The present disclosure relates generally to devices, systems and methods for hemodialysis, ultrafiltration, and the like.
Blood fluid removal processes, such as hemodialysis and ultrafiltration, typically employ a filter or membrane across which fluid, and some waste products, may be removed from blood. The blood, with reduced fluid or waste products, is then returned to the patient.
This disclosure, among other things, describes devices, systems and methods that include pre-filtering blood to separate plasma from cellular components of blood and subjecting the plasma to at least one additional fluid removal process. Pre-filtering reduces or eliminates cells and clotting factors that contact the filter used to remove fluid from the plasma, thereby reducing the likelihood of fouling secondary filtering systems, which may increase longevity of such secondary filtering systems or components thereof. The devices, systems and processes described herein may allow for lower concentrations of anticoagulants to be used in the blood fluid removal process, and thus may reduce the amount of anticoagulants present in blood returned to the patient.
In embodiments described herein, a method includes separating a patient's blood into a plasma component and a cell component. Fluid is then removed from the plasma component to obtain a reduced-fluid plasma. The fluid may be removed by dialysis, ultrafiltration, or the like. The reduced-fluid plasma may be combined with the cell component and may be returned to the patient. In embodiments, at least some of the reduced-fluid plasma is recirculated for additional fluid removal or treatment through the dialysis process, the ultrafiltration process, or the like. The plasma or reduced fluid plasma may be contacted with a sorbent to remove or reduce the concentration of one or more additional components of the plasma or reduced-fluid plasma.
In embodiments described herein, a device includes (i) a housing defining an interior, wherein the interior has a blood compartment, a plasma compartment, and a fluid compartment; (ii) a first filter disposed in the interior of the housing, and (iii) a second filter disposed in the interior of the housing. The first filter separates at least a portion of the blood compartment from at least a portion of the plasma compartment. The first filter is configured to allow plasma components, but not cell components, of blood to pass through the first filter from the blood compartment to the plasma compartment. The second filter separates at least a portion of the plasma compartment from at least a portion of the fluid compartment. The second filter is configured to allow fluid and small molecules, but not larger components, to pass through the second filter from the plasma compartment to the fluid compartment. The device may include a sorbent in either the plasma or reduced-fluid compartment to remove or reduce the concentration of selected components of the plasma. In embodiments, a system including the device includes a sorbent with which the plasma or reduced-fluid plasma may be contacted.
One or more embodiments of the systems, devices and methods described herein may provide one or more advantages over prior systems, devices and methods for blood fluid removal in patients. For example, the processes described herein may result in reduced likelihood of fouling of membranes, and thus may allow for use of lowered concentrations of anticoagulant. By pre-filtering blood cells and other large components, such as clotting factors, the efficiency of the blood fluid removal process may be increased and may allow for a reduction in the size of the fluid removal filter employed. Pre-filtering blood cells and other large components may allow more ready use of sorbents for selective removal of components from plasma, where the presence of cells and clotting factors may result in fouling, and inefficient use, of the sorbent. These and other advantages will be apparent to those of skilled in the art upon reading the following detailed description.
In one or more embodiments of the systems, devices and methods described herein, one or more efficiencies may be obtained by having additional filtration systems or sorbent systems for use in the same compartments.
The accompanying drawings, which are incorporated into and form a part of the specification, illustrate several embodiments of the present disclosure and, together with the description, serve to explain the principles of the disclosure. The drawings are only for the purpose of illustrating embodiments of the disclosure and are not to be construed as limiting the disclosure.
The schematic drawings presented herein are not necessarily to scale. Like numbers used in the figures refer to like components, steps and the like. However, it will be understood that the use of a number to refer to a component in a given figure is not intended to limit the component in another figure labeled with the same number. In addition, the use of different numbers to refer to components is not intended to indicate that the different numbered components cannot be the same or similar.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration several embodiments of devices, systems and methods. It is to be understood that other embodiments are contemplated and may be made without departing from the scope or spirit of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense.
All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise.
As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
As used herein, “have”, “having”, “include”, “including”, “comprise”, “comprising” or the like are used in their open ended sense, and generally mean “including, but not limited to.”
“Consisting essentially of”, as it relates to a device, system, or method, means that the device, system, or method includes only the recited components or steps of the device, system, or method and, optionally, other components or steps that do not materially affect the basic and novel properties of the device, system, or methods.
“Consisting of” and “consisting essentially of” are subsumed within “comprising.” For example, a filter comprising a porous membrane may be a filter consisting essentially of, or consisting of, the porous membrane.
Any direction referred to herein, such as “top,” “bottom,” “left,” “right,” “upper,” “lower,” “above,” below,” and other directions and orientations are described herein for clarity in reference to the figures and are not to be limiting of an actual device or system or use of the device or system. Many of the devices or systems described herein may be used in a number of directions and orientations.
As used herein, a “blood fluid removal process,” or the like, refers to a process from which fluid is removed from blood, or one or more components thereof, such as plasma. Often the blood, or component thereof, is returned to a patient after the fluid is removed. In many cases, the blood, or component thereof, is also cleaned; i.e., waste products are removed from the blood, or component thereof, and cleaned blood, or component thereof, is returned to the patient. Examples of blood fluid removal processes include ultrafiltration, hemofiltration, hemodialysis, hemodiafiltration, peritoneal dialysis and the like. It will be understood that, during some of these processes, fluid may be introduced to blood, or components thereof, before it is returned to the patient, and thus the returned blood, or components thereof, may not have a reduced fluid volume even though it has been subjected to a blood fluid removal process. Any patient for which a blood fluid removal process is indicated may benefit from the devices, systems and methods described herein.
As used herein, a “patient for which a blood fluid removal process is indicated” is a patient that has undergone, is undergoing, or is likely to undergo at least one blood fluid removal process wherein the blood is further processed and returned to the patient. In general, such patients are fluid overloaded patients, such as patients suffering from heart failure, chronic kidney disease, or acute kidney failure. Often such patients are stage 3 to stage 5 chronic kidney disease patients, are often unresponsive or under-responsive to diuretics, or the like.
As used herein, “plasma,” “plasma component of blood,” or the like, refer to a liquid component of blood in which some or all cells or other large components, such as components greater than about 0.2 microns (e.g., greater than about 0.5 microns or greater than about 1 micron), have been removed. In embodiments, cells or other large components are removed by filtration; e.g., by passing across a filter having a molecular weight cutoff of about 500,000 Da.
As used herein, “reduced-fluid plasma” refers to plasma from which at least some fluid has been removed or which has been subjected to a blood fluid removal process.
As used herein, “cell-enriched blood” means blood from which at least some fluid, such as plasma, has been removed so that the concentration of cells in the remaining blood is enriched relative to the blood prior to fluid removal.
As used herein, “filtered blood” means blood that has been subjected to a blood fluid removal process or blood that has been recombined with components of blood, such as plasma, that have been subjected to a blood fluid removal process.
As used herein, a “cell component” of blood is a component of blood that retains cells when plasma has been removed the blood. The cell component of blood may include plasma. For example, the cell component may retain some plasma when the blood has been separated into a cell component and a plasma component.
As used herein, “filtering fluid” means subjecting the fluid, such as plasma or blood, to a blood fluid removal process.
As used herein, “dialyzed plasma” means plasma that has been subjected to a dialysis procedure, such as hemodialysis, hemodiafiltration, or the like.
As used herein, “dialyzed blood” means blood that has been subjected to a dialysis procedure or blood that contains components, such as plasma, that have been subjected to a dialysis procedure. For example, blood that contains dialyzed plasma is dialyzed blood for the purposes of this disclosure.
As used herein, a “porous fiber” is a membrane having a body forming a lumen, wherein the body contains pores within a size range that allow for passage of some solutes across the membrane through the pores but which restrict passage of other solutes across the membrane. The pores may be a series of interconnected voids formed in the body. In some embodiments, the membrane is configured to allow passage of plasma through the pores, but to restrict passage of cellular components of blood.
As used herein, a “sorbent” is a substance that has the property to collect molecules of another substance by sorption; e.g., by adsorption or absorption. A sorbent medium is a sorbent through, or around, which a substance, such as blood or plasma, may be passed so that molecules from the substance may be sorbed to the sorbent medium.
As used herein, in the context of a blood fluid removal device, system, or components thereof, “blood compartment” is an enclosed space in which blood or cell-enriched blood is contained. Typically, at least a portion of the blood compartment is defined by a first filter configured to selectively allow plasma, but not cellular components of blood, to pass.
As used herein, in the context of a blood fluid removal device, system, or components thereof, “plasma compartment” is an enclosed space in which plasma that has been separated from blood is contained. Typically, at least a portion of the plasma compartment is defined by a first filter that selectively allows plasma, but not cellular components of blood, to pass. At least a portion of the plasma compartment may be defined by second filter configured to allow smaller molecules (such as molecules less than about 60,000 Da), but not larger molecules (such as molecules greater than about 60,000 Da), to pass.
As used herein, a “first filter” that separates a blood compartment from a plasma compartment is a membrane, which may be a porous fiber, configured to allow selective passage of plasma, but not cellular components of blood, across the membrane.
As used herein, a “second filter” that separates a plasma compartment from a fluid compartment is a membrane, which may be a porous fiber, configured to allow selective passage of small molecules, but not larger molecules, across the membrane. In embodiments, the membrane is configured to allow selective passage of molecules of less than about 60,000 Da, but generally not molecules larger than about 60,000 Da.
This disclosure, among other things, relates to devices, systems and methods that pre-filter blood to separate plasma from larger components, including cells. The plasma may then be subjected to a fluid removal process. By subjecting plasma, rather than blood, to a fluid removal process, the likelihood of fouling the blood fluid removal filter is reduced, which may increase the efficiency of fluid removal, may allow for a reduction in overall filter size, or may allow for reduced concentrations of anticoagulants to be used. Further, the separated plasma may be more amenable to sorbent treatment than blood, which may tend to clot and foul sorbents configured to selectively remove components from blood.
Any suitable device or system for removing fluid, or fluid and contaminants, from blood may be used in accordance with the teachings presented herein. The devices, or components thereof, may be traditional large console-type, wearable, or implantable.
Block diagrams of some components of blood fluid devices or systems are shown in
The first filter 20 may be any filter configured to allow plasma to pass through the filter and to block cells or other large components from blood from passing through the filter. In embodiments, the first filter 20 has a pore size between about 0.1 microns and about 0.65 microns. Such filters preferably restrict or exclude passage of cells and other large components of blood, such as clotting factors. Such filters are well known in the art and are readily available from manufactures such as Millipore, Pall, Asahi Kasei, and Gambro. Preferably, the filters are made from materials that are biocompatible, such as polyethylene, polypropylene, PMMA, polysulfone, polyethersulfone, cellulose, silicon, ceramic, and the like. In embodiments, the first filter 20 comprises one or more membranes. In some embodiments, the first filter 20 comprises one or more hollow fibers.
Still with reference to
The second filter 30 may be any filter suitable for removal of fluid from plasma. By way of example, filters used in ultrafiltration, hemofiltration, hemodialysis, or hemodiafiltration may be employed. In embodiments, the second filter 30 has a molecular weight cut off of between about 10,000 and about 100,000 Da. Such filters should restrict or exclude passage of larger components of plasma to pass through the filter, while allowing fluid and smaller components (e.g., less than 60,000 Da), such as urea, creatinine, and the like, to pass through the filter. Such filters are well known in the art and are readily available from manufactures such as Gambro, Nipro, and Fresenius. Preferably, the filters are made from materials that are biocompatible, such as polysulfone, polyethersulfone, polyacrylonitrile, PMMA, and the like. In embodiments, the second filter 30 comprises one or more membranes. In some embodiments, the second filter 30 comprises one or more hollow fibers.
As shown in
As shown in the embodiment depicted in
Referring now to
As shown in
As further shown in
While not shown in
Referring now to
The devices 100 in
The devices shown in
The devices depicted in
The device 100 may also include an outlet 109 in communication with the plasma compartment 192. Reduced fluid plasma may exit outlet 109 and be combined with cell enriched blood that exits outlet 105 prior to return to the patient. Alternatively, as depicted in
When too much fluid is removed from plasma, and thus the fluid levels of recombined blood is too low, it may be desirable or advantageous to add additional fluid to the blood before the blood is returned to the patient. In embodiments, fluid from the fluid compartment 190 is added prior to returning the blood to the patient. The fluid may be introduced into mixing chamber 197 or may be introduced into to recombined blood, plasma or cell-enriched blood at any suitable point. In embodiments and as shown in
As depicted in
The housing 199 or other components of device that may contact blood, plasma, or dialysate are preferably biocompatible or may be coated with a biocompatible material. In embodiments, the housing is formed from a metallic material, such as stainless steel (or a suitable polymeric material, such as polystyrene, polycarbonate, or the like. If stainless steel components are employed, blood is preferably isolated from such components.
Referring now to
As shown in
Referring now to
Alternatively, blood may be introduced into the device 100 exterior to the porous fibers 110 and plasma may pass through the pores of the fiber and enter the lumens of the fibers 110. Thus, at least a portion of the plasma compartment would be defined by the lumens of the fibers 110, and the blood compartment would be defined exterior to the fibers 110. In such an embodiment, the device 145 preferably includes a dividing member 145, such as a wall (e.g., a wall impermeable by blood), to separate the large pore fibers 110 from the small pore fibers 120 and to isolate compartment containing fibers 110.
The small pore fibers 120 depicted in
In embodiments, plasma is directed into the lumens of the small pore fibers 120. Thus, at least a portion of the plasma compartment is defined by the lumens of the porous fibers 120. The fluid compartment would then be exterior to the small pore fibers 120.
In the embodiments depicted in
In the embodiment depicted in
In the embodiment depicted in
It will be understood that manifold configurations other than those depicted in
Referring now to
An alternative embodiment of a device 100 is depicted in
Another embodiment is depicted in
Yet another embodiment is depicted in
With regard to the embodiments shown in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
It will be understood that
Referring now to
Referring now to
The method in
A summary of selected aspects of methods, devices and systems described herein is provided below.
In a first aspect, a medical device includes (i) a housing defining an interior, wherein the interior has a blood compartment, a plasma compartment, and a fluid compartment; (ii) a first filter disposed in the interior of the housing, wherein the first filter separates at least a portion of the blood compartment from at least a portion of the plasma compartment and wherein the first filter is configured to allow plasma components, but not cell components, of blood to pass through the first filter from the blood compartment to the plasma compartment; and (iii) a second filter disposed in the interior of the housing, wherein the second filter separates at least a portion of the plasma compartment from at least a portion of the fluid compartment, wherein the second filter is configured to allow fluid and small molecules, but not larger components, to pass through the second filter from the plasma compartment to the fluid compartment.
A second aspect is a device of the first aspect, further comprising: (i) an inlet in communication with the blood compartment; (ii) a first outlet in communication with the blood compartment; and (iii) a second outlet in communication with the fluid compartment.
A third aspect is a device of the second aspect, wherein the first outlet is in communication with the plasma compartment.
A fourth aspect is a device of the second aspect, further comprising a third outlet in communication with the plasma compartment.
A fifth aspect is a device of any of the first four aspects, further comprising a dialysate inlet in communication with the fluid compartment.
A sixth aspect is a device of any of the first five aspects, wherein the first filter comprises a porous fiber having a lumen, and wherein at least a portion of the blood compartment is defined by the lumen of the first filter porous fiber.
A seventh aspect is a device according to the sixth aspect, wherein the second filter comprises a porous fiber having a lumen, and wherein at least a portion of the fluid compartment is defined by the lumen of the second filter porous fiber.
An eighth aspect is a device according to the sixth aspect, wherein the second filter comprises a porous fiber having a lumen, and wherein at least a portion of the plasma compartment is defined by the lumen of the second filter porous fiber.
A ninth aspect is a device according to the eighth aspect, wherein a first portion of the plasma compartment is defined by the exterior of the first filter porous fiber, and wherein the device further comprises a manifold having at least one opening in communication with the first portion of the plasma compartment and the lumen of the second filter porous fiber.
A tenth aspect is a device according to the sixth aspect, wherein the second filter comprises a membrane.
An eleventh aspect is a device according to the tenth aspect, wherein the membrane is disposed across the housing.
A twelfth aspect is a device according to any of the first five aspects, wherein the first filter comprises a porous fiber having a lumen, and wherein at least a portion of the plasma compartment is defined by the lumen of the first filter porous fiber.
A thirteenth aspect is a device according to the twelfth aspect, wherein the second filter comprises a porous fiber having a lumen, and wherein at least a portion of the fluid compartment is defined by the lumen of the second filter porous fiber.
A fourteenth aspect is a device according to the twelfth aspect, wherein the second filter comprises a porous fiber having a lumen, and wherein at least a portion of the plasma compartment is defined by the lumen of the second filter porous fiber.
A fifteenth aspect is a device according to the fourteenth aspect, further comprising a manifold having at least one opening in communication with the lumen of the first filter porous fiber and the lumen of the second filter porous fiber.
A sixteenth aspect is a device according to the twelfth aspect, wherein the second filter comprises a membrane.
A seventeenth aspect is a device according to the sixteenth aspect, wherein the membrane is disposed across the housing.
An eighteenth aspect is a device according to any of the first five aspects, wherein the first filter comprises a membrane.
A nineteenth aspect is a device according to the eighteenth aspect, wherein the membrane is disposed across the housing.
A twentieth aspect is a device according to the eighteenth or nineteenth aspects, wherein the second filter comprises a porous fiber having a lumen, and wherein at least a portion of the fluid compartment is defined by the lumen of the second filter porous fiber.
A twenty-first aspect is a device according to the eighteenth or nineteenth aspects, wherein the second filter comprises a porous fiber having a lumen, and wherein at least a portion of the plasma compartment is defined by the lumen of the second filter porous fiber.
A twenty-second aspect is a device according to according to the eighteenth or nineteenth aspects, wherein the second filter comprises a membrane.
A twenty-third aspect is a device according to the twenty-second aspect, wherein the membrane is disposed across the housing.
A twenty-fourth aspect is a device according to any of the first twenty-three aspects, further comprising a sorbent disposed within the plasma compartment, wherein the sorbent is configured to selectively absorb one or more components from plasma.
A twenty-fifth aspect is a device according to any of the first twenty-four aspects, wherein the device is in the form of a cartridge.
A twenty-sixth aspect is a system including (i) a device according to any of aspects 1-25, wherein the device comprises the third outlet of aspect 4; and (ii) a sorbent medium in fluid communication with the plasma compartment of the device and downstream of the third outlet.
A twenty-seventh aspect is a system according to the twenty-sixth aspect, further comprising a manifold having a first inlet in communication with the blood compartment of the device, a second inlet in communication with the plasma compartment of the device and downstream of the sorbent medium, and an outlet in communication with the first and second manifold inlets.
A twenty-eighth aspect is a method including (i) separating a patient's blood into a plasma component and a cell component; (ii) dialyzing the plasma component to obtain dialyzed plasma; and (iii) combining the cell component and the dialyzed plasma to generate dialyzed blood.
A twenty-ninth aspect is a method according to the twenty-eighth aspect, further comprising introducing the dialyzed blood into the patient.
A thirtieth aspect is a method according to the twenty-eighth or twenty-ninth aspects, further comprising removing selected elements from the plasma component via a sorbent.
A thirty-first aspect is a method according to the twenty-eighth or twenty-ninth aspects, further comprising removing selected elements from the dialyzed plasma via a sorbent.
A thirty-second aspect is a method including (i) separating a patient's blood into a plasma component and a cell component; (ii) filtering fluid from the plasma component to obtain reduced fluid plasma; and (iii) combining the cell component and the reduced fluid plasma to generate filtered blood.
A thirty-third aspect is a method according to the thirty-second aspect, further comprising introducing the filtered blood into the patient.
A thirty-fourth aspect is a method according to the thirty-second or thirty-third aspect, further comprising removing selected elements from the plasma component via a sorbent.
A thirty-fifth aspect is a method according to the thirty-second or thirty-third aspect, further comprising removing selected elements from the filtered plasma via a sorbent.
Thus, systems, devices and methods for TWO STAGE FILTRATION FOR BLOOD FLUID REMOVAL PROCESSES are described. Those skilled in the art will recognize that the preferred embodiments described herein may be altered or amended without departing from the true spirit and scope of the disclosure, as defined in the accompanying claims.
It will be understood that pumps, valves, or other components that may be employed in the field of hemodialysis, ultrafiltration, or the like, while not shown, may be used in the devices, systems and methods described herein to facilitate the removal of fluid from blood or plasma; to drive flow of blood, plasma, replacement fluid, dialysate, enrichment fluid, or the like; or the like.
In the claims that follow, the designators “first”, “second”, “third” and the like are used for purposes of distinguishing between elements and not for purposes of enumerating the elements or for defining a sequence of the elements. For example, a “third” outlet does not necessarily imply that there are three outlets but rather that the “third” outlet is distinct from the “first” outlet. By way of further example, a “third” outlet does not necessarily come later in time than a “first” outlet.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/020404 | 1/4/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/103906 | 7/11/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3608729 | Haselden | Sep 1971 | A |
3669878 | Marantz | Jun 1972 | A |
3669880 | Marantz | Jun 1972 | A |
3776819 | Williams | Dec 1973 | A |
3850835 | Marantz | Nov 1974 | A |
3884808 | Scott | May 1975 | A |
3902490 | Jacobsen et al. | Sep 1975 | A |
3989622 | Marantz | Nov 1976 | A |
4060485 | Eaton | Nov 1977 | A |
4209392 | Wallace | Jun 1980 | A |
4371385 | Johnson | Feb 1983 | A |
4374382 | Markowitz | Feb 1983 | A |
4376707 | Lehmann | Mar 1983 | A |
4381999 | Boucher | May 1983 | A |
4460555 | Thompson | Jul 1984 | A |
4556063 | Thompson | Dec 1985 | A |
4562751 | Nason | Jan 1986 | A |
4581141 | Ash | Apr 1986 | A |
4650587 | Polak | Mar 1987 | A |
4678408 | Mason | Jul 1987 | A |
4685903 | Cable | Aug 1987 | A |
4750494 | King | Jun 1988 | A |
4816162 | Rosskopf et al. | Mar 1989 | A |
4826663 | Alberti | May 1989 | A |
4828693 | Lindsay | May 1989 | A |
5015388 | Pusineri | May 1991 | A |
5080653 | Voss | Jan 1992 | A |
5092886 | Dobos-Hardy | Mar 1992 | A |
5097122 | Colman | Mar 1992 | A |
5127404 | Wyborny | Jul 1992 | A |
5230702 | Lindsay et al. | Jul 1993 | A |
5284470 | Beltz | Feb 1994 | A |
5302288 | Meidl | Apr 1994 | A |
5305745 | Zacouto | Apr 1994 | A |
5308315 | Khuri | May 1994 | A |
5318750 | Lascombes | Jun 1994 | A |
5468388 | Goddard | Nov 1995 | A |
5507723 | Keshaviah | Apr 1996 | A |
5662806 | Keshaviah et al. | Sep 1997 | A |
5683432 | Goedeke | Nov 1997 | A |
5762782 | Kenley | Jun 1998 | A |
5849179 | Emerson et al. | Dec 1998 | A |
5858186 | Glass | Jan 1999 | A |
5944684 | Roberts | Aug 1999 | A |
6048732 | Anslyn | Apr 2000 | A |
6052622 | Holmstrom | Apr 2000 | A |
6058331 | King | May 2000 | A |
6114176 | Edgson et al. | Sep 2000 | A |
6126831 | Goldau et al. | Oct 2000 | A |
6230059 | Duffin | May 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6254567 | Treu | Jul 2001 | B1 |
6321101 | Holmstrom | Nov 2001 | B1 |
6362591 | Moberg | Mar 2002 | B1 |
6363279 | Ben-Haim | Mar 2002 | B1 |
6521184 | Edgson et al. | Feb 2003 | B1 |
6554798 | Mann | Apr 2003 | B1 |
6555986 | Moberg | Apr 2003 | B2 |
6589229 | Connelly | Jul 2003 | B1 |
6602399 | Fromherz | Aug 2003 | B1 |
6627164 | Wong | Sep 2003 | B1 |
6666840 | Falkvall et al. | Dec 2003 | B1 |
6676608 | Keren | Jan 2004 | B1 |
6711439 | Bradley | Mar 2004 | B1 |
6719745 | Taylor | Apr 2004 | B1 |
6814724 | Taylor | Nov 2004 | B2 |
6818196 | Wong | Nov 2004 | B2 |
6861266 | Sternby | Mar 2005 | B1 |
6878283 | Thompson | Apr 2005 | B2 |
6960179 | Gura | Nov 2005 | B2 |
7033498 | Wong | Apr 2006 | B2 |
7077819 | Goldau | Jul 2006 | B1 |
7101519 | Wong | Sep 2006 | B2 |
7208092 | Micheli | Apr 2007 | B2 |
7241272 | Karoor et al. | Jul 2007 | B2 |
7276042 | Polaschegg et al. | Oct 2007 | B2 |
7326576 | Womble et al. | Feb 2008 | B2 |
7435342 | Tsukamoto | Oct 2008 | B2 |
7488447 | Sternby | Feb 2009 | B2 |
7537688 | Tarumi et al. | May 2009 | B2 |
7544300 | Brugger et al. | Jun 2009 | B2 |
7544737 | Poss et al. | Jun 2009 | B2 |
7563240 | Gross et al. | Jul 2009 | B2 |
7566432 | Wong | Jul 2009 | B2 |
7575564 | Childers | Aug 2009 | B2 |
7597806 | Uchi et al. | Oct 2009 | B2 |
7674231 | McCombie | Mar 2010 | B2 |
7704361 | Garde | Apr 2010 | B2 |
7736507 | Wong | Jun 2010 | B2 |
7754852 | Burnett | Jul 2010 | B2 |
7756572 | Fard | Jul 2010 | B1 |
7776210 | Rosenbaum | Aug 2010 | B2 |
7794141 | Perry | Sep 2010 | B2 |
7794419 | Paolini et al. | Sep 2010 | B2 |
7850635 | Polaschegg et al. | Dec 2010 | B2 |
7867214 | Childers | Jan 2011 | B2 |
7922686 | Childers et al. | Apr 2011 | B2 |
7922911 | Micheli | Apr 2011 | B2 |
7947179 | Rosenbaum | May 2011 | B2 |
7955290 | Karoor et al. | Jun 2011 | B2 |
7967022 | Grant | Jun 2011 | B2 |
7981082 | Wang | Jul 2011 | B2 |
7988854 | Tsukamoto | Aug 2011 | B2 |
8002726 | Karoor et al. | Aug 2011 | B2 |
8029454 | Kelly et al. | Oct 2011 | B2 |
8034161 | Gura | Oct 2011 | B2 |
8066658 | Karoor et al. | Nov 2011 | B2 |
8070709 | Childers | Dec 2011 | B2 |
8080161 | Ding et al. | Dec 2011 | B2 |
8087303 | Beavis | Jan 2012 | B2 |
8096969 | Roberts | Jan 2012 | B2 |
8180574 | Lo et al. | May 2012 | B2 |
8183046 | Lu | May 2012 | B2 |
8187250 | Roberts et al. | May 2012 | B2 |
8197439 | Wang et al. | Jun 2012 | B2 |
8246826 | Wilt | Aug 2012 | B2 |
8273049 | Demers | Sep 2012 | B2 |
8292594 | Tracey | Oct 2012 | B2 |
8303532 | Hamada et al. | Nov 2012 | B2 |
8313642 | Yu | Nov 2012 | B2 |
8317492 | Demers | Nov 2012 | B2 |
8357113 | Childers | Jan 2013 | B2 |
8366316 | Kamen | Feb 2013 | B2 |
8366655 | Kamen | Feb 2013 | B2 |
8404091 | Ding et al. | Mar 2013 | B2 |
8409441 | Wilt | Apr 2013 | B2 |
8409444 | Wong | Apr 2013 | B2 |
8499780 | Wilt | Aug 2013 | B2 |
8518260 | Raimann | Aug 2013 | B2 |
8535525 | Heyes | Sep 2013 | B2 |
8580112 | Updyke | Nov 2013 | B2 |
8597227 | Childers | Dec 2013 | B2 |
8696626 | Kirsch | Apr 2014 | B2 |
8777892 | Sandford | Jul 2014 | B2 |
8903492 | Soykan | Dec 2014 | B2 |
8906240 | Crnkovich | Dec 2014 | B2 |
9144640 | Pudil | Sep 2015 | B2 |
20020042561 | Schulman | Apr 2002 | A1 |
20020112609 | Wong | Aug 2002 | A1 |
20030080059 | Peterson et al. | May 2003 | A1 |
20030097086 | Gura | May 2003 | A1 |
20030105435 | Taylor | Jun 2003 | A1 |
20030114787 | Gura | Jun 2003 | A1 |
20040019312 | Childers et al. | Jan 2004 | A1 |
20040099593 | DePaolis | May 2004 | A1 |
20040102732 | Naghavi et al. | May 2004 | A1 |
20040147900 | Polaschegg | Jul 2004 | A1 |
20040215090 | Erkkila | Oct 2004 | A1 |
20050006296 | Sullivan | Jan 2005 | A1 |
20050065760 | Murtfeldt | Mar 2005 | A1 |
20050113796 | Taylor | May 2005 | A1 |
20050126961 | Bissler | Jun 2005 | A1 |
20050126998 | Childers | Jun 2005 | A1 |
20050150832 | Tsukamoto | Jul 2005 | A1 |
20050234381 | Niemetz | Oct 2005 | A1 |
20050274658 | Rosenbaum | Dec 2005 | A1 |
20060025661 | Sweeney | Feb 2006 | A1 |
20060195064 | Plahey | Aug 2006 | A1 |
20060217771 | Soykan | Sep 2006 | A1 |
20060226079 | Mori | Oct 2006 | A1 |
20060241709 | Soykan | Oct 2006 | A1 |
20060264894 | Moberg | Nov 2006 | A1 |
20070007208 | Brugger et al. | Jan 2007 | A1 |
20070066928 | Lannoy | Mar 2007 | A1 |
20070138011 | Hofmann | Jun 2007 | A1 |
20070175827 | Wariar | Aug 2007 | A1 |
20070179431 | Roberts et al. | Aug 2007 | A1 |
20070213665 | Curtin et al. | Sep 2007 | A1 |
20070215545 | Bissler | Sep 2007 | A1 |
20070255250 | Moberg | Nov 2007 | A1 |
20080006570 | Gura | Jan 2008 | A1 |
20080021337 | Li | Jan 2008 | A1 |
20080051696 | Curtin | Feb 2008 | A1 |
20080053905 | Brugger et al. | Mar 2008 | A9 |
20080067132 | Ross | Mar 2008 | A1 |
20080215247 | Tonelli | Sep 2008 | A1 |
20090020471 | Tsukamoto | Jan 2009 | A1 |
20090101577 | Fulkerson | Apr 2009 | A1 |
20090127193 | Updyke | May 2009 | A1 |
20090275849 | Stewart | Nov 2009 | A1 |
20090275883 | Chapman | Nov 2009 | A1 |
20090281484 | Childers | Nov 2009 | A1 |
20090282980 | Gura | Nov 2009 | A1 |
20100004588 | Yeh et al. | Jan 2010 | A1 |
20100007838 | Fujimoto | Jan 2010 | A1 |
20100010429 | Childers | Jan 2010 | A1 |
20100078381 | Merchant | Apr 2010 | A1 |
20100078387 | Wong | Apr 2010 | A1 |
20100084330 | Wong | Apr 2010 | A1 |
20100094158 | Solem | Apr 2010 | A1 |
20100100027 | Schilthuizen et al. | Apr 2010 | A1 |
20100102190 | Zhu et al. | Apr 2010 | A1 |
20100114012 | Sandford | May 2010 | A1 |
20100137693 | Porras | Jun 2010 | A1 |
20100168546 | Kamath | Jul 2010 | A1 |
20100217181 | Roberts et al. | Aug 2010 | A1 |
20100224492 | Ding et al. | Sep 2010 | A1 |
20100234795 | Wallenas | Sep 2010 | A1 |
20100241045 | Kelly | Sep 2010 | A1 |
20100282662 | Lee | Nov 2010 | A1 |
20110017665 | Updyke | Jan 2011 | A1 |
20110048949 | Ding et al. | Mar 2011 | A1 |
20110066043 | Banet | Mar 2011 | A1 |
20110077574 | Sigg | Mar 2011 | A1 |
20110079558 | Raimann | Apr 2011 | A1 |
20110087187 | Beck | Apr 2011 | A1 |
20110120930 | Mishkin | May 2011 | A1 |
20110130666 | Dong | Jun 2011 | A1 |
20110163034 | Castellarnau | Jul 2011 | A1 |
20110184340 | Tan | Jul 2011 | A1 |
20110272337 | Palmer | Nov 2011 | A1 |
20110297593 | Kelly | Dec 2011 | A1 |
20120016228 | Kroh | Jan 2012 | A1 |
20120083729 | Childers | Apr 2012 | A1 |
20120085707 | Beiriger | Apr 2012 | A1 |
20120115248 | Ansyln | May 2012 | A1 |
20120220528 | VanAntwerp | Aug 2012 | A1 |
20120248017 | Beiriger | Oct 2012 | A1 |
20120258546 | Marran | Oct 2012 | A1 |
20120273415 | Gerber | Nov 2012 | A1 |
20120273420 | Gerber | Nov 2012 | A1 |
20120277546 | Soykan | Nov 2012 | A1 |
20120277551 | Gerber | Nov 2012 | A1 |
20120277552 | Gerber | Nov 2012 | A1 |
20120277604 | Gerber | Nov 2012 | A1 |
20120277650 | Gerber | Nov 2012 | A1 |
20120277655 | Gerber | Nov 2012 | A1 |
20120277722 | Gerber | Nov 2012 | A1 |
20130037465 | Heyes | Feb 2013 | A1 |
20130199998 | Kelly | Aug 2013 | A1 |
20130213890 | Kelly | Aug 2013 | A1 |
20130274642 | Soykan | Oct 2013 | A1 |
20130324915 | Britton | Dec 2013 | A1 |
20130330208 | Ly | Dec 2013 | A1 |
20130331774 | Farrell | Dec 2013 | A1 |
20140018728 | Plahey | Jan 2014 | A1 |
20140042092 | Akonur | Feb 2014 | A1 |
20140065950 | Mendelsohn | Mar 2014 | A1 |
20140088442 | Soykan | Mar 2014 | A1 |
20140110340 | White | Apr 2014 | A1 |
20140110341 | White | Apr 2014 | A1 |
20140158538 | Collier | Jun 2014 | A1 |
20140158588 | Pudil | Jun 2014 | A1 |
20140158623 | Pudil | Jun 2014 | A1 |
20140190876 | Meyer | Jul 2014 | A1 |
20140217028 | Pudil | Aug 2014 | A1 |
20140217030 | Meyer | Aug 2014 | A1 |
20140220699 | Pudil | Aug 2014 | A1 |
20140251908 | Ding | Sep 2014 | A1 |
20150144539 | Pudil | May 2015 | A1 |
20150144542 | Pudil | May 2015 | A1 |
20150157960 | Pudil | Jun 2015 | A1 |
20150238673 | Gerber | Aug 2015 | A1 |
20150250937 | Pudil | Sep 2015 | A1 |
20150258268 | Collier | Sep 2015 | A1 |
20150352270 | Pudil | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
101883594 | Nov 2010 | CN |
0264695 | Oct 1987 | EP |
266795 | Nov 1987 | EP |
711182 | Jun 2003 | EP |
1364666 | Nov 2003 | EP |
0906768 | Feb 2004 | EP |
1450879 | Oct 2008 | EP |
1592494 | Jun 2009 | EP |
2100553 | Sep 2009 | EP |
2575827 | Dec 2010 | EP |
2100553 | Aug 2011 | EP |
2576453 | Dec 2011 | EP |
2701580 | Nov 2012 | EP |
2701595 | Nov 2012 | EP |
1545652 | Jan 2013 | EP |
1345856 | Mar 2013 | EP |
2344220 | Apr 2013 | EP |
2701596 | Mar 2014 | EP |
5099464 | Oct 2012 | JP |
9532010 | Nov 1995 | WO |
9937342 | Jul 1999 | WO |
0057935 | Oct 2000 | WO |
0066197 | Nov 2000 | WO |
0170307 | Sep 2001 | WO |
0185295 | Sep 2001 | WO |
0185295 | Nov 2001 | WO |
03043677 | May 2003 | WO |
03043680 | May 2003 | WO |
03051422 | Jun 2003 | WO |
2004008826 | Jan 2004 | WO |
2004009156 | Jan 2004 | WO |
2004030716 | Apr 2004 | WO |
2004030717 | Apr 2004 | WO |
2004064616 | Aug 2004 | WO |
2004062710 | Oct 2004 | WO |
2005123230 | Dec 2005 | WO |
2006124431 | Nov 2006 | WO |
2007089855 | Aug 2007 | WO |
2009026603 | Dec 2008 | WO |
2009026603 | Mar 2009 | WO |
2009067071 | May 2009 | WO |
2009157877 | Dec 2009 | WO |
2009157878 | Dec 2009 | WO |
2010028860 | Feb 2010 | WO |
2010028860 | Mar 2010 | WO |
2010102190 | Nov 2010 | WO |
2011025705 | Mar 2011 | WO |
2012148781 | Nov 2012 | WO |
2012148786 | Nov 2012 | WO |
2012148789 | Nov 2012 | WO |
2012162515 | Nov 2012 | WO |
2012172398 | Dec 2012 | WO |
2013019179 | Feb 2013 | WO |
2013019994 | Feb 2013 | WO |
2013025844 | Feb 2013 | WO |
2013028809 | Feb 2013 | WO |
2013019994 | Apr 2013 | WO |
2013025844 | May 2013 | WO |
2013103607 | Jul 2013 | WO |
2013103906 | Jul 2013 | WO |
2013114063 | Aug 2013 | WO |
2013121162 | Aug 2013 | WO |
14066254 | May 2014 | WO |
2014066255 | May 2014 | WO |
2014077082 | May 2014 | WO |
2014121162 | Aug 2014 | WO |
2014121163 | Aug 2014 | WO |
2014121167 | Aug 2014 | WO |
2014121169 | Aug 2014 | WO |
Entry |
---|
PCT/US2013/020404, International Search Report, Jan. 4, 2013. |
PCT/US2014/014357 International Search Report and Written Opinion, (May 2014). |
Weissman, S., et al., “Hydroxyurea-induced hepatitis in human immunodeficiency virus-positive patients.” Clin. Infec. Dis, (Jul. 29, 1999): 223-224. |
Wheaton, et al., Dowex Ion Exchange Resins—Fundamentals of Ion Exchange; Jun. 2000, pp. 1-9. http://www.dow.com/scripts/litorder.asp?filepath=liquidseps/pdfs/noreg/177-01837.pdf. |
MacLean, et, al., Effects of hindlimb contraction on pressor and muscle interstitial metabolite responses in the cat, J. App. Physiol., 1998, 1583-1592, 85 (4). |
Overgaard, et. al., Activity-induced recovery of excitability in K+-depressed rat soieus muscle, Am. J. P• Regulatory Integrative Comp Physiol, 280: R48-R55 (2001). |
Overgaard. et. al., Relations between excitability and contractility in rate soleus'muscle: role of the NA+-K+ pump and NA+-K-S gradients. Journal of Physiology, 1999, 215-225, 518(1). |
Roberts M, The regenerative dialysis (REDY) sorbent system. Nephrology, 1998, 275-278:4. |
Ronco et al. 2008, ‘Cardiorenal Syndrome,’ Journal American College Cardiology, 52:1527-1539, Abstract. |
Siegenthalar, et al., Pulmonary fluid status monitoring with intrathoracic impedance, Journal of Clinical Monitoring and Computing, 24:449-451, 2010. |
U.S. Appl. No. 13/424,479. |
Wang, Fundamentals of intrathoracic impedance monitoring in heart failure, Am. J. Cardiology, 2007, 3G-10G: Suppl. |
PCT/US2014/067650 International Search Report Written Opinion mailed Mar. 9, 2015. |
Brynda, et. al., The detection of toman 2-microglcbuiin by grating coupler immunosensor with three dimensional antibody networks. Biosensors & Bioelectronics, 1999, 363-368, 14(4). |
Lima, et. al., An electrochemical sensor based on nanostructure hollsndite-type manganese oxide for detection of potassium ion, Sensors, 2009, 6613-8625, 9. |
Nedelkov, et. al., Design of buffer exchange surfaces and sensor chips for biosensor chip mass spectrometry, Proteomics, 2002, 441-446, 2(4). |
PCT/US/2012/034327, International Search Report, Aug. 13, 2013. |
PCT/US2012/034331, International Search Report, Jul. 9, 2012. |
PCT/US2012/034332, International Search Report, Jul. 5, 2012. |
PCT/US2012/034334, International Search Report, Jul. 6, 2012. |
PCT/US2012/034335, International Search Report, Sep. 5, 2012. |
Redfield, et. al, Restoration of renal response to atrial natriuretic factor in experimental low-output heat failure, Am. J. Physiol., 1989, R917-923:257. |
Rogoza, et. al., Validation of A&D UA-767 device for the self-measurement of blood pressure, Blood Pressure Monitoring, 2000, 227-231, 5(4). |
Secemsky, et. al, High prevalence of cardiac autonomic dysfunction and T-wave alternans in dialysis patients. Heart Rhythm, Apr. 2011, 592-598 : vol. 8, No. 4. |
Wei, et. al., Fullerene-cryptand coated piezoelectric crystal urea sensor based on urease, Analytica Chimica Acta, 2001,77-85:437. |
Zhong, et. al., Miniature urea sensor based on H(+)-ion sensitive field effect transistor and its application in clinical analysis, Chin. J. Biotechnol., 1992, 57-65. 8(1). |
Leifer et al., ‘A Study on the Temperature Variation of Rise Velocity for Large Clean Bubbles,’ J. Atmospheric & Oceanic Tech., vol. 17, pp. 1392-1402, (Oct. 2000). |
Culleton, BF et al. Effect of Frequent Nocturnal Hemodialysis vs. Conventional Hemodialysis on Left Ventricular Mass and Quality of Life. 2007 Journal of the American Medical Association 298 (11), 1291-1299. |
Talaia, ‘Terminal Velocity of a Bubble Rise in a Liquid Column,’ World Acad. of Sci., Engineering & Tech., vol. 28, pp. 264-268 (2007). |
The FHN Trial Group. In-Center. Hemodialysis Six Times per Week versus Three Times per Week, New England Journal of Medicine, 2010 Abstract. |
Coast, et al. 1990, An approach to Cardiac Arrhythmia analysis Using Hidden Markov Models, IEEE Transactions on Biomedical Engineering. 1990, 37 (9):826-835. |
PCT/US2012/034330, International Preliminary Report on Patentability, Oct. 29, 2013. |
PCT/US2012/034333, International Preliminary Report on Patentability, Oct. 29, 2013. |
PCT/US2012/034333, International Search Report, Aug. 29, 2013. |
Bleyer, et. al., Sudden and cardiac death rated in hemodialysis patients, Kidney International. 1999, 1553-1559: 55. |
Weiner, et. al., Article: Cardiac Function and Cardiovascular Disease in Chronic Kidney Disease, Book: Primer on Kidney Diseases (Author: Greenberg, et al), 2009,499-505, 5th Ed., Saunders Elsevier, Philadelphia, PA. |
Gambro AK 96 Dialysis Machine Operator's Manual, Dec. 2012. |
Number | Date | Country | |
---|---|---|---|
20150258268 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
61583001 | Jan 2012 | US |