that bit b=1.
In an example implementation, components of the system upstream of the pulse shaper 104 in the transmitter and downstream of the equalizer and sequence estimator 112 in the receiver may be as found in a conventional N-QAM system. Thus, through modification of the transmit side physical layer and the receive side physical layer, aspects of the invention may be implemented in an otherwise conventional N-QAM system in order to improve performance of the system in the presence of non-linearity as compared, for example, to use of RRC filters and an N-QAM slicer.
The clock signal generation circuit 152 may comprise, for example, one or more oscillators (e.g., a crystal oscillator) and one or more phase locked loops (PLLs) for generating a clock signal 156 whose frequency determines the rate at which symbols are generated and transmitted by the transmitter (the “symbol rate” or “baud rate”). The frequency of the clock signal 156 may be based on the mode of operation of the transmitter (e.g., as indicated by control signal 158).
The control circuit 154 may comprise, for example, an application specific integrated circuit (ASIC), a programmable interrupt controller (PIC), an ARM-based processor, an x86-based processor, and/or any other suitable circuitry operable to control a configuration of the transmitter based on one or more parameters. The parameters on which the configuration of the transmitter may be based may include, for example, input from a user of, and/or software application running on, a device (e.g., a mobile phone, laptop, base station, or the like) in which the transmitter resides. The parameters on which the configuration of the transmitter may be based may include performance indicators measured by circuitry of the transmitter such as, for example, measured noise levels, temperature, battery charge level, etc. The parameters on which the configuration of the transmitter may be based may include, for example, characteristics of data to be transmitted. Such characteristics may include, for example, quality of service parameters (e.g., latency and/or throughput requirements) and/or a model of non-linear distortion that the data will experience en route to a receiver. The parameters on which the configuration of the transmitter may be based may include performance indicators measured by and fed back from a receiver. Such performance indicators may include, for example, symbol error rate (SER), bit error rate (BER), signal-to-noise ratio (SNR), metrics calculated by a sequence estimation circuit, a phase error measured by the receiver, a measurement indicative of multipath present in the channel, and/or any other relevant performance indicator. The control circuit 154 may indicate a mode of operation of the transmitter and/or control configuration of the various components of the transmitter via the control signal 158.
The control circuit 154 may also be operable to generate control messages that indicate a configuration of the transmitter. Such control messages may be, for example, inserted into the transmitted datastream and/or transmitted on a control channel of beacon signal, to inform the receiver of the configuration of the receiver. Such control messages may be used by a multi-mode receiver for configuration of its circuitry.
The FEC encoder 156 may be perform FEC encoding according to one or more algorithms such as Reed-Solomon, or low-density parity check (LDPC) algorithms. The FEC code rate and/or the encoding algorithm used may be determined based on the mode of operation of the transmitter (e.g., as indicated by control signal 158). For example, FEC type (e.g., LDPC, RS, etc.) may be switched to match the modulation type and FEC rate may be optimized to increase capacity based on the mode of operation of the transmitter. In some cases of iterative FEC codes (e.g., LDPC, turbo), the code structure may vary to utilize the statistical characteristics of the partial response signal errors. FEC decoding performance may be improved through dynamic selection of the appropriate error model.
The mapper 102 may be as described above with reference to
The pilot overhead (POH) (i.e., the percentage of all transmitted symbols that are pilot symbols) and pattern of pilot symbols may be adapted dynamically (e.g., at or near real-time, based on recent measurements and/or feedback and/or user input) according to one or more performance indicators (e.g., SNR, SER, metrics levels calculated by module 204, amount of multipath, etc.) of the channel 108. When the transmitter is configured for near zero positive ISI, pilot symbols may be spread in time such that a single pilot is inserted for every N information symbols. In this manner, the pilot symbols may support the carrier recovery loop in the presence of phase noise and may prevent cycle slips by providing side information on the phase error present at the time of transmission of the pilot symbol. However, when the transmitter is configured in a mode that generates ISC signals whose values are, at any given time, based on a plurality of symbols, it may be advantageous to use several adjacent (or closely distributed) pilot symbols in order to provide efficient side information for the phase. Thus, symbol pilots when the transmitter is in a ISC mode, may be use a pattern of inserting group of M pilot symbols for every N information symbols, where the M symbols may be perfectly cascaded (i.e., no information symbol in between pilots) or, information symbol(s) may be inserted between some of the pilot symbols consisting the group of M. For example, the transmitter may insert 1 pilot symbol between every N information symbols when configured in a first mode of operation, and insert 2 or more consecutive pilot symbols between every N information symbols when configured in a second mode of operation.
A configuration of the ISC generation circuit 158 may be determined based on the mode of operation of the transmitter (e.g., as indicated by control signal 158). In a first configuration, the ISC generation circuit 158 may be configured to generate ISC signals. For example, in a first configuration the ISC generation circuit 158 may correspond to, and operate as, the pulse shaper 104 described herein with reference to FIGS. 1A and 2-8D. In a second configuration, the ISC generation circuit 158 may be configured as a near zero positive ISI pulse shaping filter (e.g., may be configured based on, or to approximate, a root raised cosine (RRC) pulse shaping filter). The first configuration may correspond to a first number of filter taps and/or a first set of tap coefficients. The second configuration may correspond to a second number of filter taps and/or a second set of tap coefficients. As another example, the first configuration of the ISC generation circuit 158 may be one in which it perform decimation below the Nyquist frequency such that aliasing results in an ISC signal. As another example, the first configuration of the ISC generation circuit 158 may be one in which it performs lattice coding resulting in an ISC signal.
The timing pilot insertion circuit 105 may be as described above with reference to
The Tx front-end 106 may be as described above with reference to
In operation, the transmitter may support a plurality of modes, with each of the modes corresponding to a particular configuration of each of the mapper 102, ISC generation circuit 158, timing pilot insert circuit 105, Tx Front-End circuit 106, and clock 152. The transmitter may be configured dynamically (e.g., at or near real-time, based on recent measurements and/or feedback and/or user input). In an example implementation, the transmitter may support the two modes characterized by the parameters shown in table 1,
where N and M are integers; D is a real number; Fb1 is baud rate in mode 1; Fb2 is the baud rate in mode 2; PBO1 is the power back-off setting of an amplifier of the front-end 106 in mode 1; PBO2 is the power back-off setting of the amplifier of the front-end 106 in mode 2; and P1, P2 and P3 are three back-off limits where P1>P2>P3 such that P1 corresponds to an operating point that is further from a reference point than an operating point corresponding to P2, and P2 corresponds to an operating point that is further from the reference point than an operating point corresponding to P3 (i.e., P3 results in higher transmitted power and more non-linear distortion than P2, and P2 results in higher transmitted power and more non-linear distortion than P1). In such an implementation, the mapper 102, ISC generation circuit 158, clock 152, pilot insert circuit 105, and front-end 106 may be configured such that the two modes in table 1 achieve the same throughput in the same bandwidth (i.e., same spectral efficiency) but with different symbol constellations. That is, mode 1 may achieve a particular throughput using an N-QAM constellation, RRC pulse shape filtering with an effective bandwidth of BW1, a first baud rate Fb1, and an amplifier setting with lower non-linear distortion, whereas mode 2 may achieve the throughput using a M-QAM symbol constellation (N>M), partial response (PR) pulse shape filtering with effective bandwidth of BW2=BW1, a second baud rate Fb2=log 2(N)/log 2(M)×Fb1, and an amplifier setting with higher non-linear distortion.
In an example implementation, M=N (i.e., the two modes use the same constellation), BW2=BW1/X, Fb1=Fb2 (i.e., the two modes use the same baud rate), and PBO1=PBO2 (i.e., the two modes use the same power back-off setting of an amplifier), and mode 2 achieves the same throughput as mode 1, but using a factor of X less bandwidth, as a result of the increased spectral efficiency of mode 2.
The control circuit 174 may comprise, for example, an application specific integrated circuit (ASIC), a programmable interrupt controller (PIC), an ARM-based processor, an x86-based processor, and/or any other suitable circuitry operable to control a configuration of the receiver based on one or more parameters. The parameters on which the configuration of the receiver may be based may include, for example, input from a user of, and/or software application running on, a device (e.g., a mobile phone, laptop, base station, or the like) in which the receiver resides. The parameters on which the configuration of the receiver may be based may include performance indicators measured by circuitry of the receiver such as, for example, measured noise levels, temperature, battery charge level, symbol error rate (SER), bit error rate (BER), signal-to-noise ratio (SNR), metrics calculated by a sequence estimation circuit, a non-linear model in use by the receiver, a phase error measured by the receiver, a measurement indicative of an amount of multipath in the channel, and/or any other relevant performance indicator. The parameters on which the configuration of the receiver may be based may include characteristics of data to be received. Such characteristics may include, for example, quality of service parameters (e.g., latency and/or throughput requirements) and/or a model of non-linear distortion experienced by the data during transmission, propagation over the channel, and/or reception by the receiver. The parameters on which the configuration of the receiver may be parameters communicated (e.g., in a beacon signal) by a transmitter from which the receiver desires to receive communications. Such parameters may include, for example, power back-off (and/or other indications of non-linearity) symbol constellation in use, type of pulse shape filtering in use, baud rate, etc. The parameters on which the configuration of the receiver may be based may include a mode of operation of a transmitter from which the receiver desires to receive communications. Such mode of operation may, for example, be communicated to the receiver in a control message (e.g., in a beacon signal) and relayed to the control circuit 174.
The control circuit 174 may also be operable to generate control messages that indicate a configuration of the receiver. Such control messages may be, for example, inserted into the transmitted datastream and/or transmitted on a control channel of beacon signal, to provide feedback to a transmitter. Such control messages may be used by a multi-mode transmitter for configuration of its circuitry.
The timing pilot removal circuit 110 may be as described above and may, for example, comprise one or more phase locked loops (PLLs) for recovering the symbol timing of received signals and outputting a clock signal determined by the recovered symbol timing.
The Rx front-end 108 may be as described above with reference to
A configuration of the Rx filter 109 may be determined based on the mode of operation of the receiver (e.g., as indicated by the control signal 178). In a first configuration, the Rx filter 109 may operate as described herein with reference to FIGS. 1A and 2-8D. That is, in a first configuration, the Rx filter 109 may be configured to achieve a desired total partial response. In a second configuration, however, the Rx filter 109 may be configured as a near zero positive ISI pulse shaping filter (e.g., root raised cosine (RRC) pulse shaping filter). The first configuration may correspond to a first number of filter taps and/or a first set of tap coefficients. The second configuration may correspond to a second number of filter taps and/or a second set of tap coefficients.
A configuration of the symbol detection circuit 178 may be determined based on the mode of operation of the receiver (e.g., as indicated by the control signal 178). In a first configuration, the symbol detection circuit 178 may operate as the equalization and sequence estimation circuit 112 described herein with reference to FIGS. 1A and 2-8D, for example. That is, in a first configuration, the symbol detection circuit 178 may detect/estimate sequences of ISC symbols. In a second configuration, however, the symbol detection circuit 178 may perform symbol slicing according to a particular constellation (e.g., a QAM constellation) to detect/estimate individual symbols (i.e., sequences only one symbol in length). Accordingly, in the second configuration, the equalization and symbol detection circuit 178 may perform slicing and each estimate/decision (hard or soft) may depend only on the current symbol. Thus, configuration of the equalization and symbol detection circuit 178 may be based, for example, on an indication of inter symbol correlation in a received signal. In case of severe channel multipath and/or phase noise that create a correlation between received symbols, symbol detection circuit 178 may be configured for decoding symbols by sequence estimation method to improve decoding performance comparing to symbol-by-symbol slicing/decision.
The FEC decoder 176 may be perform FEC decoding according to one or more algorithms such as Reed-Solomon, or low-density parity check (LDPC) algorithms. The FEC code rate and/or the decoding algorithm used may be determined based on the mode of operation of the transmitter (e.g., as indicated by control signal 178). For example, FEC type (e.g., LDPC, RS, etc.) may be switched to match the modulation type and FEC rate may be optimized to increase capacity based on the mode of operation of the transmitter. In some cases of iterative FEC codes (e.g., LDPC, turbo), the code structure may vary to utilize the statistical characteristics of the partial response signal errors. FEC decoding performance may be improved through dynamic selection of the appropriate error model. For example, the factor graph which defines the code structure may incorporate code constraints as well as the partial response behavior. Additionally, bits LLR that are the input to the FEC may be shaped as needed.
In operation, the receiver may support a plurality of modes, with each of the modes corresponding to a particular configuration of each of the Rx Front-end 108, the Rx filter 109, the timing pilot removal circuit 110, the equalization and symbol detection circuit 178, and a control circuit 174. The receiver may be configured dynamically (e.g., at or near real-time, based on recent measurements and/or feedback). In an example implementation, the receiver may support the two modes characterized by the parameters shown in table 2,
where Fb1 is the baud rate for mode 1; PBO3 is the power back-off setting of an amplifier of the front-end 108 in mode 1; PBO4 is the power back-off setting of an amplifier of the front-end 108 in mode 2; and P4, P5 and P6 are three back-off limits where P4>P5>P6 such that P4 corresponds to an operating point that is further from a reference point than an operating point corresponding to P5, and P5 corresponds to an operating point that is further from the reference point than an operating point corresponding to P6 (i.e., P6 results in more non-linear distortion than P5, and P5 results in more non-linear distortion than P4). In the receiver, there is a tradeoff between linearity and noise figure performance. Allowing high non-linear distortion may enable improving the overall noise figure which, in turn, may improve demodulator sensitivity. Thus, a receiver capable of tolerating severe non-linear distortion may permit configuring that receiver for optimal noise figure.
In such an implementation, the Rx front-end 108, Rx filter 109, and equalization and symbol detection circuit 178 may be configured such that mode 2 provides better reception (e.g., lower SER) around the operating SNR (e.g., 30 dB SNR) than mode 1 for the same throughput and same spectral efficiency. For a given received signal level (RSL), the system at mode 2 may improve SNR comparing to mode 1 due to the ability to tolerate larger non-linear distortion originating at the receiver front-end and consequently decrease the noise figure which increase observed SNR.
The equalizer 202 may be operable to process the signal 122 to reduce ISI caused by the channel 107. The output 222 of the equalizer 202 is a partial response domain signal. The ISI of the signal 222 is primarily the result of the pulse shaper 104 and the input filter 109 (there may be some residual ISI from multipath, for example, due to use of the least means square (LMS) approach in the equalizer 202). The error signal, 201, fed back to the equalizer 202 is also in the partial response domain. The signal 201 is the difference, calculated by combiner 204, between 222 and a partial response signal 203 that is output by non-linearity modeling circuit 236a. An example implementation of the equalizer is described in the United States patent application titled “Feed Forward Equalization for Highly-Spectrally-Efficient Communications,” which is incorporated herein by reference, as set forth above.
The carrier recovery circuit 208 may be operable to generate a signal 228 based on a phase difference between the signal 222 and a partial response signal 207 output by the non-linearity modeling circuit 236b. The carrier recovery circuit 208 may be as described in the United States patent application titled “Coarse Phase Estimation for Highly-Spectrally-Efficient Communications,” which is incorporated herein by reference, as set forth above.
The phase adjust circuit 206 may be operable to adjust the phase of the signal 222 to generate the signal 226. The amount and direction of the phase adjustment may be determined by the signal 228 output by the carrier recovery circuit 208. The signal 226 is a partial response signal that approximates (up to an equalization error caused by finite length of the equalizer 202, a residual phase error not corrected by the phase adjust circuit 206, non-linearities, and/or other non-idealities) the total partial response signal resulting from corresponding symbols of signal 103 passing through pulse shaper 104 and input filter 109.
The buffer 212 buffers samples of the signal 226 and outputs a plurality of samples of the signal 226 via signal 232. The signal 232 is denoted PR1, where the underlining indicates that it is a vector (in this case each element of the vector corresponds to a sample of a partial response signal). In an example implementation, the length of the vector PR1 may be Q samples.
Input to the sequence estimation circuit 210 are the signal 232, the signal 228, and a response ĥ. Response ĥ is based on h (the total partial response, discussed above). For example, response ĥ may represent a compromise between h (described above) and a filter response that compensates for channel non-idealities such as multi-path. The response ĥ may be conveyed and/or stored in the form of LTx+LRx−1 tap coefficients resulting from convolution of the LTx tap coefficients of the pulse shaper 104 and the LRx tap coefficients of the input filter 109. Alternatively, response ĥ may be conveyed and/or stored in the form of fewer than LTx+LRx−1 tap coefficients—for example, where one or more taps of the LTx and LRx is ignored due to being below a determined threshold. The sequence estimation circuit 210 may output partial response feedback signals 205 and 209, a signal 234 that corresponds to the finely determined phase error of the signal 120, and signal 132 (which carries hard and/or soft estimates of transmitted symbols and/or transmitted bits). An example implementation of the sequence estimation circuit 210 is described below with reference to
The non-linear modeling circuit 236a may apply a non-linearity function (a model of the non-linearity seen by the received signal en route to the circuit 210) to the signal 205 resulting in the signal 203. Similarly, the non-linear modeling circuit 236b may apply the non-linearity function to the signal 209 resulting in the signal 207. may be, for example, a third-order or fifth-order polynomial. Increased accuracy resulting from the use of a higher-order polynomial for may tradeoff with increased complexity of implementing a higher-order polynomial. Where FnlTx is the dominant non-linearity of the communication system 100, modeling only FnlTx may be sufficient. Where degradation in receiver performance is above a threshold due to other non-linearities in the system (e.g., non-linearity of the receiver front-end 108) the model may take into account such other non-linearities
For each symbol candidate at time n, the metrics calculation circuit 304 may be operable to generate a metric vector Dn1 . . . DnM×Su×P based on the partial response signal PR1 , the signal 303a conveying the phase candidate vectors PCn1 . . . PCnM×Su×P and the signal 303b conveying the symbol candidate vectors SCn1 . . . SCM×Su×P where underlining indicates a vector, subscript n indicates that it is the candidate vectors for time n, M is an integer equal to the size of the symbol alphabet (e.g., for N-QAM, M is equal to N), Su is an integer equal to the number of symbol survivor vectors retained for each iteration of the sequence estimation process, and P is an integer equal to the size of the phase alphabet. In an example implementation, the size of phase alphabet is three, with each of the three symbols corresponding to one of: a positive shift, a negative phase shift, or zero phase shift, as further described below with respect to
The candidate selection circuit 306 may be operable to select Su of the symbol candidates SCn1 . . . SCM×Su×P and Su of the phase candidates PCn1, . . . PCM×Su×P based on the metrics Dn1 . . . DnM×Su×P The selected phase candidates are referred to as the phase survivors PSn1 . . . PSnSu. Each element of each phase survivors PSn1 . . . PSnSu may correspond to an estimate of residual phase error in the signal 232. That is, the phase error remaining in the signal after coarse phase error correction via the phase adjust circuit 206. The best phase survivor PSn1 is conveyed via signal 307a. The Su phase survivors are retained for the next iteration of the sequence estimation process (at which time they are conveyed via signal 301b). The selected symbol candidates are referred to as the symbol survivors SSn1 . . . SSSu Each element of each symbol survivors SSn1 . . . SSnSu may comprise a soft decision estimate and/or a hard-decision estimate of a symbol of the signal 232. The best symbol survivor SSn1 is conveyed to symbol buffer 310 via the signal 307b. The Su symbol survivors are retained for the next iteration of the sequence estimation process (at which time they are conveyed via signal 301a). Although, the example implementation described selects the same number, Su, of phase survivors and symbol survivors, such is not necessarily the case. Operation of example candidate selection circuits 306 are described below with reference to FIGS. 5D and 6A-6B.
The candidate generation circuit 302 may be operable to generate phase candidates PCn1 . . . PCnM×Su×P and symbol candidates SCn1 . . . SCnM×Su×P from phase survivors PSn−11 . . . PSn−1Su and symbol survivors SSn−11 . . . SSn−1Su, wherein the index n−1 indicates that they are survivors from time n−1 are used for generating the candidates for time n. In an example implementation, generation of the phase and/or symbol candidates may be as, for example, described below with reference to
The symbol buffer circuit 310 may comprise a plurality of memory elements operable to store one or more symbol survivor elements of one or more symbol survivor vectors. The phase buffer circuit 312 may comprise a plurality of memory elements operable to store one or more phase survivor vectors. Example implementations of the buffers 310 and 312 are described below with reference to
The combiner circuit 308 may be operable to combine the best phase survivor, PSn1, conveyed via signal 307a, with the signal 228 generated by the carrier recovery circuit 208 (
The phase adjust circuit 314 may be operable to adjust the phase of the signal 315a by an amount determined by the signal 234 output by phase buffer 312, to generate the signal 205.
The circuit 316a, which performs a convolution, may comprise a FIR filter or IIR filter, for example. The circuit 316a may be operable to convolve the signal 132 with response ĥ, resulting in the partial response signal 315a. Similarly, the convolution circuit 316b may be operable to convolve the signal 317 with response ĥ, resulting in the partial response signal 209. As noted above, response ĥ may be stored by, and/or conveyed to, the sequence estimation circuit 210 in the form of one or more tap coefficients, which may be determined based on the tap coefficients of the pulse shaper 104 and/or input filter 109 and/or based on an adaptation algorithm of a decision feedback equalizer (DFE). Response ĥ may thus represent a compromise between attempting to perfectly reconstruct the total partial response signal (103 as modified by pulse shaper 104 and input filter 109) on the one hand, and compensating for multipath and/or other non-idealities of the channel 107 on the other hand. In this regard, the system 100 may comprise one or more DFEs as described in one or more of: the United States patent application titled “Decision Feedback Equalizer for Highly-Spectrally-Efficient Communications,” the United States patent application titled “Decision Feedback Equalizer with Multiple Cores for Highly-Spectrally-Efficient Communications,” and the United States patent application titled “Decision Feedback Equalizer Utilizing Symbol Error Rate Biased Adaptation Function for Highly-Spectrally-Efficient Communications,” each of which is incorporated herein by reference, as set forth above.
Thus, signal 203 is generated by taking a first estimate of transmitted symbols, (an element of symbol survivor SSn1), converting the first estimate of transmitted symbols to the partial response domain via circuit 316a, and then compensating for non-linearity in the communication system 100 via circuit 236a (
The circuit 404, which performs a convolution, may comprise a FIR filter or IIR filter, for example. The circuit 404 may be operable to convolve the symbol candidate vectors SCn1 . . . SCM×Su×P with ĥ. The signal 405 output by the circuit 404 thus conveys vectors SCPRn1 . . . SCPRnM×Su×P each of which is a candidate partial response vector.
The cost function circuit 406 may be operable to generate metrics indicating the similarity between one or more of the partial response vectors PR2n1 . . . PR2nM×Su×p and one or more of the vectors SCPRn1 . . . SCPRnM×Su×P to generate error metrics Dn1 . . . DnM×Su×P In an example implementation, the error metrics may be Euclidean distances calculated as shown below in equation 1.
Dni=|(SCPRni)−(PR2ni)|2 EQ. 1
for 1≦i≦M×Su×P.
Referring to
Referring to
Referring to
Referring to
Although the implementations described with reference to
Shown are the contents of example symbol buffer 310 at times n−3, n−2, n−1, and n. At time n−3, a symbol survivor having values α,β,χ,δ is stored in the symbol buffer 310. Accordingly, as shown in
In
In block 906, the receiver may be configured into the first mode and begin listening for communications. In an example implementation, a transmitter of the device in which the receiver resides may transmit (e.g., broadcast) the determined configuration of the receiver. In block 908, a signal may be received and processed by the receiver operating in the first mode to recover information contained in the received signal. The processing may include, for example, pulse shape filtering via a near-zero ISI (e.g., based on RRC) filter, equalization, symbol slicing according to a symbol constellation (e.g., QAM constellation), and FEC decoding.
In block 910, the receiver determines to enter a second mode of operation. This determination may be based, for example, on one or of the considerations described with respect to block 904. Additionally or alternatively, this determination may be based on the information recovered in block 910 (e.g., a control message instructing transition to the second mode). In block 912, the receiver may be configured into the second mode and begin listening for communications. In an example implementation, a transmitter of the device in which the receiver resides may transmit (e.g., broadcast) the determined configuration of the receiver. In block 914, a signal may be received and processed by the receiver operating in the second mode to recover information contained in the received signal. The processing may include, for example, pulse shape filtering via a filter that, combined with a pulse shaping filter of the transmitter from which the communication was receiver, achieves a desired total partial response, equalization, sequence estimation, and FEC decoding. In block 916, the receiver powers down.
and r is set according to the desired distortion level (backoff).
In ideal conditions, mode 2 as shown performs 3.5 dB better than mode 1 as shown around SER of 3×10-2, which is a practical reference for BER of 10-6 with FEC rate around 0.95. Both mode 2 and mode 1 as shown are using symbols Pilot Over Head (POH) of 5%. Mode 2 as shown is estimating phase noise using the HPSE but the mode 1 shown is using perfect decisions for carrier recovery loop (for all other demodulating purposes it uses the symbol pilots and tentative decisions). The phase noise degrades the mode 1 by 1 dB but mode 2 by only 0.4 dB. The transmitted power of mode 2 shown is higher by 4.5 dB than for the mode 1 shown. Nevertheless, the combined phase noise and non-linear distortion degrades mode 1 shown by 2.2 dB while it affects mode 2 shown by only 0.6 dB. The overall SER improvement of mode 2 shown is around 5.3 dB but mode 2 shown has error correlation due to the nature of partial response (memory) hence, the FEC gain for mode 2 shown is 1 dB below the FEC gain of mode 1 shown. Therefore the practical sensitivity benefit is limited to 4.3 dB. Tx power benefit of mode 2 shown relative to mode 1 shown is 4.5 dB, thus the total contribution to the system gain by using mode 2 shown instead of mode 1 shown is 8.8 dB. But due to spectral mask limitations the Tx power must be below P1 dB-4.5 dB so that the spectral re-growth will not exceed the applicable spectral mask, therefore the practical benefit in Tx power of mode 2 shown vs. mode 1 shown is 3 dB and the overall system gain benefit of using mode 2 instead of mode 1 shown is 7.3 dB. With the use of crest factor reduction (CFR) and pre-distortion methods the Tx power for mode 2 shown may increase without violating the applicable spectral mask and the system gain benefit resulting from use of mode 2 shown instead of mode 1 shown may approach 8.8 dB.
In an example implementation, a receiver (e.g., the receiver of
The receiver may comprise a gain circuit (e.g., implemented in front-end 108). While the receiver is configured into a first mode, the gain circuit may be configured to have a first amount of power back-off. While the receiver is configured into a second mode, the gain circuit may be configured to have a second amount of power back-off. While the receiver is configured into the second mode, the gain circuit may be dynamically configured based on noise figure of the receiver. The dynamic configuration of the gain circuit may dynamically vary a linearity of the receiver to optimize a noise figure in the receiver.
The receiver may comprise a symbol detection circuit (e.g., 178), wherein while the receiver is configured into a first mode, the symbol detection circuit may perform symbol slicing to determine the values of individual, uncorrelated (or assumed to be uncorrelated) symbols. While the receiver is configured into a second mode, the symbol detection circuit may perform sequence estimation to determine the values of sequences of correlated (or assumed to be correlated) symbols.
The receiver may comprise a forward error correction (FEC) decoding circuit (e.g., 176). While the receiver is configured into a first mode, the FEC decoding circuit may be configured for a first code rate and/or first FEC decoding algorithm. While the receiver is configured into a second mode, the FEC decoding circuit may be configured for a second code rate and/or second FEC decoding algorithm. While the receiver is configured into a second mode, the FEC decoding circuit may be configured for an iterative FEC decoding algorithm having a code structure that varies dynamically based on the statistical characteristics of errors in a detected signal generated by the receiver.
In an example implementation, a receiver may comprise a symbol detection circuit (e.g., 178) that is configurable to operate in at least two configurations, wherein a first configuration of the symbol detection circuit uses symbol slicing for symbol detection and a second configuration of the symbol detection circuit uses a sequence estimation algorithm for symbol detection. The first configuration of the symbol detection circuit and the second configuration of symbol detection circuit may each use an N-QAM (e.g., 32-QAM) symbol constellation for detecting symbols of a received signal. Each of the symbol detection circuit and the input filter circuit may be dynamically configured, based, for example, on a performance indicator during run-time of the receiver. The symbol detection circuit and the input filter circuit may be jointly configured such that the symbol detection circuit is in the first configuration when the input filter circuit is in the first configuration and the symbol detection circuit is in the second configuration when the input filter circuit is in the second configuration.
In an example implementation, a receiver may comprise an input filter circuit (e.g., 109) that is configurable to operate in at least two configurations, wherein a first configuration of the input filter circuit uses a first set of filter taps (i.e., first number of taps and/or first set of tap coefficients) and a second configuration of the input filter circuit uses a second set of filter taps (i.e., second number of taps and/or second set of tap coefficients). The first set of filter taps may be based on a root raised cosine (RRC) response. The second set of filter taps may be based on a partial response.
In an example implementation, a receiver may comprise a gain circuit (e.g., part of front-end 108) that is configurable to operate in at least two configurations, wherein a first configuration of the gain circuit corresponds to a first power back-off setting for the gain circuit, and a second configuration of the gain circuit corresponds to a second power back-off setting for the gain circuit. The non-linearity of the gain circuit may be dynamically varied based on a signal-to-noise ratio. The non-linearity of the gain circuit may be dynamically varied to optimize a noise figure in the receiver.
In an example implementation, a receiver may comprise a non-linear modeling circuit. The non-linear modeling circuit may be dynamically configured in response to dynamic varying of the non-linearity of the gain circuit.
The present method and/or system may be realized in hardware, software, or a combination of hardware and software. The present method and/or system may be realized in a centralized fashion in at least one computing system, or in a distributed fashion where different elements are spread across several interconnected computing systems. Any kind of computing system or other apparatus adapted for carrying out the methods described herein is suited. A typical combination of hardware and software may be a general-purpose computing system with a program or other code that, when being loaded and executed, controls the computing system such that it carries out the methods described herein. Another typical implementation may comprise an application specific integrated circuit or chip.
The present method and/or system may also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which when loaded in a computer system is able to carry out these methods. Computer program in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form.
While the present method and/or system has been described with reference to certain implementations, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present method and/or system. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from its scope. Therefore, it is intended that the present method and/or system not be limited to the particular implementations disclosed, but that the present method and/or system will include all implementations falling within the scope of the appended claims.
This patent application is a continuation of U.S. patent application Ser. No. 13/756,010 filed on Jan. 31, 2013, (now U.S. Pat. No. 8,842,778) which, in turn, claims priority to: U.S. Provisional Patent Application Ser. No. 61/662,085 entitled “Apparatus and Method for Efficient Utilization of Bandwidth” and filed on Jun. 20, 2012, now expired;U.S. Provisional Patent Application Ser. No. 61/726,099 entitled “Modulation Scheme Based on Partial Response” and filed on Nov. 14, 2012, now expired;U.S. Provisional Patent Application Ser. No. 61/729,774 entitled “Modulation Scheme Based on Partial Response” and filed on Nov. 26, 2012, now expired; andU.S. Provisional Patent Application Ser. No. 61/747,132 entitled “Modulation Scheme Based on Partial Response” and filed on Dec. 28, 2012, now expired. Each of the above-identified applications is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4109101 | Mitani | Aug 1978 | A |
4135057 | Bayless et al. | Jan 1979 | A |
4797925 | Lin | Jan 1989 | A |
5111484 | Karabinis | May 1992 | A |
5131011 | Bergmans et al. | Jul 1992 | A |
5202903 | Okanoue | Apr 1993 | A |
5249200 | Chen et al. | Sep 1993 | A |
5283813 | Shalvi et al. | Feb 1994 | A |
5291516 | Dixon et al. | Mar 1994 | A |
5394439 | Hemmati | Feb 1995 | A |
5432822 | Kaewell, Jr. | Jul 1995 | A |
5459762 | Wang et al. | Oct 1995 | A |
5590121 | Geigel et al. | Dec 1996 | A |
5602507 | Suzuki | Feb 1997 | A |
5757855 | Strolle et al. | May 1998 | A |
5784415 | Chevillat et al. | Jul 1998 | A |
5818653 | Park et al. | Oct 1998 | A |
5886748 | Lee | Mar 1999 | A |
5889823 | Agazzi et al. | Mar 1999 | A |
5915213 | Iwatsuki et al. | Jun 1999 | A |
5930309 | Knutson et al. | Jul 1999 | A |
6009120 | Nobakht | Dec 1999 | A |
6167079 | Kinnunen et al. | Dec 2000 | A |
6233709 | Zhang et al. | May 2001 | B1 |
6272173 | Hatamian | Aug 2001 | B1 |
6335954 | Bottomley et al. | Jan 2002 | B1 |
6356586 | Krishnamoorthy et al. | Mar 2002 | B1 |
6516437 | Van Stralen et al. | Feb 2003 | B1 |
6532256 | Miller | Mar 2003 | B2 |
6535549 | Scott et al. | Mar 2003 | B1 |
6690754 | Haratsch et al. | Feb 2004 | B1 |
6697441 | Bottomley et al. | Feb 2004 | B1 |
6785342 | Isaksen et al. | Aug 2004 | B1 |
6871208 | Guo et al. | Mar 2005 | B1 |
6968021 | White et al. | Nov 2005 | B1 |
6985709 | Perets | Jan 2006 | B2 |
7158324 | Stein et al. | Jan 2007 | B2 |
7190288 | Robinson et al. | Mar 2007 | B2 |
7190721 | Garrett | Mar 2007 | B2 |
7205798 | Agarwal et al. | Apr 2007 | B1 |
7206363 | Hegde et al. | Apr 2007 | B2 |
7215716 | Smith | May 2007 | B1 |
7269205 | Wang | Sep 2007 | B2 |
7467338 | Saul | Dec 2008 | B2 |
7830854 | Sarkar et al. | Nov 2010 | B1 |
7974230 | Talley et al. | Jul 2011 | B1 |
8005170 | Lee et al. | Aug 2011 | B2 |
8059737 | Yang | Nov 2011 | B2 |
8175186 | Wiss et al. | May 2012 | B1 |
8199804 | Cheong | Jun 2012 | B1 |
8248975 | Fujita et al. | Aug 2012 | B2 |
8351536 | Mazet et al. | Jan 2013 | B2 |
8422589 | Golitschek Edler Von Elbwart et al. | Apr 2013 | B2 |
8526523 | Eliaz | Sep 2013 | B1 |
8548072 | Eliaz | Oct 2013 | B1 |
8548089 | Agazzi et al. | Oct 2013 | B2 |
8548097 | Eliaz | Oct 2013 | B1 |
8553821 | Eliaz | Oct 2013 | B1 |
8559494 | Eliaz | Oct 2013 | B1 |
8559496 | Eliaz | Oct 2013 | B1 |
8559498 | Eliaz | Oct 2013 | B1 |
8565363 | Eliaz | Oct 2013 | B1 |
8566687 | Eliaz | Oct 2013 | B1 |
8571131 | Eliaz | Oct 2013 | B1 |
8571146 | Eliaz | Oct 2013 | B1 |
8572458 | Eliaz | Oct 2013 | B1 |
8582637 | Eliaz | Nov 2013 | B1 |
8599914 | Eliaz | Dec 2013 | B1 |
8605832 | Eliaz | Dec 2013 | B1 |
8665941 | Eliaz | Mar 2014 | B1 |
8665992 | Eliaz | Mar 2014 | B1 |
8666000 | Eliaz | Mar 2014 | B2 |
8675769 | Eliaz | Mar 2014 | B1 |
8675782 | Eliaz | Mar 2014 | B2 |
8681889 | Eliaz | Mar 2014 | B2 |
8737458 | Eliaz | May 2014 | B2 |
8744003 | Eliaz | Jun 2014 | B2 |
8781008 | Eliaz | Jul 2014 | B2 |
8804879 | Eliaz | Aug 2014 | B1 |
8811548 | Eliaz | Aug 2014 | B2 |
8824572 | Eliaz | Sep 2014 | B2 |
8824599 | Eliaz | Sep 2014 | B1 |
8824611 | Eliaz | Sep 2014 | B2 |
8831124 | Eliaz | Sep 2014 | B2 |
8842778 | Eliaz | Sep 2014 | B2 |
8873612 | Eliaz | Oct 2014 | B1 |
8885698 | Eliaz | Nov 2014 | B2 |
8885786 | Eliaz | Nov 2014 | B2 |
8891701 | Eliaz | Nov 2014 | B1 |
8897387 | Eliaz | Nov 2014 | B1 |
8897405 | Eliaz | Nov 2014 | B2 |
20010008542 | Wiebke et al. | Jul 2001 | A1 |
20020016938 | Starr | Feb 2002 | A1 |
20020123318 | Lagarrigue | Sep 2002 | A1 |
20020150065 | Ponnekanti | Oct 2002 | A1 |
20020150184 | Hafeez et al. | Oct 2002 | A1 |
20020172297 | Ouchi et al. | Nov 2002 | A1 |
20030016741 | Sasson et al. | Jan 2003 | A1 |
20030135809 | Kim | Jul 2003 | A1 |
20030210352 | Fitzsimmons et al. | Nov 2003 | A1 |
20040037374 | Gonikberg | Feb 2004 | A1 |
20040086276 | Lenosky | May 2004 | A1 |
20040120409 | Yasotharan et al. | Jun 2004 | A1 |
20040142666 | Creigh et al. | Jul 2004 | A1 |
20040170228 | Vadde | Sep 2004 | A1 |
20040174937 | Ungerboeck | Sep 2004 | A1 |
20040203458 | Nigra | Oct 2004 | A1 |
20040227570 | Jackson et al. | Nov 2004 | A1 |
20040240578 | Thesling | Dec 2004 | A1 |
20040257955 | Yamanaka | Dec 2004 | A1 |
20050047517 | Georgios et al. | Mar 2005 | A1 |
20050123077 | Kim | Jun 2005 | A1 |
20050135472 | Higashino | Jun 2005 | A1 |
20050163252 | McCallister et al. | Jul 2005 | A1 |
20050193318 | Okumura et al. | Sep 2005 | A1 |
20050220218 | Jensen et al. | Oct 2005 | A1 |
20050265470 | Kishigami et al. | Dec 2005 | A1 |
20050276317 | Jeong et al. | Dec 2005 | A1 |
20060067396 | Christensen | Mar 2006 | A1 |
20060109780 | Fechtel | May 2006 | A1 |
20060171489 | Ghosh et al. | Aug 2006 | A1 |
20060239339 | Brown et al. | Oct 2006 | A1 |
20060245765 | Elahmadi et al. | Nov 2006 | A1 |
20060280113 | Huo | Dec 2006 | A1 |
20070092017 | Abedi | Apr 2007 | A1 |
20070098059 | Ives et al. | May 2007 | A1 |
20070098090 | Ma et al. | May 2007 | A1 |
20070098116 | Kim et al. | May 2007 | A1 |
20070110177 | Molander et al. | May 2007 | A1 |
20070110191 | Kim et al. | May 2007 | A1 |
20070127608 | Scheim et al. | Jun 2007 | A1 |
20070140330 | Allpress et al. | Jun 2007 | A1 |
20070189404 | Baum et al. | Aug 2007 | A1 |
20070213087 | Laroia et al. | Sep 2007 | A1 |
20070230593 | Eliaz et al. | Oct 2007 | A1 |
20070258517 | Rollings et al. | Nov 2007 | A1 |
20070291719 | Demirhan et al. | Dec 2007 | A1 |
20080002789 | Jao et al. | Jan 2008 | A1 |
20080049598 | Ma et al. | Feb 2008 | A1 |
20080080644 | Batruni | Apr 2008 | A1 |
20080130716 | Cho et al. | Jun 2008 | A1 |
20080130788 | Copeland | Jun 2008 | A1 |
20080159377 | Allpress et al. | Jul 2008 | A1 |
20080207143 | Skarby et al. | Aug 2008 | A1 |
20080260985 | Shirai et al. | Oct 2008 | A1 |
20090003425 | Shen et al. | Jan 2009 | A1 |
20090028234 | Zhu | Jan 2009 | A1 |
20090075590 | Sahinoglu et al. | Mar 2009 | A1 |
20090086808 | Liu et al. | Apr 2009 | A1 |
20090122854 | Zhu et al. | May 2009 | A1 |
20090185612 | Mckown | Jul 2009 | A1 |
20090213908 | Bottomley | Aug 2009 | A1 |
20090245226 | Robinson et al. | Oct 2009 | A1 |
20090290620 | Tzannes et al. | Nov 2009 | A1 |
20090323841 | Clerckx et al. | Dec 2009 | A1 |
20100002692 | Bims | Jan 2010 | A1 |
20100034253 | Cohen | Feb 2010 | A1 |
20100039100 | Sun et al. | Feb 2010 | A1 |
20100062705 | Rajkotia et al. | Mar 2010 | A1 |
20100074349 | Hyllander et al. | Mar 2010 | A1 |
20100115107 | Mitsuhashi et al. | May 2010 | A1 |
20100166050 | Aue | Jul 2010 | A1 |
20100172309 | Forenza et al. | Jul 2010 | A1 |
20100202505 | Yu et al. | Aug 2010 | A1 |
20100202507 | Allpress et al. | Aug 2010 | A1 |
20100208774 | Guess et al. | Aug 2010 | A1 |
20100208832 | Lee et al. | Aug 2010 | A1 |
20100220825 | Dubuc et al. | Sep 2010 | A1 |
20100278288 | Panicker et al. | Nov 2010 | A1 |
20100284481 | Murakami et al. | Nov 2010 | A1 |
20100309796 | Khayrallah | Dec 2010 | A1 |
20100329325 | Mobin et al. | Dec 2010 | A1 |
20110051864 | Chalia et al. | Mar 2011 | A1 |
20110064171 | Huang et al. | Mar 2011 | A1 |
20110069791 | He | Mar 2011 | A1 |
20110074500 | Bouillet et al. | Mar 2011 | A1 |
20110074506 | Kleider et al. | Mar 2011 | A1 |
20110075745 | Kleider et al. | Mar 2011 | A1 |
20110090986 | Kwon et al. | Apr 2011 | A1 |
20110134899 | Jones, IV et al. | Jun 2011 | A1 |
20110150064 | Kim et al. | Jun 2011 | A1 |
20110164492 | Ma et al. | Jul 2011 | A1 |
20110170630 | Silverman et al. | Jul 2011 | A1 |
20110188550 | Wajcer et al. | Aug 2011 | A1 |
20110228869 | Barsoum et al. | Sep 2011 | A1 |
20110243266 | Roh | Oct 2011 | A1 |
20110275338 | Seshadri et al. | Nov 2011 | A1 |
20110310823 | Nam et al. | Dec 2011 | A1 |
20110310978 | Wu et al. | Dec 2011 | A1 |
20120051464 | Kamuf et al. | Mar 2012 | A1 |
20120106617 | Jao et al. | May 2012 | A1 |
20120163489 | Ramakrishnan | Jun 2012 | A1 |
20120170674 | Kim et al. | Jul 2012 | A1 |
20120177138 | Chrabieh et al. | Jul 2012 | A1 |
20120207248 | Ahmed et al. | Aug 2012 | A1 |
20130028299 | Tsai | Jan 2013 | A1 |
20130044877 | Liu et al. | Feb 2013 | A1 |
20130077563 | Kim et al. | Mar 2013 | A1 |
20130121257 | He et al. | May 2013 | A1 |
20130343480 | Eliaz | Dec 2013 | A1 |
20130343487 | Eliaz | Dec 2013 | A1 |
20140036986 | Eliaz | Feb 2014 | A1 |
20140056387 | Asahina | Feb 2014 | A1 |
20140098841 | Song et al. | Apr 2014 | A2 |
20140098907 | Eliaz | Apr 2014 | A1 |
20140098915 | Eliaz | Apr 2014 | A1 |
20140105267 | Eliaz | Apr 2014 | A1 |
20140105268 | Eliaz | Apr 2014 | A1 |
20140105332 | Eliaz | Apr 2014 | A1 |
20140105334 | Eliaz | Apr 2014 | A1 |
20140108892 | Eliaz | Apr 2014 | A1 |
20140133540 | Eliaz | May 2014 | A1 |
20140140388 | Eliaz | May 2014 | A1 |
20140140446 | Eliaz | May 2014 | A1 |
20140146911 | Eliaz | May 2014 | A1 |
20140161158 | Eliaz | Jun 2014 | A1 |
20140161170 | Eliaz | Jun 2014 | A1 |
20140198255 | Kegasawa | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
2013030815 | Mar 2013 | WO |
Entry |
---|
Equalization: The Correction and Analysis of Degraded Signals, White Paper, Agilent Technologies, Ransom Stephens V1.0, Aug. 15, 2005 (12 pages). |
Modulation and Coding for Linear Gaussian Channels, G. David Forney, Jr., and Gottfried Ungerboeck, IEEE Transactions of Information Theory, vol. 44, No. 6, Oct. 1998 pp. 2384-2415 (32 pages). |
Intuitive Guide to Principles of Communications, www.complextoreal.com, Inter Symbol Interference (ISI) and Root raised Cosine (RRC) filtering, (2002), pp. 1-23 (23 pages). |
Chan, N., “Partial Response Signaling with a Maximum Likelihood Sequence Estimation Receiver” (1980). Open Access Dissertations and Theses. Paper 2855, (123 pages). |
The Viterbi Algorithm, Ryan, M.S. and Nudd, G.R., Department of Computer Science, Univ. of Warwick, Coventry, (1993) (17 pages). |
R. A. Gibby and J. W. Smith, “Some extensions of Nyquist's telegraph transmission theory,” Bell Syst. Tech. J., vol. 44, pp. 1487-1510, Sep. 1965. |
J. E. Mazo and H. J. Landau, “On the minimum distance problem for faster-than-Nyquist signaling,” IEEE Trans. Inform. Theory, vol. 34, pp. 1420-1427, Nov. 1988. |
D. Hajela, “On computing the minimum distance for faster than Nyquist signaling,” IEEE Trans. Inform. Theory, vol. 36, pp. 289-295, Mar. 1990. |
G. Ungerboeck, “Adaptive maximum-likelihood receiver for carrier modulated data-transmission systems,” IEEE Trans. Commun., vol. 22, No. 5, pp. 624-636, May 1974. |
G. D. Forney, Jr., “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inform. Theory, vol. 18, No. 2, pp. 363-378, May 1972. |
A. Duel-Hallen and C. Heegard, “Delayed decision-feedback sequence estimation,” IEEE Trans. Commun., vol. 37, pp. 428-436, May 1989. |
M. V. Eyubog •Iu and S. U. Qureshi, “Reduced-state sequence estimation with set partitioning and decision feedback,” IEEE Trans. Commun., vol. 36, pp. 13-20, Jan. 1988. |
W. H. Gerstacker, F. Obernosterer, R. Meyer, and J. B. Huber, “An efficient method for prefilter computation for reduced-state equalization,” Proc. of the 11th IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun. PIMRC, vol. 1, pp. 604-609, London, UK, Sep. 18-21, 2000. |
W. H. Gerstacker, F. Obernosterer, R. Meyer, and J. B. Huber, “On prefilter computation for reduced-state equalization,” IEEE Trans. Wireless Commun., vol. 1, No. 4, pp. 793-800, Oct. 2002. |
Joachim Hagenauer and Peter Hoeher, “A Viterbi algorithm with soft-decision outputs and its applications,” in Proc. IEEE Global Telecommunications Conference 1989, Dallas, Texas, pp. 1680-1686,Nov. 1989. |
S. Mita, M. Izumita, N. Doi, and Y. Eto, “Automatic equalizer for digital magnetic recording systems” IEEE Trans. Magn., vol. 25, pp. 3672-3674, 1987. |
E. Biglieri, E. Chiaberto, G. P. Maccone, and E. Viterbo, “Compensation of nonlinearities in high-density magnetic recording channels,” IEEE Trans. Magn., vol. 30, pp. 5079-5086, Nov. 1994. |
W. E. Ryan and A. Gutierrez, “Performance of adaptive Volterra equalizers on nonlinear magnetic recording channels,” IEEE Trans. Magn., vol. 31, pp. 3054-3056, Nov. 1995. |
X. Che, “Nonlinearity measurements and write precompensation studies for a PRML recording channel,” IEEE Trans. Magn., vol. 31, pp. 3021-3026, Nov. 1995. |
O. E. Agazzi and N. Sheshadri, “On the use of tentative decisions to cancel intersymbol interference and nonlinear distortion (with application to magnetic recording channels),” IEEE Trans. Inform. Theory, vol. 43, pp. 394-408, Mar. 1997. |
Miao, George J., Signal Processing for Digital Communications, 2006, Artech House, pp. 375-377. |
Xiong, Fuqin. Digital Modulation Techniques, Artech House, 2006, Chapter 9, pp. 447-483. |
Faulkner, Michael, “Low-Complex ICI Cancellation for Improving Doppler Performance in OFDM Systems”, Center for Telecommunication and Microelectronics, 1-4244-0063-5/06/$2000 (c) 2006 IEEE. (5 pgs). |
Stefano Tomasin, et al. “Iterative Interference Cancellation and Channel Estimation for Mobile OFDM”, IEEE Transactions on Wireless Communications, Vol. 4, No. 1, Jan. 2005, pp. 238-245. |
Int'l Search Report and Written Opinion for PCT/IB2013/01866 dated Mar. 21, 2014. |
Int'l Search Report and Written Opinion for PCT/IB2013/001923 dated Mar. 21, 2014. |
Int'l Search Report and Written Opinion for PCT/IB2013/001878 dated Mar. 21, 2014. |
Int'l Search Report and Written Opinion for PCT/IB2013/002383 dated Mar. 21, 2014. |
Int'l Search Report and Written Opinion for PCT/IB2013/01860 dated Mar. 21, 2014. |
Int'l Search Report and Written Opinion for PCT/IB2013/01970 dated Mar. 27, 2014. |
Int'l Search Report and Written Opinion for PCT/IB2013/01930 dated May 15, 2014. |
Int'l Search Report and Written Opinion for PCT/IB2013/02081 dated May 22, 2014. |
Ai-Dhahir, Naofal et al., “MMSE Decision-Feedback Equalizers: Finite-Length Results” IEEE Transactions on Information Theory, vol. 41, No. 4, Jul. 1995. |
Cioffi, John M. et al., “MMSE Decision-Feedback Equalizers and Coding—Park I: Equalization Results” IEEE Transactions onCommunications, vol. 43, No. 10, Oct. 1995. |
Eyuboglu, M. Vedat et al., “Reduced-State Sequence Estimation with Set Partitioning and Decision Feedback” IEEE Transactions onCommunications, vol. 36, No. 1, Jan. 1988. |
Number | Date | Country | |
---|---|---|---|
20150071389 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61662085 | Jun 2012 | US | |
61726099 | Nov 2012 | US | |
61729774 | Nov 2012 | US | |
61747132 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13756010 | Jan 2013 | US |
Child | 14492133 | US |