The present invention relates to the design of a connection of a Multi Port Extrusion tubing to a header, and a method for connecting such a tubing to same. In particular, the invention relates to an adapter between the MPE and the header.
Micro channel or micro port heat exchangers based on multiport extruded profiles (MPE) of aluminium or aluminium alloys are known where the inlets and outlets of the heat exchangers are provided with headers or manifolds to distribute, respectively collect the refrigerant flowing through the multiport extrusions.
MPE profiles are mainly applied in brazed solution where many connections are handled in a one shot brazing process. For applications where the number of connections is reduced, the “one shot” brazing process is no longer preferred and other methods of connections are needed.
From FR 2504667 it is known a connection between a multiport tube and an elongated profiled main body that has a recess for fixation of one end of the tube. The multiport tube is entered into the recess that has resilient walls that sustain a gripping force onto the tube. At the opposite side of the recess there is arranged an elongated opening that can be closed by a corresponding lid, which also has one outlet/inlet opening. The parts can be made out of a plastic material and joined together by an ultrasonic based method.
DE 10 2016 125 859 A1 discloses joining an extruded metallic tube with a connecting body of plastic material, wherein the tube is entered into a receiving part of the body. The receiving part has one first opening corresponding to the outer dimensions of the tube and one second opening somewhat larger than that wherein a gluing compound is applied to fix the parts together.
US 2017343144 A1 relates to a connection between a multiport flat tube and a header/connector body. An adapter 58 is fixed between the tube and the connector body 32. The adapter is preferably made of a single, integral piece of plastic through an injection molding process and is adhesively bonded with an elongated wall 38 of the connector body 32 to establish a permanent (non-detachable) connection between the adapter and the connector body. Fixation can be done by gluing or adhesive. The flat tube can be provided with locking tabs that are fixed to the tube by an adhesive. The locking tabs have corresponding locking elements arranged in the adapter to lock the flat tube to the adapter.
US 2008110608 A1 relates to a connection between a multichannel tube and a header, employing a transition connector between the tube and header where a heat exchanger includes a plurality of flat, multi-channel heat exchange tubes extending between spaced headers. Each heat exchange tube has its inlet end in fluid flow communication to an inlet header through a transition connector. The transition connector has a body defining a divergent flow path extending from an inlet opening in its inlet end to an outlet opening in its outlet end, and a tubular nipple extending outwardly from the inlet end of the divergent flow path through the wall of the inlet header. The tubular nipple defines a fluid flow path extending between the inlet end of the divergent flow path of the transition connector and the fluid chamber of the inlet header. The inlet header has a lateral dimension less than the lateral dimension of the heat exchange tube. The parts can be joined by welding, brazing or other bonding technique.
The present invention opens the possibility of making simple connections on site without any kind of heat treatment related to brazing. Brazing will normally have a negative influence on the mechanical properties of the connected parts, in particular metal alloys.
Furthermore, the present invention makes it possible to make simple connections involving MPE profiles coated with materials that cannot endure elevated temperatures. Such coating materials can be applied for protecting the metal from corrosive fluids. Where such coating is not necessary, the invention can be applied for uncoated MPE profiles as well.
The invention is suited for applications in cooling systems with water/Glycol, and is in particular related to battery thermal management.
The present invention relates to a Multi Port Extrusion tubing (MPE tubing) made from a Multi Port Extrusion (MPE). More specifically, the invention relates to the joint between at least one end of such MPE tubing and a corresponding header where there is arranged an adapter between the MPE tubing's end and the header.
According to the present invention there is also described a method for preparing and joining the MPE tubing to the header, where the method will ensure a joint with predefined fixation position between the parts, and further a mechanical fixation which can easily be assembled on site without any special tools or processes.
Since the connection is made without heating the parts by brazing or welding this allows for application of coated MPE tubing to the header which otherwise would not withstand the temperature during brazing. The invention is suitable for application of precoated wide MPE-profiles for battery cooling that can be assembled on site, and preferably in a vehicle in an assembly line. The principles of the invention can be applied for uncoated MPE tubing as well.
The present invention relates to a connection between one end of a Multi Port Extrusion (MPE) tube 1 preferably of aluminium or an aluminium alloy and one header 2 where the connection comprises an adapter 3 fixed between the MPE tube 1 and the header 2. According to one aspect of the invention, one end of the MPE tube 1 is mating a cavity 1′ in a first end of the adapter. According to a second aspect of the invention, one end of the adapter 3 comprises a protrusion 7 that is entered into a cavity 7′ of the header 2. Another aspect of the invention is related to a seal ring 4 is arranged between the adapter 3 and the header 2. Still another aspect of the invention is that the fixation between the MPE tubing 1 and the adapter 3 and/or the adapter 3 and the header 2 is established by mechanical fixation means, such as notches and openings/recesses similar to snap-on connections. According to one aspect of the invention, the fixation between the MPE tubing 1 and the adapter 3 is established in that the MPE tubing 1 has at least one indent 5, 5′ close to its end that is complementary to a corresponding pre-shaped notch 12, 12′ in the adapter. Another aspect of the invention is that the mating of the at least one notch 12, 12′ in the corresponding indent 5, 5′ is securely locked in that the header 2 embraces the adapter 3 and lays onto its outer surface in that area. One further aspect of the invention is that the seal ring is arranged between an internal flange of the header 2 and a complementary flange or seat of the adapter. In still another aspect, the fixation between the adapter 3 and the header 2 is established by that the adapter's 3 second end has at least one notch 10, 10′ that is complementary to a corresponding opening 11, 11′ in a wall of the header 2. In one aspect of the invention, the adapter (3) is made of a flexible material, preferably plastic or the similar, while the header (2) is made of aluminium or an alloy thereof or a plastic material.
In one other aspect of the invention it is presented a method for connecting one end of a Multi Port Extrusion (MPE) tubing 1 and one header 2, where one end of the MPE tubing 1 is entered into a first end of an adapter 3 and fixed by mechanical fixation means, and where one second end of the adapter 3 is provided with a seal ring 4 and further entered into a corresponding recess in the header 2 and fixed by mechanical fixation means.
These and further advantages can be achieved by the invention according to the accompanying claims.
The invention will be further described in detail in the following by means of examples and with reference to the attached drawings where:
Number | Date | Country | Kind |
---|---|---|---|
20190345 | Mar 2019 | NO | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/056073 | 3/6/2020 | WO | 00 |