Angioplasty and stenting of blood vessels or other body lumens are commonly performed today. Angioplasty is often performed by expanding a balloon in a vessel in order to reduce or eliminate plaque or other blockages. In many cases, a stent is also implanted in the vessel in order to further ensure a positive clinical result. A stent is an implantable scaffold that is typically delivered percutaneously and deployed in a vein, artery, or other tubular body organ for treating an occlusion, stenosis, aneurysm, collapse, dissection, or weakened, diseased, or abnormally dilated vessel or vessel wall. The stent is radially expanded in situ, thereby expanding and/or supporting the vessel wall or body organ wall. In particular, stents are quite commonly implanted in the coronary, cardiac, pulmonary, neurovascular, peripheral vascular, renal, gastrointestinal and reproductive systems. Stents have also been successfully used to reinforce other body parts, such as the urinary tract, the bile duct, the esophagus, the tracheo-bronchial tree and the brain.
Stents may improve angioplasty results by preventing elastic recoil and remodeling of the vessel wall. Stents also can be used to treat dissections in blood vessel walls that are caused by balloon angioplasty. In this situation, the stent is used to appose dissected intimal flaps of tissue which otherwise would extend into and block a vessel.
Conventional stents have also been used to treat more complex vascular problems, such as lesions at or near bifurcation points in the vascular system. A bifurcation is where a secondary artery (sometimes referred to as a side branch or daughter vessel) branches out of a typically larger vessel (sometimes referred to as the main branch or mother vessel). Stenting of bifurcations can present may challenges. For example, a stent that traverses the ostium of the side branch may obstruct blood flow into the side branch. Moreover, the struts in a stent may also block the side branch, limiting or preventing access to the side branch by another diagnostic or therapeutic device such as another catheter. This phenomenon is commonly referred to as “stent jailing.” In still other situations, inflation of balloons and expansion of stents in a bifurcation can result in undesirable plaque shifting, which is sometimes referred to as “snow plowing.” Other challenges with treatment of a bifurcated vessel can be the result of vessel spasm, dissection, thrombosis, etc.
More recently stents and balloons have also been used to elute drugs locally to the treatment site. Drugs such as rapamycin, everolimus, biolimus A9 and other analogs of rapamycin, as well as paclitaxel are promising in reducing restenosis rates, yet many of the aforementioned challenges of treating a bifurcation still exist.
It would therefore be desirable to provide improved medical devices and methods for treating bifurcated vessels. It would also be desirable to provide improved medical devices and methods that are easier to use, safer, more reliable, and that provide a better clinical outcome compared with currently available medical devices.
Therefore, given the challenges of current stent technology, a need exists for improved stent delivery systems and methods, particularly for treating bifurcated vessels. At least some of these objectives will be met by the present invention.
The present invention relates to methods and delivery systems used to dilate and/or deliver stents in a bifurcated vessel. Embodiments may be configured to stent at least a portion of a mother vessel and a portion of a daughter vessel.
In a first aspect of the present invention, a system for treating a patient's bifurcated vessel having a main branch and a side branch comprises a first delivery catheter and a second delivery catheter. The first delivery catheter carries a first stent which comprises a proximal stent and a distal stent. The first delivery catheter also has a first elongate shaft with a proximal and a distal end. A proximal expandable member has the proximal stent disposed thereover, and a distal expandable member has the distal stent disposed thereover. The proximal and distal expandable members are disposed adjacent the distal end of the first elongate shaft. The proximal and distal expandable members each have a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the collapsed configuration profile. The proximal and the distal expandable members are independently expandable of one another.
The second delivery catheter carries a second stent, and also has a second elongate shaft with a proximal and a distal end. A second expandable member with the second stent disposed thereover is disposed adjacent the distal end of the second elongate shaft. The second expandable member has a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the profile in the collapsed configuration. The second expandable member is independently expandable of the proximal and the distal expandable members.
In another aspect of the present invention, a system for dilating a bifurcated vessel having a main branch and a side branch in a patient comprises a first delivery catheter and a second delivery catheter. The first delivery catheter has a first elongate shaft with a proximal and a distal end, a proximal expandable member, and a distal expandable member. The proximal and distal expandable members are disposed adjacent the distal end of the first elongate shaft. The proximal and distal expandable members each have a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the collapsed configuration profile. The proximal and distal expandable members are independently expandable of one another.
The second delivery catheter has a second elongate shaft with a proximal and a distal end, and a second expandable member. The second expandable member is disposed adjacent the distal end of the second elongate shaft. The second expandable member has a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the profile in the collapsed configuration. The second expandable member is independently expandable of the proximal and the distal expandable members.
The first delivery catheter may be adapted to deliver the proximal and distal stents to the main branch adjacent the bifurcation. The second delivery catheter may be adapted to deliver the second stent to the side branch adjacent the bifurcation. A portion of the second delivery catheter may be disposed under a portion of the proximal stent or under a portion of the distal stent, or under a portion of both. The second delivery catheter may be axially slidable relative to the first delivery catheter. The first elongate shaft may comprise a lumen which extends at least partially between proximal and distal ends of the first elongate shaft, and the lumen may be sized to slidably receive the second elongate shaft. The second delivery catheter may be fixed relative to the first delivery catheter so that relative axial movement between the two delivery catheters is prohibited.
Each of the stents may have a collapsed configuration suitable for delivery to the bifurcation, and a radially expanded configuration adapted to engage and support a vessel wall at the bifurcation or adjacent the bifurcation. Each of the stents may be crimped to its respective expandable member so as to prevent ejection of the stent during advancement through a patient's vasculature. A proximal end of the distal stent in the collapsed configuration may abut a distal end of the proximal stent in the collapsed configuration. A proximal end of the distal stent may abut a distal end of the proximal stent so as to form a sidehole in the first stent. The proximal end of the distal stent may comprise a notched region, and the distal end of the proximal stent may also comprise a notched region. The second delivery catheter may slidably pass through the side hole in the first stent. A proximal end of the second stent may comprise a beveled section adapted to fit flush against a sidewall of the proximal stent or a sidewall of the distal stent. A proximal end of the second stent in the radially expanded configuration may be aligned with and abut a side of both the proximal stent in the radially expanded configuration and a side of the distal stent in the radially expanded configuration.
A gap may separate the proximal and the distal expandable members when both the proximal and the distal expandable members are in the collapsed configuration. The gap may be disposed between a proximal end of distal expandable member and a distal end of the proximal expandable member. Expansion of the proximal and the distal members may displace the proximal end of the distal expandable member relative to the distal end of the proximal expandable member so that the proximal end of the distal expandable member advances toward the distal end of the proximal expandable member. This may decrease the gap between the proximal and the distal expandable members. The proximal end of the distal expandable member may abut the distal end of the proximal expandable member when both the proximal and the distal expandable members are in the expanded configuration. The proximal expandable member, the distal expandable member, or the second expandable member may comprise a balloon. A proximal end of the second expandable member may abut a side of both the proximal and the distal expandable members when the proximal, the distal, and the second expandable members are in the radially expanded configuration.
At least one of the first elongate shaft or the second elongate shaft may comprise a guidewire lumen extending at least partially between its proximal and distal ends. The guidewire lumen may be sized to slidably receive a guidewire. The first elongate shaft may comprise a proximal guidewire port and a distal guidewire port adjacent the distal end thereof, and the proximal guidewire port may be closer to the proximal end of the first elongate shaft than the distal end of the first elongate shaft. The proximal guidewire port may be closer to the distal guidewire port than the proximal end of the first elongate shaft. The second elongate shaft may comprise a proximal guidewire port and a distal guidewire port adjacent the distal end thereof, and the proximal guidewire port may be closer to the proximal end of the second elongate shaft than the distal end of the second elongate shaft. The proximal guidewire port may be closer to the distal guidewire port than the proximal end of the second elongate shaft.
In still another aspect of the present invention, a method for treating a bifurcated vessel having a main branch and a side branch in patient comprises providing a first delivery catheter and a second delivery catheter. The first delivery catheter comprises a proximal expandable member, a distal expandable member and a first stent. The proximal and distal expandable members are disposed near a distal end of the first delivery catheter. The first stent comprises a proximal stent and a distal stent. The proximal stent is disposed over the proximal expandable member, and the distal stent is disposed over the distal expandable member. A distal portion of the proximal stent comprises a notched region, and a proximal portion of the distal stent comprises a notched region. The two notched regions are adjacent one another to form a side hole in the first stent.
The second delivery catheter comprises a second expandable member and a second stent. The second expandable member is disposed near a distal end of the second delivery catheter, and the second stent is disposed over the second expandable member. The second delivery catheter passes through the side hole in the first stent. Advancing the first and the second delivery catheter positions the two catheters toward the bifurcation so that the side hole in the first stent may be aligned with the side branch. The second stent is radially expanded from a collapsed configuration to an expanded configuration. The proximal stent is radially expanded from a collapsed configuration to an expanded configuration, and the distal stent is radially expanded from a collapsed configuration to an expanded configuration.
Advancing the first and the second delivery catheters may comprise advancing the first delivery catheter or the second delivery catheter over a guidewire. Aligning the side hole may comprise advancing the first delivery catheter and the second delivery catheter until one or more of the delivery catheters engage a carina of the bifurcation.
Radially expanding the second stent may comprise expanding the second stent to engage a wall of the side branch or a wall of the main branch. Radially expanding the second stent may also comprise expanding the second expandable member. The second expandable member may comprise a balloon, and expanding the second expandable member may comprise inflating the balloon. The second stent may be radially expanded prior to radial expansion of the proximal stent or the distal stent.
Radially expanding the proximal stent may comprise expanding the proximal stent to engage a wall of the main branch. Radially expanding the proximal stent may also comprise expanding the proximal expandable member. The proximal expandable member may comprise a balloon, and expanding the proximal expandable member may comprise inflating the balloon. The proximal stent may be radially expanded before radial expansion of the distal stent.
Radially expanding the distal stent may comprise expanding the distal stent to engage a wall of the main branch or a wall of the side branch. Radially expanding the distal stent may also comprise expanding the distal expandable member. The distal expandable member may comprise a balloon, and expanding the distal expandable member may comprise inflating the balloon.
The method may further comprise proximally retracting the second delivery catheter so that a proximal end of the second stent is aligned with the side hole in the first stent. A proximal end of the second stent may be aligned with an ostium of the side branch. Proximally retracting the second delivery catheter may comprise aligning a radiopaque maker on the second delivery catheter with a radiopaque marker on the first delivery catheter. Proximally retracting the second delivery catheter may comprise sliding the second delivery catheter under a portion of the first stent. The second delivery catheter may slide under a portion of the proximal stent or under a portion of the distal stent. Proximally retracting the second delivery catheter may comprise sliding the second delivery catheter through the side hole in the first stent. A proximal portion of the second stent may abut both a distal portion of the proximal stent and a proximal portion of the distal stent after radial expansion of the proximal stent, the distal stent, and the second stent. The distal portion of the proximal stent may abut the proximal portion of the distal stent after radial expansion of the stents.
In still another aspect of the present invention, a method for treating a bifurcated vessel having a main branch and a side branch in a patient comprises providing a first delivery catheter and a second delivery catheter. The first delivery catheter comprises a proximal expandable member, a distal expandable member and a first stent. The proximal and distal expandable members are disposed near a distal end of the first delivery catheter. The first stent comprises a proximal stent and a distal stent. The proximal stent is disposed over the proximal expandable member, and the distal stent is disposed over the distal expandable member. A distal portion of the proximal stent comprises a notched region, and a proximal portion of the distal stent comprises a notched region. The notched regions are adjacent one another to form a side hole in the first stent.
The second delivery catheter comprises a second expandable member and a second stent. The second expandable member is disposed near a distal end of the second delivery catheter, and the second stent is disposed over the second expandable member. The second delivery catheter passes through the side hole in the first stent. Advancing the first and second delivery catheters positions them toward the bifurcation. The first stent and the second stent are positioned at the bifurcation such that the proximal stent is disposed in the main branch, the distal stent is disposed in the side branch, and the second stent is disposed in the main branch downstream of the bifurcation. The side hole in the first stent is aligned with the main branch and faces downstream of the bifurcation. The distal stent is radially expanded from a collapsed configuration to an expanded configuration. The proximal stent is radially expanded from a collapsed configuration to an expanded configuration. The second stent is radially expanded from a collapsed configuration to an expanded configuration.
In yet another aspect of the present invention, a method for treating a bifurcated vessel having a main branch and a side branch in a patient comprises providing a first delivery catheter and a second delivery catheter. The first delivery catheter comprises a proximal expandable member and a distal expandable member. The proximal and distal expandable members are disposed near a distal end of the first delivery catheter, and the expandable members are independently expandable from one another. The second delivery catheter comprises a second expandable member disposed near a distal end thereof. The first and second delivery catheters are advanced toward the bifurcation and the second expandable member is positioned in the side branch. The proximal and distal expandable members are positioned in the main branch so that the proximal expandable member is at least partially upstream of the bifurcation, and the distal expandable member is at least partially downstream of the bifurcation. The second expandable member is radially expanded from a collapsed configuration to an expanded configuration. The proximal expandable member is radially expanded from a collapsed configuration to an expanded configuration. The distal expandable member is radially expanded from a collapsed configuration to an expanded configuration.
Radially expanding the second expandable member may comprise expanding the second expandable member into engagement with a wall of the side branch or the main branch. The second expandable member may comprise a balloon, and expanding the second expandable member may comprise inflating the balloon. The second expandable member may be expanded prior to radial expansion of the proximal expandable member or the distal expandable member.
Radially expanding the proximal expandable member may comprise expanding the proximal expandable member to engage a wall of the main branch. The proximal expandable member may comprise a balloon, and expanding the expandable member may comprise inflating the balloon. The proximal expandable member may be expanded before radial expansion of the distal expandable member, or before expansion of the second expandable member. The proximal expandable member may also be expanded simultaneously with the distal expandable member, the second expandable member, or simultaneously with both.
Radially expanding the distal expandable member may comprise expanding the distal expandable member to engage a wall of the main branch or the side branch. The distal expandable member may comprise a balloon, and expanding the distal expandable member may comprise inflating the balloon. The distal expandable member may be expanded before expansion of the proximal expandable member or second expandable member.
The method may further comprise proximally retracting the second delivery catheter so that a proximal end of the second expandable member is aligned with an ostium of the side branch. Proximally retracting the second delivery catheter may comprise sliding the second delivery catheter under a portion of the proximal expandable member. Both the proximal and distal expandable members may be radially expanded simultaneously. A proximal portion of the distal expandable member may engage a distal portion of the proximal expandable member.
In still another aspect of the present invention, a method for treating a bifurcated vessel having a main branch and a side branch in a patient comprises providing a first delivery catheter and a second delivery catheter. The first delivery catheter comprises a proximal expandable member and a distal expandable member. The proximal and distal expandable members are disposed near a distal end of the first delivery catheter. The proximal and the distal expandable members are independently expandable from one another. The second delivery catheter comprises a second expandable member disposed near a distal end thereof. The first and second delivery catheters are advanced toward the bifurcation, and the proximal expandable member is positioned in the main branch adjacent the bifurcation. The distal expandable member is positioned in the side branch adjacent the bifurcation. The second expandable member is positioned in the main branch downstream of the proximal expandable member. The distal expandable member is radially expanded from a collapsed configuration to an expanded configuration. The proximal expandable member is radially expanded from a collapsed configuration to an expanded configuration. The second expandable member is radially expanded from a collapsed configuration to an expanded configuration.
In yet another aspect of the present invention, a system for treating a patient with a trifurcated vessel having a main branch, a first side branch, and a second side branch comprises a first delivery catheter, a second delivery catheter and a third delivery catheter. The first delivery catheter carries a first stent. The first stent comprises a proximal stent and a distal stent. The first delivery catheter also has a proximal elongate shaft with a proximal and a distal end, and a distal elongate shaft with a proximal and distal end. The proximal elongate shaft comprises a proximal expandable member with the proximal stent disposed thereover, and the distal elongate shaft comprises a distal expandable member with the distal stent disposed thereover. The proximal and distal expandable members are disposed adjacent the distal end of the first delivery catheter. The proximal and distal expandable members each have a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the collapsed configuration profile. The proximal and distal expandable members are independently expandable of one another. The second delivery catheter carries a second stent, and also has a second elongate shaft with a proximal and a distal end, and a second expandable member with the second stent disposed thereover. The second expandable member is disposed adjacent the distal end of the second elongate shaft. The second expandable member has a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the profile in the collapsed configuration. The second expandable member is independently expandable of the proximal and the distal expandable members. The third delivery catheter carries a third stent. The third delivery catheter also has a third elongate shaft with a proximal and a distal end, and a third expandable member with the third stent disposed thereover. The third expandable member is disposed adjacent the distal end of the third elongate shaft. The third expandable member has a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the profile in the collapsed configuration. The third expandable member is independently expandable of the second expandable member, and the proximal and the distal expandable members.
These and other embodiments are described in further detail in the following description related to the appended drawing figures.
The present invention relates to medical devices and methods, and more particularly to stent and dilatation delivery systems for treating bifurcated vessels having a main branch and a side branch. However, this is not intended to be limiting, and one of skill in the art will appreciate that the devices and methods described herein may be used to treat other regions of the body.
The scientific community is slowly moving away from a main branch vs. side branch model and nomenclature. It is now well accepted that a “mother” vessel bifurcates into two “daughter vessels,” that are anatomically after the carina. The vessel that appears to be the continuation of the mother vessel is usually less angulated. The other vessel may be commonly referred to as the side branch, or a daughter vessel. Therefore, in this specification, the terms “main branch,” “trunk,” or “mother vessel” may be used interchangeably. Also in this specification, the terms “side branch vessel” and “daughter vessel” may also be used interchangeably. The terms “main branch stent,” “trunk stent,” or “mother stent” are interchangeable, and the term “side branch stent” is also interchangeable with the term “daughter stent.” In the case where a main branch vessel bifurcates into two equally sized branches, one of the branches may still be considered to be the main branch or mother vessel, and the other branch may be considered a side branch or daughter vessel.
Systems for Treating a Bifurcation
Referring now to
The second catheter 125 also has an elongate shaft 126 having a proximal portion and a distal portion. An expandable member 134, here a balloon, is disposed on the elongate shaft 126, near it's distal end. A proximal 136a and distal 136b radiopaque marker may be coupled to the shaft 126 and aligned with the balloon 134 so that a physician may visualize the balloon under fluoroscopy. The radiopaque markers 136a, 136b are preferably located at the proximal and the distal working ends of the balloon 134. A proximal connector 130 is coupled to the proximal end of the shaft 126 and allows a syringe, inflation device, medical tubing, or other device to be fluidly coupled with an inflation lumen (not shown) which extends along the elongate shaft 126 and is fluidly coupled to the expandable member 134. A guidewire lumen 128 extends from a distal port 135 to a proximal port 132. In preferred embodiments, the proximal port 132 is closer to the distal port 135 than the proximal end of the elongate shaft 126. This configuration is often referred to as Rx or rapid exchange. The guidewire lumen may also optionally extend out the proximal end of the shaft to provide a catheter having what is commonly referred to as an over-the-wire configuration. In preferred embodiments, shaft 126 may extend slidably through a lumen 106 in the shaft 102 of the first catheter 101 so that the balloon 134 may be advanced or retracted relative to the distal balloon 110. In other embodiments, shaft 126 may be fixedly attached to shaft 102 with no relative movement between the two catheters. Balloon 134 may be expanded from a collapsed configuration having a low profile suitable for intravascular delivery to a target treatment site such as a bifurcated vessel, to a radially expanded configuration in which the balloons engage the walls of the target treatment site, such as a blood vessel wall. Any of the balloons 108, 110, 134 may be compliant, non-compliant, or semi-compliant. Moreover, any of the balloons 108, 110, 134 may have a substantially constant diameter, or they may be tapered to match the contours of a vessel. In preferred embodiments, the balloons are tapered and non-compliant.
The first catheter carries a first stent which is comprised of two discrete stents, a proximal stent 152 is disposed over the proximal balloon 108 on the first catheter 101, and a distal stent 154 is disposed over the distal balloon 110. A proximal end of the distal stent 154 abuts with a distal end of the proximal stent 108. The abutting ends of the two stents are formed so that when the two stents abut one another, a side hole 156 is created, allowing the second elongate shaft 126 to pass therethrough. Exemplary embodiments of the stent side hole are disclosed in greater detail below. The side hole 156 is preferably disposed about midway between the proximal and distal stents 152, 154, however, by changing stent lengths or by further modifying the abutting ends of the stents, the side hole may be disposed anywhere between the ends of the two stents 152, 154. A second stent 158, comprised of a single stent is disposed over balloon 134 on the second delivery catheter. Other aspects of delivery system 200 generally take the same form as those previously described above with respect to catheter system 100. The stents 152, 154, 158 are preferably balloon expandable, but may also be self-expanding, or combinations of balloon expandable and self-expanding. The stents 152, 154, 158 are radially expandable from a collapsed or crimped configuration having a profile adapted for intravascular delivery through a vessel, to an expanded configuration in which the stents engage and provide support for a target tissue such as a vessel wall. The stents may have any length, and in preferred embodiments, the proximal stent 152, and the distal stent 154 are substantially the same length. One of skill in the art will appreciate that this is not intended to be limiting, and stent length is dependent upon the length of the target tissue being treated.
For conventional cylindrical stents 175 having orthogonal ends, placement in a side branch may result in a region 178 of the side branch that is remains unscaffolded, as seen in
Methods of Treating a Bifurcation
In
Once the balloons on both catheters are properly aligned with the lesion, the bifurcation, and with one another, the balloons may be radially expanded in any order in order to treat the lesion L.
After the lesion has been successfully dilated, both proximal and distal balloons 108, 110 (and side branch balloon 134, if also expanded) are deflated as illustrated in
The exemplary method described above is not intended to be limiting. One of skill in the art will appreciate that a number of variations or changes may also be made. For example, any one or more of the balloons may be coated with a therapeutic agent such as an anti-restonois drug like rapamycin, everolimus, biolimus A9, other analogs of rapamycin, or paclitaxel to help reduce restenosis. Moreover, any order or combination of balloon inflation may also be used. For example, the proximal and distal balloons may be expanded prior to expansion of the side branch balloon, or the distal balloon maybe inflated before the proximal balloon. Other variations may include simultaneous inflation of the side branch balloon with the proximal balloon, or simultaneous inflation of the side branch balloon and the distal balloon. Any number of permutations are contemplated.
Additionally, in an alternative embodiment shown in
In
Once the stents on both catheters are properly aligned with the lesion, the bifurcation, and with one another, the balloons may be radially expanded thereby expanding the stents to treat the lesion.
After the lesion has been successfully stented, both proximal and distal balloons 108, 110 (and side branch balloon 134, if also expanded) are deflated as illustrated in
The exemplary method described above is not intended to be limiting. One of skill in the art will appreciate that a number of variations or changes may also be made. For example, any one or more of the balloons, stents, or combinations of balloons/stents may be coated with a therapeutic agent such as an anti-restonois drug like rapamycin, everolimus, biolimus A9, other analogs of rapamycin, or paclitaxel to help reduce restenosis. Moreover, any order or combination of balloon/stent expansion may be employed. For example, the proximal and distal balloons/stents may be expanded prior to expansion of the side branch balloon/stent, or the distal balloon/stent may be inflated before the proximal balloon/stent. Other variations may include simultaneous expansion of the side branch balloon/stent with the proximal balloon/stent, or simultaneous inflation of the side branch balloon/stent and the distal balloon/stent. Any number of permutations are contemplated.
Additionally, in an alternative embodiment shown in
Exemplary Balloon Configurations
Exemlary Stent Delivery Systems for Treating Trifucations
The embodiments described above are preferably used to treat bifurcated vessels. However, the basic embodiment may be expanded upon in order to treat trifurcated vessels such that those with a main branch and two side branches.
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 14/971,615 filed on Dec. 16, 2015, which is a continuation of U.S. patent application Ser. No. 13/796,466, filed on Mar. 12, 2013 now U.S. Pat. No. 9,254,210, which is a continuation of PCT International Application No. PCT/US2012/024366 filed on Feb. 8, 2012, which is a non-provisional of and claims the benefit of U.S. Provisional Patent Application No. 61/440,742 filed on Feb. 8, 2011; the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4069825 | Akiyama | Jan 1978 | A |
4468224 | Enzmann et al. | Aug 1984 | A |
4512338 | Balko et al. | Apr 1985 | A |
4564014 | Fogarty et al. | Jan 1986 | A |
4580568 | Gianturco | Apr 1986 | A |
4681110 | Wiktor | Jul 1987 | A |
4690684 | Mcgreevy et al. | Sep 1987 | A |
4733665 | Palmar | Mar 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4762129 | Bonzel | Aug 1988 | A |
4770176 | Mcgreevy et al. | Sep 1988 | A |
4775337 | Van Wagener et al. | Oct 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4886062 | Wiktor | Dec 1989 | A |
4891225 | Langer et al. | Jan 1990 | A |
4988356 | Crittenden et al. | Jan 1991 | A |
4994066 | Voss | Feb 1991 | A |
4994069 | Ritchart et al. | Feb 1991 | A |
5013318 | Spranza, III | May 1991 | A |
5040548 | Yock | Aug 1991 | A |
5064435 | Porter | Nov 1991 | A |
5092877 | Pinchuk | Mar 1992 | A |
5102417 | Palmaz | Apr 1992 | A |
5104404 | Wolff | Apr 1992 | A |
5122154 | Rhodes | Jun 1992 | A |
5135535 | Kramer | Aug 1992 | A |
5171222 | Euteneuer et al. | Dec 1992 | A |
5195984 | Schatz | Mar 1993 | A |
5217495 | Kaplan et al. | Jun 1993 | A |
5219355 | Parodi et al. | Jun 1993 | A |
5226913 | Pinchuk | Jul 1993 | A |
5246421 | Saab | Sep 1993 | A |
5273536 | Savas | Dec 1993 | A |
5282824 | Gianturco | Feb 1994 | A |
5300085 | Yock | Apr 1994 | A |
5312415 | Palermo | May 1994 | A |
5334187 | Fischell et al. | Aug 1994 | A |
5403341 | Solar | Apr 1995 | A |
5421955 | Lau et al. | Jun 1995 | A |
5456694 | Marin et al. | Oct 1995 | A |
5456713 | Chuter | Oct 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5478349 | Nicholas | Dec 1995 | A |
5490837 | Blaeser et al. | Feb 1996 | A |
5496346 | Horzewski et al. | Mar 1996 | A |
5501227 | Yock | Mar 1996 | A |
5507768 | Lau et al. | Apr 1996 | A |
5507771 | Gianturco | Apr 1996 | A |
5514093 | Ellis et al. | May 1996 | A |
5514154 | Lau et al. | May 1996 | A |
5527354 | Fontaine et al. | Jun 1996 | A |
5549551 | Peacock, III et al. | Aug 1996 | A |
5549563 | Kronner | Aug 1996 | A |
5549635 | Solar | Aug 1996 | A |
5554181 | Das | Sep 1996 | A |
5562725 | Schmitt et al. | Oct 1996 | A |
5571086 | Kaplan et al. | Nov 1996 | A |
5591228 | Edoga | Jan 1997 | A |
5593412 | Martinez et al. | Jan 1997 | A |
5607444 | Lam | Mar 1997 | A |
5607463 | Schwartz et al. | Mar 1997 | A |
5609627 | Goicoechea et al. | Mar 1997 | A |
5609629 | Fearnot et al. | Mar 1997 | A |
5628775 | Jackson et al. | May 1997 | A |
5632763 | Glastra | May 1997 | A |
5632772 | Alcime et al. | May 1997 | A |
5634928 | Fischell et al. | Jun 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5662675 | Polanskyj et al. | Sep 1997 | A |
5669924 | Shaknovich | Sep 1997 | A |
5670161 | Healy et al. | Sep 1997 | A |
5676654 | Ellis et al. | Oct 1997 | A |
5679400 | Tuch | Oct 1997 | A |
5683451 | Lenker et al. | Nov 1997 | A |
5697948 | Marin et al. | Dec 1997 | A |
5697967 | Dinh et al. | Dec 1997 | A |
5702418 | Ravenscroft | Dec 1997 | A |
5709701 | Parodi | Jan 1998 | A |
5716393 | Lindenberg et al. | Feb 1998 | A |
5722669 | Shimizu et al. | Mar 1998 | A |
5723003 | Winston et al. | Mar 1998 | A |
5735869 | Fernandez-Aceytuno | Apr 1998 | A |
5741323 | Pathak et al. | Apr 1998 | A |
5749848 | Jang et al. | May 1998 | A |
5749921 | Lenker et al. | May 1998 | A |
5755735 | Richter et al. | May 1998 | A |
5755771 | Penn et al. | May 1998 | A |
5755772 | Evans et al. | May 1998 | A |
5755776 | Al-Saadon | May 1998 | A |
5755781 | Jayaraman | May 1998 | A |
5769882 | Fogarty et al. | Jun 1998 | A |
5772669 | Vrba | Jun 1998 | A |
5776141 | Klein et al. | Jul 1998 | A |
5797951 | Mueller | Aug 1998 | A |
5800519 | Sandock | Sep 1998 | A |
5807398 | Shaknovich | Sep 1998 | A |
5824040 | Cox et al. | Oct 1998 | A |
5824041 | Lenker et al. | Oct 1998 | A |
5824048 | Tuch | Oct 1998 | A |
5827320 | Richter et al. | Oct 1998 | A |
5833694 | Poncet | Nov 1998 | A |
5836964 | Richter et al. | Nov 1998 | A |
5837008 | Berg et al. | Nov 1998 | A |
5843092 | Heller et al. | Dec 1998 | A |
5855563 | Kaplan et al. | Jan 1999 | A |
5858556 | Eckert et al. | Jan 1999 | A |
5870381 | Kawasaki et al. | Feb 1999 | A |
5879370 | Fischell et al. | Mar 1999 | A |
5891190 | Boneau | Apr 1999 | A |
5893887 | Jayaraman | Apr 1999 | A |
5895398 | Wensel et al. | Apr 1999 | A |
5899935 | Ding | May 1999 | A |
5902332 | Schatz | May 1999 | A |
5911754 | Kanesaka et al. | Jun 1999 | A |
5919175 | Sirhan | Jul 1999 | A |
5922020 | Klein et al. | Jul 1999 | A |
5961536 | Mickley et al. | Oct 1999 | A |
5968069 | Dusbabek et al. | Oct 1999 | A |
5972027 | Johnson | Oct 1999 | A |
5976107 | Mertens et al. | Nov 1999 | A |
5976155 | Foreman et al. | Nov 1999 | A |
5980484 | Ressemann et al. | Nov 1999 | A |
5980486 | Enger | Nov 1999 | A |
5980514 | Kupiecki et al. | Nov 1999 | A |
5980552 | Pinchasik et al. | Nov 1999 | A |
5984957 | Lapewicz, Jr. et al. | Nov 1999 | A |
5997563 | Kretzers | Dec 1999 | A |
6004328 | Solar et al. | Dec 1999 | A |
6007517 | Anderson | Dec 1999 | A |
6017363 | Hojeibane | Jan 2000 | A |
6022359 | Frantzen | Feb 2000 | A |
6022374 | Imran | Feb 2000 | A |
6033434 | Borghi | Mar 2000 | A |
6036725 | Avellanet | Mar 2000 | A |
6039721 | Johnson et al. | Mar 2000 | A |
6042589 | Marianne | Mar 2000 | A |
6048361 | Von Oepen | Apr 2000 | A |
6056722 | Jayaraman | May 2000 | A |
6056775 | Borghi et al. | May 2000 | A |
6059811 | Pinchasik et al. | May 2000 | A |
6059824 | Taheri | May 2000 | A |
6066155 | Amann et al. | May 2000 | A |
6068655 | Seguin et al. | May 2000 | A |
6070589 | Keith et al. | Jun 2000 | A |
6086604 | Fischell et al. | Jul 2000 | A |
6090063 | Makower et al. | Jul 2000 | A |
6090136 | Mcdonald et al. | Jul 2000 | A |
6096071 | Yadav | Aug 2000 | A |
6096073 | Webster et al. | Aug 2000 | A |
6099497 | Adams et al. | Aug 2000 | A |
6102942 | Ahari | Aug 2000 | A |
6106530 | Harada | Aug 2000 | A |
RE36857 | Euteneuer et al. | Sep 2000 | E |
6117117 | Mauch | Sep 2000 | A |
6120522 | Vrba et al. | Sep 2000 | A |
6123712 | Di Caprio et al. | Sep 2000 | A |
6123723 | Konya | Sep 2000 | A |
6126685 | Lenker et al. | Oct 2000 | A |
6129738 | Lashinski et al. | Oct 2000 | A |
6129756 | Kugler et al. | Oct 2000 | A |
6132460 | Thompson | Oct 2000 | A |
6136011 | Stambaugh | Oct 2000 | A |
6142973 | Carleton et al. | Nov 2000 | A |
6143016 | Bleam et al. | Nov 2000 | A |
6165167 | Delaloye | Dec 2000 | A |
6165210 | Lau et al. | Dec 2000 | A |
6179878 | Duerig et al. | Jan 2001 | B1 |
6183509 | Dibie | Feb 2001 | B1 |
6187034 | Frantzen | Feb 2001 | B1 |
6190402 | Horton et al. | Feb 2001 | B1 |
6196995 | Fagan | Mar 2001 | B1 |
6200337 | Moriuchi et al. | Mar 2001 | B1 |
6210429 | Vardi et al. | Apr 2001 | B1 |
6231600 | Zhong | May 2001 | B1 |
6238991 | Suzuki | May 2001 | B1 |
6241691 | Ferrera et al. | Jun 2001 | B1 |
6251132 | Ravenscroft et al. | Jun 2001 | B1 |
6251134 | Alt et al. | Jun 2001 | B1 |
6254612 | Hieshima | Jul 2001 | B1 |
6254628 | Wallace et al. | Jul 2001 | B1 |
6258117 | Camrud et al. | Jul 2001 | B1 |
6258121 | Yang et al. | Jul 2001 | B1 |
6264682 | Wilson et al. | Jul 2001 | B1 |
6264688 | Herklotz et al. | Jul 2001 | B1 |
6267783 | Letendre et al. | Jul 2001 | B1 |
6273895 | Pinchuk et al. | Aug 2001 | B1 |
6273911 | Cox et al. | Aug 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6312458 | Golds | Nov 2001 | B1 |
6315794 | Richter | Nov 2001 | B1 |
6319277 | Rudnick et al. | Nov 2001 | B1 |
6322586 | Monroe et al. | Nov 2001 | B1 |
6325823 | Horzewski et al. | Dec 2001 | B1 |
6325826 | Vardi et al. | Dec 2001 | B1 |
6326826 | Lee et al. | Dec 2001 | B1 |
6334871 | Dor et al. | Jan 2002 | B1 |
6344053 | Boneau | Feb 2002 | B1 |
6344056 | Dehdashtian | Feb 2002 | B1 |
6344272 | Oldenburg et al. | Feb 2002 | B1 |
6357104 | Myers | Mar 2002 | B1 |
6361555 | Wilson | Mar 2002 | B1 |
6375676 | Cox | Apr 2002 | B1 |
6379365 | Diaz | Apr 2002 | B1 |
6383171 | Gifford et al. | May 2002 | B1 |
6383215 | Sass | May 2002 | B1 |
6398807 | Chouinard et al. | Jun 2002 | B1 |
6409753 | Brown et al. | Jun 2002 | B1 |
6415696 | Erickson et al. | Jul 2002 | B1 |
6419693 | Fariabi | Jul 2002 | B1 |
6428811 | West et al. | Aug 2002 | B1 |
6443982 | Israel et al. | Sep 2002 | B1 |
6451025 | Jervis | Sep 2002 | B1 |
6451050 | Rudakov et al. | Sep 2002 | B1 |
6464720 | Boatman et al. | Oct 2002 | B2 |
6468298 | Pelton | Oct 2002 | B1 |
6468299 | Stack et al. | Oct 2002 | B2 |
6485510 | Camrud et al. | Nov 2002 | B1 |
6485511 | Lau et al. | Nov 2002 | B2 |
6488694 | Lau et al. | Dec 2002 | B1 |
6488702 | Besselink | Dec 2002 | B1 |
6488703 | Kveen et al. | Dec 2002 | B1 |
6511468 | Cragg et al. | Jan 2003 | B1 |
6514281 | Blaeser et al. | Feb 2003 | B1 |
6520986 | Martin et al. | Feb 2003 | B2 |
6520987 | Plante | Feb 2003 | B1 |
6520988 | Colombo et al. | Feb 2003 | B1 |
6527789 | Lau et al. | Mar 2003 | B1 |
6527799 | Shanley | Mar 2003 | B2 |
6529549 | Norrell et al. | Mar 2003 | B1 |
6530944 | West et al. | Mar 2003 | B2 |
6540777 | Stenzel | Apr 2003 | B2 |
6540779 | Richter et al. | Apr 2003 | B2 |
6551350 | Thornton et al. | Apr 2003 | B1 |
6555157 | Hossainy | Apr 2003 | B1 |
6569180 | Sirhan et al. | May 2003 | B1 |
6575993 | Yock | Jun 2003 | B1 |
6579305 | Lashinski | Jun 2003 | B1 |
6579309 | Loos et al. | Jun 2003 | B1 |
6582394 | Reiss et al. | Jun 2003 | B1 |
6582460 | Cryer | Jun 2003 | B1 |
6585756 | Strecker | Jul 2003 | B1 |
6592549 | Gerdts et al. | Jul 2003 | B2 |
6592568 | Campbell | Jul 2003 | B2 |
6596020 | Vardi et al. | Jul 2003 | B2 |
6596022 | Lau et al. | Jul 2003 | B2 |
6599296 | Gillick et al. | Jul 2003 | B1 |
6599314 | Mathis | Jul 2003 | B2 |
6602282 | Yan | Aug 2003 | B1 |
6605062 | Hurley et al. | Aug 2003 | B1 |
6605109 | Fiedler | Aug 2003 | B2 |
6607553 | Healy et al. | Aug 2003 | B1 |
6645517 | West et al. | Nov 2003 | B2 |
6645547 | Shekalim et al. | Nov 2003 | B1 |
6656212 | Ravenscroft et al. | Dec 2003 | B2 |
6660031 | Tran et al. | Dec 2003 | B2 |
6660381 | Halas et al. | Dec 2003 | B2 |
6666883 | Seguin et al. | Dec 2003 | B1 |
6676695 | Solem | Jan 2004 | B2 |
6679909 | Mcintosh et al. | Jan 2004 | B2 |
6685721 | Kramer | Feb 2004 | B1 |
6685730 | West et al. | Feb 2004 | B2 |
6689156 | Davidson et al. | Feb 2004 | B1 |
6692465 | Kramer | Feb 2004 | B2 |
6692483 | Vardi et al. | Feb 2004 | B2 |
6699280 | Camrud et al. | Mar 2004 | B2 |
6699724 | West | Mar 2004 | B1 |
6702843 | Brown et al. | Mar 2004 | B1 |
6706062 | Vardi et al. | Mar 2004 | B2 |
6709379 | Brandau et al. | Mar 2004 | B1 |
6709440 | Callol et al. | Mar 2004 | B2 |
6712827 | Ellis et al. | Mar 2004 | B2 |
6712845 | Hossainy | Mar 2004 | B2 |
6723071 | Gerdts et al. | Apr 2004 | B2 |
6736842 | Healy et al. | May 2004 | B2 |
6743251 | Eder | Jun 2004 | B1 |
6749628 | Callol et al. | Jun 2004 | B1 |
6761734 | Suhr | Jul 2004 | B2 |
6770091 | Richter et al. | Aug 2004 | B2 |
6778316 | Halas et al. | Aug 2004 | B2 |
6800065 | Duane et al. | Oct 2004 | B2 |
6811566 | Penn et al. | Nov 2004 | B1 |
6825203 | Pasternak et al. | Nov 2004 | B2 |
6835203 | Vardi et al. | Dec 2004 | B1 |
6837901 | Rabkin et al. | Jan 2005 | B2 |
6849084 | Rabkin et al. | Feb 2005 | B2 |
6852252 | Halas et al. | Feb 2005 | B2 |
6855125 | Shanley | Feb 2005 | B2 |
6858034 | Hijlkema et al. | Feb 2005 | B1 |
6875228 | Pinchasik et al. | Apr 2005 | B2 |
6878161 | Lenker | Apr 2005 | B2 |
6879370 | Yokoue et al. | Apr 2005 | B2 |
6884258 | Vardi et al. | Apr 2005 | B2 |
6893417 | Gribbons et al. | May 2005 | B2 |
6896695 | Mueller et al. | May 2005 | B2 |
6908477 | Mcguckin, Jr. et al. | Jun 2005 | B2 |
6918928 | Wolinsky et al. | Jul 2005 | B2 |
6939376 | Shulze et al. | Sep 2005 | B2 |
6945989 | Betelia et al. | Sep 2005 | B1 |
6945995 | Nicholas | Sep 2005 | B2 |
6949120 | Kveen et al. | Sep 2005 | B2 |
6951053 | Padilla et al. | Oct 2005 | B2 |
6955687 | Richter et al. | Oct 2005 | B2 |
6955688 | Wilson et al. | Oct 2005 | B2 |
6962602 | Vardi et al. | Nov 2005 | B2 |
6989026 | Richter et al. | Jan 2006 | B2 |
7005454 | Brocchini et al. | Feb 2006 | B2 |
7037327 | Salmon et al. | May 2006 | B2 |
7052510 | Richter | May 2006 | B1 |
7090694 | Morris et al. | Aug 2006 | B1 |
7101840 | Brocchini et al. | Sep 2006 | B2 |
7137993 | Acosta et al. | Nov 2006 | B2 |
7147655 | Chermoni | Dec 2006 | B2 |
7147656 | Andreas et al. | Dec 2006 | B2 |
7182779 | Acosta et al. | Feb 2007 | B2 |
7192440 | Andreas et al. | Mar 2007 | B2 |
7220275 | Davidson et al. | May 2007 | B2 |
7241308 | Andreas et al. | Jul 2007 | B2 |
7270668 | Andreas et al. | Sep 2007 | B2 |
7294146 | Chew et al. | Nov 2007 | B2 |
7300456 | Andreas et al. | Nov 2007 | B2 |
7309350 | Landreville et al. | Dec 2007 | B2 |
7314480 | Eidenschink et al. | Jan 2008 | B2 |
7320702 | Hammersmark et al. | Jan 2008 | B2 |
7323006 | Andreas et al. | Jan 2008 | B2 |
7323009 | Suhr et al. | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7326242 | Eidenschink | Feb 2008 | B2 |
7341598 | Davidson et al. | Mar 2008 | B2 |
7344556 | Seguin et al. | Mar 2008 | B2 |
7387639 | Bourang et al. | Jun 2008 | B2 |
7445688 | Suzuki et al. | Nov 2008 | B2 |
7520895 | Douglas et al. | Apr 2009 | B2 |
7537609 | Davidson et al. | May 2009 | B2 |
7540881 | Meyer et al. | Jun 2009 | B2 |
7635383 | Gumm | Dec 2009 | B2 |
7641684 | Hilaire et al. | Jan 2010 | B2 |
7641685 | Richter | Jan 2010 | B2 |
7695508 | Der Leest et al. | Apr 2010 | B2 |
8016870 | Chew et al. | Sep 2011 | B2 |
8070789 | Will et al. | Dec 2011 | B2 |
8769796 | Bourang et al. | Jul 2014 | B2 |
8795347 | Bourang et al. | Aug 2014 | B2 |
8808347 | Bourang et al. | Aug 2014 | B2 |
8821562 | Bourang et al. | Sep 2014 | B2 |
8828071 | Bourang et al. | Sep 2014 | B2 |
8979917 | Bourang et al. | Mar 2015 | B2 |
9254210 | Bourang | Feb 2016 | B2 |
9364356 | Bourang | Jun 2016 | B2 |
9724218 | Bourang et al. | Aug 2017 | B2 |
9730821 | Bourang et al. | Aug 2017 | B2 |
9737424 | Bourang et al. | Aug 2017 | B2 |
9855158 | Bourang et al. | Jan 2018 | B2 |
10406010 | Bourang | Sep 2019 | B2 |
20010003161 | Vardi et al. | Jun 2001 | A1 |
20010020154 | Bigus et al. | Sep 2001 | A1 |
20010020181 | Layne | Sep 2001 | A1 |
20010039395 | Mareiro et al. | Nov 2001 | A1 |
20010044595 | Reydel et al. | Nov 2001 | A1 |
20010044622 | Vardi et al. | Nov 2001 | A1 |
20010044632 | Daniel et al. | Nov 2001 | A1 |
20010049547 | Moore | Dec 2001 | A1 |
20020037358 | Barry et al. | Mar 2002 | A1 |
20020091439 | Baker et al. | Jul 2002 | A1 |
20020107560 | Richter | Aug 2002 | A1 |
20020111671 | Stenzel | Aug 2002 | A1 |
20020128706 | Osypka | Sep 2002 | A1 |
20020138132 | Brown | Sep 2002 | A1 |
20020143382 | Hijlkema | Oct 2002 | A1 |
20020151924 | Shiber | Oct 2002 | A1 |
20020151955 | Tran et al. | Oct 2002 | A1 |
20020156496 | Chermoni | Oct 2002 | A1 |
20020173835 | Bourang et al. | Nov 2002 | A1 |
20020177890 | Lenker | Nov 2002 | A1 |
20020183763 | Callol et al. | Dec 2002 | A1 |
20020188343 | Mathis | Dec 2002 | A1 |
20020188347 | Mathis | Dec 2002 | A1 |
20020193873 | Brucker et al. | Dec 2002 | A1 |
20030028233 | Vardi et al. | Feb 2003 | A1 |
20030029039 | Richter et al. | Feb 2003 | A1 |
20030045923 | Bashiri | Mar 2003 | A1 |
20030093143 | Zhao et al. | May 2003 | A1 |
20030097169 | Brucker et al. | May 2003 | A1 |
20030105922 | Tomita | Jun 2003 | A1 |
20030114912 | Sequin et al. | Jun 2003 | A1 |
20030114919 | Mcquiston et al. | Jun 2003 | A1 |
20030114922 | Iwasaka et al. | Jun 2003 | A1 |
20030125791 | Sequin et al. | Jul 2003 | A1 |
20030125800 | Shulze et al. | Jul 2003 | A1 |
20030125802 | Callol et al. | Jul 2003 | A1 |
20030135259 | Simso | Jul 2003 | A1 |
20030135266 | Chew et al. | Jul 2003 | A1 |
20030139796 | Sequin et al. | Jul 2003 | A1 |
20030139797 | Johnson et al. | Jul 2003 | A1 |
20030139798 | Brown et al. | Jul 2003 | A1 |
20030163085 | Tanner et al. | Aug 2003 | A1 |
20030176909 | Kusleika | Sep 2003 | A1 |
20030191516 | Weldon et al. | Oct 2003 | A1 |
20030192164 | Austin | Oct 2003 | A1 |
20030195609 | Berenstein et al. | Oct 2003 | A1 |
20030199821 | Gerdts | Oct 2003 | A1 |
20030204238 | Tedeschi | Oct 2003 | A1 |
20030212447 | Euteneuer et al. | Nov 2003 | A1 |
20030225446 | Hartley | Dec 2003 | A1 |
20040015231 | Suhr | Jan 2004 | A1 |
20040024450 | Shulze et al. | Feb 2004 | A1 |
20040030380 | Shulze et al. | Feb 2004 | A1 |
20040044395 | Nelson | Mar 2004 | A1 |
20040044398 | Nicholas | Mar 2004 | A1 |
20040085845 | Ooishi | May 2004 | A1 |
20040087965 | Levine et al. | May 2004 | A1 |
20040093061 | Acosta et al. | May 2004 | A1 |
20040093067 | Israel | May 2004 | A1 |
20040093077 | White et al. | May 2004 | A1 |
20040098081 | Landreville et al. | May 2004 | A1 |
20040106979 | Goicoechea et al. | Jun 2004 | A1 |
20040111145 | Serino et al. | Jun 2004 | A1 |
20040117008 | Wnendt et al. | Jun 2004 | A1 |
20040176832 | Hartley et al. | Sep 2004 | A1 |
20040186551 | Kao et al. | Sep 2004 | A1 |
20040193245 | Deem et al. | Sep 2004 | A1 |
20040215165 | Coyle et al. | Oct 2004 | A1 |
20040215312 | Andreas | Oct 2004 | A1 |
20040243217 | Andersen et al. | Dec 2004 | A1 |
20040249434 | Andreas et al. | Dec 2004 | A1 |
20040249435 | Andreas et al. | Dec 2004 | A1 |
20050010276 | Acosta et al. | Jan 2005 | A1 |
20050038505 | Shulze et al. | Feb 2005 | A1 |
20050049673 | Andreas et al. | Mar 2005 | A1 |
20050049680 | Fischell et al. | Mar 2005 | A1 |
20050080474 | Andreas et al. | Apr 2005 | A1 |
20050080475 | Andreas et al. | Apr 2005 | A1 |
20050085845 | Hilaire et al. | Apr 2005 | A1 |
20050090846 | Pedersen et al. | Apr 2005 | A1 |
20050101624 | Betts et al. | May 2005 | A1 |
20050125051 | Eidenschink et al. | Jun 2005 | A1 |
20050131008 | Betts et al. | Jun 2005 | A1 |
20050133164 | Fischer et al. | Jun 2005 | A1 |
20050143827 | Globerman et al. | Jun 2005 | A1 |
20050149159 | Andreas et al. | Jul 2005 | A1 |
20050165378 | Heinrich et al. | Jul 2005 | A1 |
20050182473 | Eidenschink et al. | Aug 2005 | A1 |
20050183259 | Eidenschink et al. | Aug 2005 | A1 |
20050197688 | Theron et al. | Sep 2005 | A1 |
20050209674 | Kutscher et al. | Sep 2005 | A1 |
20050222671 | Schaeffer et al. | Oct 2005 | A1 |
20050228477 | Grainger et al. | Oct 2005 | A1 |
20050245637 | Hossainy et al. | Nov 2005 | A1 |
20050288763 | Andreas et al. | Dec 2005 | A1 |
20050288764 | Snow et al. | Dec 2005 | A1 |
20050288766 | Plain et al. | Dec 2005 | A1 |
20060025843 | Gurm | Feb 2006 | A1 |
20060069424 | Acosta et al. | Mar 2006 | A1 |
20060100694 | Globerman | May 2006 | A1 |
20060116748 | Kaplan et al. | Jun 2006 | A1 |
20060123874 | Motsenbocker | Jun 2006 | A1 |
20060155356 | Israel | Jul 2006 | A1 |
20060155362 | Israel | Jul 2006 | A1 |
20060200223 | Andreas et al. | Sep 2006 | A1 |
20060206190 | Chermoni | Sep 2006 | A1 |
20060229700 | Acosta et al. | Oct 2006 | A1 |
20060229706 | Shulze et al. | Oct 2006 | A1 |
20060271090 | Shaked et al. | Nov 2006 | A1 |
20060271150 | Andreas et al. | Nov 2006 | A1 |
20060271151 | Mcgarry et al. | Nov 2006 | A1 |
20060282147 | Andreas | Dec 2006 | A1 |
20060282149 | Kao | Dec 2006 | A1 |
20060282150 | Olson et al. | Dec 2006 | A1 |
20060287726 | Segal et al. | Dec 2006 | A1 |
20070027521 | Andreas et al. | Feb 2007 | A1 |
20070027524 | Johnson et al. | Feb 2007 | A1 |
20070055351 | Eidenschink et al. | Mar 2007 | A1 |
20070061003 | Shmulewitz et al. | Mar 2007 | A1 |
20070067012 | George et al. | Mar 2007 | A1 |
20070088368 | Acosta et al. | Apr 2007 | A1 |
20070088420 | Andreas et al. | Apr 2007 | A1 |
20070088422 | Chew et al. | Apr 2007 | A1 |
20070100423 | Acosta et al. | May 2007 | A1 |
20070100424 | Chew et al. | May 2007 | A1 |
20070106365 | Andreas et al. | May 2007 | A1 |
20070118202 | Chermoni | May 2007 | A1 |
20070118203 | Chermoni | May 2007 | A1 |
20070118204 | Chermoni | May 2007 | A1 |
20070123970 | Lenz | May 2007 | A1 |
20070129733 | Will et al. | Jun 2007 | A1 |
20070156225 | George et al. | Jul 2007 | A1 |
20070156226 | Chew et al. | Jul 2007 | A1 |
20070179587 | Acosta et al. | Aug 2007 | A1 |
20070203571 | Kaplan et al. | Aug 2007 | A1 |
20070219611 | Krever et al. | Sep 2007 | A1 |
20070219612 | Andreas et al. | Sep 2007 | A1 |
20070219613 | Kao et al. | Sep 2007 | A1 |
20070219625 | Venturelli et al. | Sep 2007 | A1 |
20070260217 | Von et al. | Nov 2007 | A1 |
20070264305 | Von et al. | Nov 2007 | A1 |
20070265637 | Andreas et al. | Nov 2007 | A1 |
20070270936 | Andreas et al. | Nov 2007 | A1 |
20070276460 | Davis et al. | Nov 2007 | A1 |
20070276461 | Andreas et al. | Nov 2007 | A1 |
20070281117 | Kaplan et al. | Dec 2007 | A1 |
20070282419 | Hilaire et al. | Dec 2007 | A1 |
20070292518 | Ludwig | Dec 2007 | A1 |
20080009932 | Ta et al. | Jan 2008 | A1 |
20080009933 | Ta et al. | Jan 2008 | A1 |
20080051869 | Yribarren | Feb 2008 | A1 |
20080071345 | Hammersmark et al. | Mar 2008 | A1 |
20080077229 | Andreas et al. | Mar 2008 | A1 |
20080091257 | Andreas et al. | Apr 2008 | A1 |
20080097299 | Andreas et al. | Apr 2008 | A1 |
20080097574 | Andreas et al. | Apr 2008 | A1 |
20080132989 | Snow et al. | Jun 2008 | A1 |
20080147162 | Andreas et al. | Jun 2008 | A1 |
20080171975 | Jennings et al. | Jul 2008 | A1 |
20080019951 | Ruane et al. | Aug 2008 | A1 |
20080208309 | Saeed | Aug 2008 | A1 |
20080208311 | Kao et al. | Aug 2008 | A1 |
20080208318 | Kao et al. | Aug 2008 | A1 |
20080221655 | Miller | Sep 2008 | A1 |
20080234795 | Snow et al. | Sep 2008 | A1 |
20080234798 | Chew et al. | Sep 2008 | A1 |
20080234799 | Acosta et al. | Sep 2008 | A1 |
20080269865 | Snow et al. | Oct 2008 | A1 |
20090076584 | Mao et al. | Mar 2009 | A1 |
20090105686 | Snow et al. | Apr 2009 | A1 |
20090132019 | Duffy et al. | May 2009 | A1 |
20090143854 | Adams et al. | Jun 2009 | A1 |
20090171430 | Baim et al. | Jul 2009 | A1 |
20090182270 | Nanavati | Jul 2009 | A1 |
20090182409 | Feld et al. | Jul 2009 | A1 |
20090228088 | Lowe et al. | Sep 2009 | A1 |
20090240321 | Davidson et al. | Sep 2009 | A1 |
20090254167 | Ricci et al. | Oct 2009 | A1 |
20090259285 | Duane et al. | Oct 2009 | A1 |
20090287289 | Sagedahl et al. | Nov 2009 | A1 |
20090299454 | Jennings et al. | Dec 2009 | A1 |
20090319030 | Yadin et al. | Dec 2009 | A1 |
20090326641 | Davis et al. | Dec 2009 | A1 |
20100004737 | Eidenschink | Jan 2010 | A1 |
20100030183 | Toner et al. | Feb 2010 | A1 |
20100036477 | Bronson et al. | Feb 2010 | A1 |
20100042199 | Burton | Feb 2010 | A1 |
20100049298 | Hamer et al. | Feb 2010 | A1 |
20100057020 | Uretsky | Mar 2010 | A1 |
20100063571 | Roach et al. | Mar 2010 | A1 |
20100106238 | Hilaire et al. | Apr 2010 | A1 |
20100222861 | Dibie | Sep 2010 | A1 |
20110029061 | Ahn et al. | Feb 2011 | A1 |
20110282427 | Bourang et al. | Nov 2011 | A1 |
20110307044 | Bourang et al. | Dec 2011 | A1 |
20110307045 | Bourang et al. | Dec 2011 | A1 |
20110307046 | Bourang et al. | Dec 2011 | A1 |
20110307047 | Bourang et al. | Dec 2011 | A1 |
20110307052 | Bourang et al. | Dec 2011 | A1 |
20130268047 | Bourang | Oct 2013 | A1 |
20140100647 | Bourang | Apr 2014 | A1 |
20150032196 | Bourang et al. | Jan 2015 | A1 |
20150073521 | Bourang et al. | Mar 2015 | A1 |
20150073527 | Bourang et al. | Mar 2015 | A1 |
20150081001 | Bourang et al. | Mar 2015 | A1 |
20150081002 | Bourang et al. | Mar 2015 | A1 |
20150216690 | Bourang et al. | Aug 2015 | A1 |
20160100966 | Bourang | Apr 2016 | A1 |
20160256303 | Bourang | Sep 2016 | A1 |
20170319366 | Bourang et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
2826760 | Aug 2012 | CA |
1441654 | Sep 2003 | CN |
1788977 | Jun 2006 | CN |
1867374 | Nov 2006 | CN |
101035488 | Sep 2007 | CN |
102215780 | Oct 2011 | CN |
103037813 | Apr 2013 | CN |
103037815 | Apr 2013 | CN |
103037816 | Apr 2013 | CN |
103037817 | Apr 2013 | CN |
103068345 | Apr 2013 | CN |
0203945 | Dec 1986 | EP |
0274129 | Jul 1988 | EP |
0282143 | Sep 1988 | EP |
0505686 | Sep 1992 | EP |
0533960 | Mar 1993 | EP |
0596145 | May 1994 | EP |
0714640 | Jun 1996 | EP |
0897700 | Feb 1999 | EP |
0947180 | Oct 1999 | EP |
1074227 | Feb 2001 | EP |
1258230 | Nov 2002 | EP |
1266638 | Dec 2002 | EP |
1277449 | Jan 2003 | EP |
1523959 | Apr 2005 | EP |
1523960 | Apr 2005 | EP |
1788977 | May 2007 | EP |
1905398 | Apr 2008 | EP |
2036519 | Mar 2009 | EP |
2344068 | Jul 2011 | EP |
2549949 | Jan 2013 | EP |
2549950 | Jan 2013 | EP |
2549951 | Jan 2013 | EP |
2549952 | Jan 2013 | EP |
2549958 | Jan 2013 | EP |
2672925 | Dec 2013 | EP |
2672932 | Dec 2013 | EP |
2672925 | Dec 2015 | EP |
2549951 | May 2017 | EP |
2733689 | Nov 1996 | FR |
1043313 | Feb 1998 | JP |
2003532437 | Nov 2003 | JP |
2004052887 | Feb 2004 | JP |
2004528877 | Sep 2004 | JP |
2007508082 | Apr 2007 | JP |
2010503465 | Feb 2010 | JP |
2012503534 | Feb 2012 | JP |
2013523215 | Jun 2013 | JP |
WO-9013332 | Nov 1990 | WO |
WO-9112779 | Sep 1991 | WO |
WO-9626689 | Sep 1996 | WO |
WO-9633677 | Oct 1996 | WO |
WO-9745073 | Dec 1997 | WO |
WO-9746174 | Dec 1997 | WO |
WO-9748351 | Dec 1997 | WO |
WO-9820810 | May 1998 | WO |
WO-9837833 | Sep 1998 | WO |
WO-9858600 | Dec 1998 | WO |
WO-9901087 | Jan 1999 | WO |
WO-0012832 | Mar 2000 | WO |
WO-0015151 | Mar 2000 | WO |
WO-0025841 | May 2000 | WO |
WO-0032136 | Jun 2000 | WO |
WO-0041649 | Jul 2000 | WO |
WO-0050116 | Aug 2000 | WO |
WO-0062708 | Oct 2000 | WO |
WO-0072780 | Dec 2000 | WO |
WO-0074595 | Dec 2000 | WO |
WO-0170297 | Sep 2001 | WO |
WO-0191918 | Dec 2001 | WO |
WO-02060344 | Aug 2002 | WO |
WO-02085253 | Oct 2002 | WO |
WO-03022178 | Mar 2003 | WO |
WO-03047651 | Jun 2003 | WO |
WO-03051425 | Jun 2003 | WO |
WO-03055414 | Jul 2003 | WO |
WO-03105922 | Dec 2003 | WO |
WO-2004017865 | Mar 2004 | WO |
WO-2004043299 | May 2004 | WO |
WO-2004043301 | May 2004 | WO |
WO-2004043510 | May 2004 | WO |
WO-2004052237 | Jun 2004 | WO |
WO-2005013853 | Feb 2005 | WO |
WO-2005039681 | May 2005 | WO |
WO-2006036939 | Apr 2006 | WO |
WO-2006047520 | May 2006 | WO |
WO-2007035805 | Mar 2007 | WO |
WO-2007053187 | May 2007 | WO |
WO-2007146411 | Dec 2007 | WO |
WO-2008005111 | Jan 2008 | WO |
WO-2008033621 | Mar 2008 | WO |
WO-2008130503 | Oct 2008 | WO |
WO-2009148594 | Dec 2009 | WO |
WO-2009148997 | Dec 2009 | WO |
WO-2010022516 | Mar 2010 | WO |
WO-2010036982 | Apr 2010 | WO |
WO-2011119879 | Sep 2011 | WO |
WO-2011119880 | Sep 2011 | WO |
WO-2011119882 | Sep 2011 | WO |
WO-2011119883 | Sep 2011 | WO |
WO-2011119884 | Sep 2011 | WO |
WO-2012109365 | Aug 2012 | WO |
WO-2012109382 | Aug 2012 | WO |
WO-201210938243 | Jan 2013 | WO |
Entry |
---|
U.S. Appl. No. 13/796,466 U.S. Pat. No. 9,254,210, filed Mar. 12, 2013, Multi-Stent and Multi-Balloon Apparatus for Treating Bifurcations and Methods of Use. |
U.S. Appl. No. 14/971,615, filed Dec. 16, 2015, Multi-Stent and Multi-Balloon Apparatus for Treating Bifurcations and Methods of Use. |
“U.S. Appl. No. 13/071,149, Final Office Action dated Nov. 5, 2013”, 20 pgs. |
“U.S. Appl. No. 13/071,149, Non Final Office Action dated Apr. 11, 2013”, 16 pgs. |
“U.S. Appl. No. 13/071,149, Notice of Allowance dated Mar. 26, 2014”, 11 pgs. |
“U.S. Appl. No. 13/071,162, Non Final Office Action dated Aug. 30, 2013”, 17 pgs. |
“U.S. Appl. No. 13/071,162, Notice of Allowance dated Mar. 31, 2014”, 12 pgs. |
“U.S. Appl. No. 13/071,183, Final Office Action dated Nov. 5, 2013”, 35 pgs. |
“U.S. Appl. No. 13/071,183, Non Final Office Action dated Mar. 29, 2013”, 23 pgs. |
“U.S. Appl. No. 13/071,183, Notice of Allowance dated Mar. 20, 2014”, 13 pgs. |
“U.S. Appl. No. 13/071,198, Final Office Action dated Nov. 6, 2013”, 20 pgs. |
“U.S. Appl. No. 13/071,198, Non Final Office Action dated Apr. 11, 2013”, 17 pgs. |
“U.S. Appl. No. 13/071,198, Notice of Allowance dated Mar. 24, 2014”, 11 pgs. |
“U.S. Appl. No. 13/071,239, Final Office Action dated Nov. 26, 2013”, 18 pgs. |
“U.S. Appl. No. 13/071,239, Non Final Office Action dated Mar. 14, 2013”, 17 pgs. |
“U.S. Appl. No. 13/071,239, Notice of Allowance dated Mar. 4, 2014”, 10 pgs. |
“U.S. Appl. No. 13/071,251, Non Final Office Action dated Sep. 10, 2013”, 15 pgs. |
“U.S. Appl. No. 13/071,251, Notice of Allowance dated May 28, 2014”, 15 pgs. |
“U.S. Appl. No. 13/071,251, Notice of Allowance dated Aug. 13, 2014”, 12 pgs. |
“U.S. Appl. No. 13/796,424, Notice of Allowance dated Feb. 16, 2016”, 13 pgs. |
“U.S. Appl. No. 13/796,466, Examiner Interview Summary dated Jun. 25, 2015”, 3 pgs. |
“U.S. Appl. No. 13/796,466, Non Final Office Action dated Apr. 3, 2015”, 19 pgs. |
“U.S. Appl. No. 13/796,466, Notice of Allowance dated Oct. 7, 2015”, 16 pgs. |
“U.S. Appl. No. 13/796,466, Notice of Allowance dated Nov. 18, 2015”, 2 pgs. |
“U.S. Appl. No. 13/796,466, Response filed Jul. 2, 2015 to Non Final Office Action dated Apr. 3, 2015”, 11 pgs. |
“U.S. Appl. No. 14/294,631, Final Office Action dated Mar. 24, 2017”, 15 pgs. |
“U.S. Appl. No. 14/294,631, Non Final Office Action dated Sep. 22, 2017”, 16 pgs. |
“U.S. Appl. No. 14/294,631, Non Final Office Action dated Oct. 7, 2016”, 15 pgs. |
“U.S. Appl. No. 14/313,742, Final Office Action dated Aug. 12, 2016”, 19 pgs. |
“U.S. Appl. No. 14/313,742, Non Final Office Action dated Jan. 29, 2016”, 17 pgs. |
“U.S. Appl. No. 14/313,742, Non Final Office Action dated Mar. 24, 2017”, 20 pgs. |
“U.S. Appl. No. 14/313,742, Notice of Allowance dated Oct. 20, 2017”, 8 pgs. |
“U.S. Appl. No. 14/314,361, Non Final Office Action dated Oct. 6, 2016”, 33 pgs. |
“U.S. Appl. No. 14/314,361, Notice of Allowance dated Apr. 12, 2017”, 11 pgs. |
“U.S. Appl. No. 14/317,387, Non Final Office Action dated Oct. 6, 2016”, 15 pgs. |
“U.S. Appl. No. 14/317,387, Notice of Allowance dated Apr. 17, 2017”, 10 pgs. |
“U.S. Appl. No. 14/321,506, Non Final Office Action dated Oct. 6, 2016”, 15 pgs. |
“U.S. Appl. No. 14/321,506, Notice of Allowance dated Apr. 4, 2017”, 10 pgs. |
“U.S. Appl. No. 14/621,231, Final Office Action dated Oct. 20, 2017”, 19 pgs. |
“U.S. Appl. No. 14/621,231, Non Final Office Action dated Jun. 15, 2017”, 17 pgs. |
“U.S. Appl. No. 14/971,615, Non Final Office Action dated Oct. 18, 2018”, 41 pgs. |
“U.S. Appl. No. 14/971,615, Notice of Allowance dated Jun. 12, 2019”, 15 pgs. |
“U.S. Appl. No. 14/971,615, Preliminary Amendment filed Dec. 16, 2015”, 9 pgs. |
“U.S. Appl. No. 14/971,615, Response filed Mar. 15, 2019 to Non Final Office Action dated Oct. 18, 2018”, 12 pgs. |
“U.S. Appl. No. 14/971,615, Response filed Jul. 18, 2018 to Restriction Requirement dated Jan. 18, 2018”, 1 pg. |
“U.S. Appl. No. 14/971,615, Restriction Requirement dated Jan. 18, 2018”, 8 pgs. |
“U.S. Appl. No. 15/157,321, Non Final Office Action dated Aug. 11, 2017”, 10 pgs. |
“Australian Application Serial No. 2011232357, First Examination Report dated Dec. 3, 2014”, 2 pgs. |
“Australian Application Serial No. 2011232358, First Examination Report dated Dec. 5, 2014”, 2 pgs. |
“Australian Application Serial No. 2011232360, First Examination Report dated Dec. 9, 2014”, 2 pgs. |
“Australian Application Serial No. 2011232361, First Examination Report dated Dec. 12, 2014”, 3 pgs. |
“Australian Application Serial No. 2011232362, First Examination Report dated Jan. 11, 2015”, 2 pgs. |
“Canadian Application Serial No. 2,826,760, Voluntary Amendment filed Aug. 7, 2013”, 8 pgs. |
“Chinese Application Serial No. 200980143592.X, Final Office Action dated Jun. 4, 2013”, 10 pgs. |
“Chinese Application Serial No. 200980143592.X, Office Action dated Apr. 21, 2014”, w/ English Translation, 18 pgs. |
“Chinese Application Serial No. 200980143592.X, Office Action dated Jun. 4, 2013”, 10 pgs. |
“Chinese Application Serial No. 2009801473592.X, Office Action dated Apr. 21, 2014”, 26 pgs. |
“Chinese Application Serial No. 2009801473592.X, Office Action dated Nov. 24, 2014”, 16 pgs. |
“Chinese Application Serial No. 201180025662.9, Office Action dated Aug. 21, 2014”, 25 pgs. |
“Chinese Application Serial No. 201180025670.3, Office Action dated Aug. 20, 2014”, 24 pgs. |
“Chinese Application Serial No. 201180025716.1, Office Action dated Aug. 22, 2014”, 28 pgs. |
“Chinese Application Serial No. 201180025742.4, Office Action dated Oct. 29, 2014”, 12 pgs. |
“Chinese Application Serial No. 201180025746.2, Office Action dated Sep. 28, 2014”, 21 pgs. |
“Drug Delivery Stent With Holes Located On Neutral Axis”, No. 429007; Research Disclosure, Kenneth Mason Publications, Hampshire, CB vol. 2266, (Jan. 2000), 13 pgs. |
“European Application Serial No. 05727731.1, Supplementary European Search Report dated Apr. 8, 2008”, 3 pgs. |
“European Application Serial No. 05744136.2, Supplementary European Search Report dated Apr. 9, 2008”, 3 pgs. |
“European Application Serial No. 09816963.4, Extended European Search Report dated Aug. 21, 2015”, 5 pgs. |
“European Application Serial No. 11760253.2, Extended European Search Report dated Feb. 22, 2017”, 7 pgs. |
“European Application Serial No. 11760254.0, Extended European Search Report dated Apr. 12, 2017”, 6 pgs. |
“European Application Serial No. 11760256.5, Extended European Search Report dated Aug. 12, 2016”, 8 pgs. |
“European Application Serial No. 11760257.3, Extended European Search Report dated Sep. 29, 2015”, 7 pgs. |
“European Application Serial No. 11760258.1, Extended European Search Report dated Dec. 5, 2016”, 8 pgs. |
“European Application Serial No. 12744749.8, Extended European Search Report dated Apr. 7, 2016”, 10 pgs. |
“European Application Serial No. 12744813.2, Extended European Search Report dated Nov. 25, 2015”, 9 pgs. |
“European Application Serial No. 12744813.2, Intention to Grant dated Mar. 22, 2017”, 48 pgs. |
“European Application Serial No. 12744813.2, Intention to Grant dated Aug. 18, 2016”, 51 pgs. |
“European Application Serial No. 12744813.2, Response filed Jun. 13, 2016 to Extended European Search Report dated Nov. 25, 2015”, 28 pgs. |
“Functional Sites on Non-polymeric Materials: Gas Plasma Treatment and Surface Analysis”, Evans Analytical Group, [Online] Retrieved from the internet: <http://www.eaglabs.com>, (2003), 2 pgs. |
“International Application Serial No. PCT/US2009/058505, International Preliminary Report on Patentability dated Oct. 28, 2010”, 11 pgs. |
“International Application Serial No. PCT/US2009/058505, International Search Report dated Nov. 25, 2009”, 2 pgs. |
“International Application Serial No. PCT/US2009/058505, Written Opinion dated Nov. 25, 2009”, 9 pgs. |
“International Application Serial No. PCT/US2011/029858, International Search Report dated May 25, 2011”, 2 pgs. |
“International Application Serial No. PCT/US2011/029858, Written Opinion dated May 25, 2011”, 7 pgs. |
“International Application Serial No. PCT/US2011/029859, International Preliminary Report on Patentability dated Oct. 4, 2012”, 8 pgs. |
“International Application Serial No. PCT/US2011/029859, International Search Report dated May 23, 2011”, 2 pgs. |
“International Application Serial No. PCT/US2011/029859, Written Opinion dated May 23, 2011”, 6 pgs. |
“International Application Serial No. PCT/US2011/029861, International Preliminary Report on Patentability dated Oct. 4, 2012”, 9 pgs. |
“International Application Serial No. PCT/US2011/029861, International Search Report dated May 20, 2011”, 2 pgs. |
“International Application Serial No. PCT/US2011/029861, Written Opinion dated May 20, 2011”, 7 pgs. |
“International Application Serial No. PCT/US2011/029862, International Preliminary Report on Patentability dated Oct. 4, 2012”, 11 pgs. |
“International Application Serial No. PCT/US2011/029862, International Search Report dated May 25, 2011”, 2 pgs. |
“International Application Serial No. PCT/US2011/029862, Written Opinion dated May 25, 2011”, 9 pgs. |
“International Application Serial No. PCT/US2011/029863, International Preliminary Report on Patentability dated Oct. 4, 2012”, 13 pgs. |
“International Application Serial No. PCT/US2011/029863, International Search Report dated May 27, 2011”, 2 pgs. |
“International Application Serial No. PCT/US2011/029863, Written Opinion dated May 27, 2011”, 11 pgs. |
“International Application Serial No. PCT/US2012/024347, International Preliminary Report on Patentability dated Aug. 22, 2013”, 9 pgs. |
“International Application Serial No. PCT/US2012/024347, International Search Report dated Jun. 29, 2012”, 2 pgs. |
“International Application Serial No. PCT/US2012/024347, Written Opinion dated Jun. 29, 2012”, 7 pgs. |
“International Application Serial No. PCT/US2012/024366, International Preliminary Report on Patentability dated Aug. 22, 2013”, 20 pgs. |
“International Application Serial No. PCT/US2012/024366, International Search Report dated Sep. 7, 2012”, 3 pgs. |
“International Application Serial No. PCT/US2012/024366, Invitation to Pay Additional Fees and Partial Search Report dated Jun. 1, 2012”, 3 pgs. |
“International Application Serial No. PCT/US2012/024366, Written Opinion dated Sep. 7, 2012”, 18 pgs. |
“Japanese Application Serial No. 2011-529290, Office Action dated Sep. 25, 2013”, 5 pgs. |
“Japanese Application Serial No. 2013-501497, Office Action dated Nov. 5, 2014”, 7 pgs. |
“Stent”, Unabridged (v1.01 ), [Online]. Retrieved from the Internet: <http://dictionary.reference.com/search?q=stent>, (Sep. 22, 2006), 1 pg. |
Aaron, Kaplan V, “U.S. Appl. No. 09/225,364, filed Jan. 4, 1999”, (Jan. 4, 1999). |
Bernard, Andreas, “U.S. Appl. No. 60/336,607, filed Dec. 3, 2001”. |
Bernard, Andreas, “U.S. Appl. No. 60/336,767, filed Dec. 3, 2001”. |
Bernard, Andreas, “U.S. Appl. No. 60/440,839, filed Jan. 17, 2003”. |
Bernard, Andreas, “U.S. Appl. No. 60/784,309, filed Mar. 20, 2006”. |
Bourang, Henry, et al., “U.S. Appl. No. 14/294,631, filed Jun. 3, 2014”, 151 pgs. |
Bourang, Henry, et al., “U.S. Appl. No. 14/313,742, filed Jun. 24, 2014”, 142 pgs. |
Bourang, Henry, et al., “U.S. Appl. No. 14/314,361, filed Jun. 25, 2014”, 132 pgs. |
Bourang, Henry, et al., “U.S. Appl. No. 14/317,387, filed Jun. 27, 2014”, 39 pgs. |
Bourang, Henry, et al., “U.S. Appl. No. 14/321,506, filed Jul. 1, 2014”, 131 pgs. |
Bourang, Henry, et al., “U.S. Appl. No. 14/621,231, filed Feb. 12, 2015”, 138 pgs. |
Bourang, Henry, et al., “U.S. Appl. No. 15/831,110, filed Dec. 1, 2017”, 130 pgs. |
Colombo, “The Invatec Bifurcation Stent Solution”, Colombo Bifurcation Stents: Novel Solutions, TCT Washington, (Sep. 15-19, 2003), 24 pgs. |
Cooley, Patrick, et al., “Applications of Ink-Jet Printing Technology to BioMEMs and Microfluidic Systems”, Proceedings, SPIE Conference on Microfluidics and BioMEMs, (Oct. 2001), 12 pgs. |
Dichek, et al., “Seeding of intravascular stents with genetically engineered endothelial cells”, Circulation. vol. 80, No. 5, (1989), 7 pgs. |
Enrique, Klein J, “U.S. Appl. No. 09/097,855, filed Jun. 15, 1998”. |
Jeffry, Grainger, “U.S. Appl. No. 60/561,041, filed Apr. 9, 2004”. |
Joung, Yoon Ki, et al., “Estrogen Release from Metallic Stent Surface for the Prevention of Restenosis”, Journal of Controlled Release vol. 92, (2003), 83-91. |
Lefevre, Thierry, et al., “Approach to Coronary Bifurcation Stenting in 2003”, Euro PCR, (May 2003), 127-154. |
Pablo, Acosta, et al., “U.S. Appl. No. 10/874,859, filed Jun. 22, 2004”. |
Patrick, Ruane, “U.S. Appl. No. 60/890,703, filed Feb. 20, 2007”. |
Patrick, Ruane, “U.S. Appl. No. 61/012,317, filed Dec. 7, 2007”. |
Stephen, Kaplan, “U.S. Appl. No. 60/810,522, filed Jun. 2, 2006”. |
Stimpson, Donald I, et al., “Parallel Production of Oligonucleotide Arrays Using Membranes and Reagent Jet Printing”, Bio Techniques; vol. 25, (Nov. 1998), 886-890. |
Sunmi, Chew, “U.S. Appl. No. 60/336,967, filed Dec. 3, 2001”. |
Sunmi, Chew, “U.S. Appl. No. 60/364,389, filed Mar. 13, 2002”. |
Number | Date | Country | |
---|---|---|---|
20190350733 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
61440742 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14971615 | Dec 2015 | US |
Child | 16527602 | US | |
Parent | 13796466 | Mar 2013 | US |
Child | 14971615 | US | |
Parent | PCT/US2012/024366 | Feb 2012 | US |
Child | 13796466 | US |