Multi-zone imaging sensor and lens array

Information

  • Patent Grant
  • 9030528
  • Patent Number
    9,030,528
  • Date Filed
    Tuesday, April 3, 2012
    12 years ago
  • Date Issued
    Tuesday, May 12, 2015
    9 years ago
Abstract
An imaging module includes a matrix of detector elements formed on a single semiconductor substrate and configured to output electrical signals in response to optical radiation that is incident on the detector elements. A filter layer is disposed over the detector elements and includes multiple filter zones overlying different, respective, convex regions of the matrix and having different, respective passbands.
Description
FIELD OF THE INVENTION

The present invention relates generally to imaging systems, and particularly to devices and methods for multispectral imaging.


BACKGROUND

Many imaging applications involve capturing images simultaneously in multiple different spectral bands. For example, U.S. Patent Application Publication 2010/0007717, whose disclosure is incorporated herein by reference, describes an integrated processor for three-dimensional (3D) mapping. The device described includes a first input port for receiving color image data from a first image sensor and a second input port for receiving depth-related image data from a second image sensor. The second image sensor typically senses an image of a pattern of infrared radiation that is projected onto an object that is to be mapped. Processing circuitry generates a depth map using the depth-related image data and registers the depth map with the color image data. At least one output port conveys the depth map and the color image data to a host computer.


In some systems, a single image sensor is used to capture multiple images. For example, U.S. Pat. No. 7,231,069 describes a multiple-view-angle camera used in an automatic photographing apparatus, which includes a narrow view angle lens, a cylinder lens, and an image sensor. One image sensor is used, and a wide-view-angle image and a narrow-view-angle image are projected onto the image sensor at the same time.


As another example, U.S. Patent Application Publication 2004/0001145 describes a method and apparatus for multifield image generation and processing, in which a camera includes a plurality of lenses configurable in a plurality of distinct directions. A plurality of image sensor areas collect charge fields of the scenes focused by the plurality of lenses. Processing logic coupled with the plurality of image sensor areas processes independent digital images for each of the plurality of image sensor areas.


SUMMARY

Embodiments of the present invention that are described hereinbelow provide integrated devices for use in multispectral imaging systems.


There is therefore provided, in accordance with an embodiment of the invention, an imaging module, which includes a matrix of detector elements formed on a single semiconductor substrate and configured to output electrical signals in response to optical radiation that is incident on the detector elements. A filter layer is disposed over the detector elements and includes multiple filter zones overlying different, respective, convex regions of the matrix and having different, respective passbands.


In disclosed embodiments, the respective passbands of the filter zones include an infrared passband and at least one visible passband. The at least one visible passband may include red, green and blue passbands. Typically, the filter zones and the respective convex regions are rectangular and share a common aspect ratio. In one embodiment, the filter zones include at least first and second zones of different, respective, first and second sizes that share the common aspect ratio.


In a disclosed embodiment, the imaging module includes a plurality of sense amplifiers, which are formed on the substrate and are coupled to read out photocharge from the detector elements in respective columns of the matrix, wherein sense amplifiers that are coupled to read out the photocharge from a first one of the convex regions have a different gain from the sense amplifiers that are coupled to read out the photocharge from at least a second one of the convex regions.


In some embodiments, the module includes objective optics, which are configured to form respective images of a common field of view on all of the regions of the matrix. The filter zones may include at least first and second zones of different, respective sizes, and the objective optics may include at least first and second lenses of different, respective magnifications, which are configured to form the respective images on the respective regions of the matrix that are overlaid by at least the first and second zones. In one embodiment, the objective optics include a transparent wafer, which is etched to define focusing elements for forming the respective images, and which is overlaid on the substrate.


There is also provided, in accordance with an embodiment of the invention, an imaging module, which includes a matrix of detector elements formed on a single semiconductor substrate and configured to output electrical signals in response to optical radiation that is incident on the detector elements. Objective optics are configured to focus light onto the matrix of the detector elements so as to form respective images of a common field of view on different, respective regions of the matrix. Multiple optical filters, which have different, respective passbands, are positioned so that each filter filters the light that is focused onto a different, respective one of the regions.


In one embodiment, the objective optics include multiple lenses, which are configured to form the respective images, and the filters are formed as coatings on the lenses. Additionally or alternatively, the filters include filter layers overlaid on the matrix of the detector elements. Further additionally or alternatively, the optical filters include an interference filter, which defines a narrow passband for the light incident on one of the regions of the matrix without affecting the respective passbands of the other regions.


In an alternative embodiment, the respective passbands of the filter zones comprise a luminance passband and chrominance passbands. Additionally or alternatively, the regions of the matrix comprise at least first and second regions of different, respective sensitivities, and the objective optics comprise at least first and second lenses of different, respective F-numbers, which are configured to form the respective images on at least the first and second regions.


In some embodiments, the imaging module includes a processor, which is configured to process the electrical signals output by the detector elements in the respective regions so as to generate, based on the respective images, multispectral image data with respect to an object in the images. In a disclosed embodiment, the respective passbands of the filter zones include an infrared passband for a first region of the matrix and at least one visible passband for at least a second region of the matrix, and the processor is configured to process the image data from the first region in order to generate a three-dimensional (3D) map of the field of view, and to register the 3D map with a two-dimensional (2D) image generated by at least the second region. Additionally or alternatively, the processor is configured to apply differential deblurring to the image data from different regions of the matrix.


There is additionally provided, in accordance with an embodiment of the invention, a method for imaging, which includes providing a matrix of detector elements formed on a single semiconductor substrate and configured to output electrical signals in response to optical radiation that is incident on the detector elements. A filter layer is overlaid on the detector elements, the filter layer including multiple filter zones overlying different, respective, convex regions of the matrix and having different, respective passbands.


There is further provided, in accordance with an embodiment of the invention, a method for imaging, which includes providing a matrix of detector elements formed on a single semiconductor substrate and configured to output electrical signals in response to optical radiation that is incident on the detector elements. Objective optics are aligned to focus light onto the matrix of the detector elements so as to form respective images of a common field of view on different, respective regions of the matrix. Multiple optical filters, which have different, respective passbands, are positioned so that each filter filters the light that is focused onto a different, respective one of the regions.


There is moreover provided, in accordance with an embodiment of the present invention, an imaging module, which includes a matrix of detector elements formed on a single semiconductor substrate and configured to output electrical signals having a first dynamic range in response to optical radiation that is incident on the detector elements. Objective optics are configured to focus light onto the matrix of the detector elements so as to form respective optical images of a common field of view on different, respective regions of the matrix so that the regions sense the optical images with different, respective levels of sensitivity. A processor is configured to process the electrical signals output by the detector elements in the respective regions so as to generate a combined electronic image of the common field of view with a second dynamic range that is greater than the first dynamic range.


In one embodiment, the objective optics include lenses having different, regions F-numbers for focusing the light onto the different, respective regions, wherein the F-numbers are chosen so as to provide the different, respective levels of sensitivity.


There is furthermore provided, in accordance with an embodiment of the present invention, a method for imaging, which includes providing a matrix of detector elements formed on a single semiconductor substrate and configured to output electrical signals having a first dynamic range in response to optical radiation that is incident on the detector elements. Objective optics are aligned to focus light onto the matrix of the detector elements so as to form respective images of a common field of view on different, respective regions of the matrix so that the regions sense the optical images with different, respective levels of sensitivity. The electrical signals output by the detector elements in the respective regions are processed so as to generate a combined electronic image of the common field of view with a second dynamic range that is greater than the first dynamic range.


The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic frontal view of an imaging module, in accordance with an embodiment of the present invention;



FIG. 2 is a schematic side view of the imaging module of FIG. 1;



FIG. 3 is a schematic, pictorial view of an integrated imaging module, in accordance with an embodiment of the present invention; and



FIGS. 4 and 5 are flow charts that schematically illustrate methods for imaging, in accordance with embodiments of the present invention.





DETAILED DESCRIPTION OF EMBODIMENTS

In the system described in U.S. Patent Application Publication 2010/0007717, separate color and infrared image sensors are used in generating a depth map that is registered with color image data. An embodiment of the present invention that is described hereinbelow enables both depth and color image data to be captured simultaneously by a single image sensor. More generally, embodiments of the present invention provide devices and methods that may be used to provide compact and inexpensive solutions for multispectral imaging.


In the disclosed embodiments, an imaging module comprises a matrix of detector elements, which are formed on a single semiconductor substrate and are configured to output electrical signals in response to optical radiation that is incident on the detector elements. Objective optics comprising multiple lenses focus light from a common field of view onto the matrix of the detector elements, and thus form multiple, respective images of this field of view side-by-side on different, corresponding regions of the matrix. A number of optical filters, with different, respective passbands, filter the light that is focused onto each region of the matrix.


Thus, two or more different images, each in a different spectral range, are formed simultaneously on different regions of the matrix. In the embodiments described below, the spectral ranges comprise infrared and visible light, specifically red, green and blue, but other spectral configurations may likewise be used and are considered to be within the scope of the present invention.


In some embodiments, a filter layer is disposed directly over the matrix of the detector elements. This filter layer comprises multiple filter zones overlying different, respective, convex regions of the matrix. Each filter zone has a different, respective passband, so that the corresponding region of the matrix captures an image in the spectral range defined by the passband. In the context of the present description and in the claims, the term “convex” is used in the accepted sense for describing regions in Euclidean vector space: A region is convex if for any pair of points within the region, every point on the straight line connecting the points is also in the region. In embodiments of the present invention, this criterion requires that the set of detector elements underlying each of the filter zones be convex in this sense and thus form a contiguous, closed region.


The regions of the matrix that capture the different images may be of different sizes, and the objective optics may then comprise lenses of different, respective magnifications for forming the respective images on the different regions. A processor may be coupled to process the electrical signals output by the detector elements in the respective regions so as to generate, based on the respective images, multispectral image data with respect to an object in the images. Because the images in the different spectral ranges are all formed on the same substrate, alignment and registration of the images can be easily achieved and maintained, notwithstanding the different image sizes.


Reference is now made to FIGS. 1 and 2, which schematically illustrate an imaging module 20, in accordance with an embodiment of the present invention. FIG. 1 is a frontal view, while FIG. 2 is a side view. Imaging module 20 comprises a single semiconductor substrate 22, such as a silicon wafer substrate, on which a matrix of detector elements 24 is formed. The detector elements and associated control and readout circuitry (not shown) may be produced using any suitable process known in the art. For example, substrate 22 and detector elements 24 may be configured as a CCD or CMOS-type image sensor. In one embodiment, module 20 is based on a commercially-available CMOS image sensor with full-HD (1920×1080) resolution, such as the OV2710 image sensor available from OmniVision (Santa Clara, Calif.).


The matrix of detector elements 24 is overlaid by a filter layer, which comprises filter zones 34, 36, 38, 40, overlying respective regions 26, 28, 30, 32 of the matrix. Each filter zone has a different passband; for example, zone 34 may pass infrared light, while zones 36, 38 and 40 pass red, green and blue light, respectively. Objective optics, comprising lenses 44, 46, 48 and 50, focus light respectively through filter zones 34, 36, 38, 40 onto regions 26, 28, 30, 32, and thus form an image on each of the regions of a common field of view 52, with each such image representing a different spectral range. In this manner, module 20 may simultaneously form infrared and color images, all of the same field of view 52. Alternatively, in other embodiments (not shown in the figures), a similar effect may be obtained by forming the filters as coatings on the corresponding lenses, or by positioning the filters at any other suitable location in the optical path.


Imaging module 20 may advantageously be used for 3D mapping and color imaging, as described in the above-mentioned U.S. Patent Application Publication 2010/0007717, for example. As noted above, module 20 has the advantage of providing both IR and color images within a single unit in fixed registration, in contrast to systems known in the art, in which active alignment and registration may be required. A pattern of IR radiation is projected onto a scene of interest, and the IR image is processed in reconstruct a 3D map of the scene.


In pattern-based 3D mapping systems, it is generally desirable to filter incoming IR radiation with a narrowband filter, which is matched to the wavelength of the pattern projector. Filter zones 34, 36, 38, 40 that are produced by coating a filter layer over the image sensor, however, typically have broad passbands. Therefore, in the embodiment that is illustrated in FIG. 1, an additional narrowband IR filter 54 is interposed in the light path. Typically, filter 54 is an interference filter, comprising thin film layers on a transparent substrate (such as glass), designed to be transparent to visible radiation while blocking IR radiation outside a narrow band containing the projection wavelength. Thus, filter 54 narrows the IR passband of module 20 without affecting the visible passbands.


The filter zones and corresponding regions of the matrix of detector elements in the present example are rectangular and may be of different sizes, as shown in FIGS. 1 and 2. In this case, the lenses will typically have different magnifications. Specifically, in the pictured example, lens 44 has a greater magnification than lenses 46, 48 and 50 and thus forms a larger image on the correspondingly larger region 26. The lenses are aligned to ensure that all will simultaneously form focused images of field of view 52 on the respective regions 26, 28, 30, 32. This alignment is typically adjusted and tested at the time of manufacture, but it may be adjusted subsequently in the field. Alternatively or additionally, other optical elements, such as mirrors and/or prisms (not shown in the figures), may be used in directing the respective images onto the different regions of the matrix of detector elements.


Despite the different sizes of regions 26, 28, 30, 32, the regions may share a common aspect ratio, meaning that the ratio of height to width is similar among the different regions. For example, using a full-HD image sensor as described above, region 26 could comprise 1280×1080 detector elements, while regions 28, 30 and 32 each comprise 640×360 detector elements. (Although the aspect ratios are not precisely the same, their similarity means that images from all the regions may be registered with relatively minor cropping of the image from region 26.) The common aspect ratio of the regions is useful when the different images are to be registered with one another. This configuration may be used, for example, to provide a high-resolution IR image (such as for 3D mapping) and a lower-resolution RGB color image, all with a 16×9 HD image format.


Other configurations of the regions and corresponding filter zones are also possible. For example, an image sensor and filters may be configured to include a larger, high-resolution luminance imaging zone (which receives the full spectrum of visible light) and smaller color-sensitive zones. This sort of sensor may be used to create color images in accordance luminance/chrominance standards, such as YUV.



FIG. 3 is a schematic, pictorial view of imaging module 20, in accordance with an integrated embodiment of the present invention. In this embodiment, the objective optics comprise a transparent wafer 60, which is etched to define focusing elements corresponding to lenses 44, 46, 48 and 50 for forming the respective images on the different regions of the matrix of detector elements 24 on substrate 22. Techniques for this sort of wafer-scale optical production are known in the art. One or more optical wafers of this sort (of which only one wafer is shown in the figure) may be fabricated and overlaid on substrate 22 in order to achieve the desired focusing characteristics.


The photocharge accumulated by detector elements 24 is read out through column sense amplifiers 63, 64. In the pictured embodiment, amplifiers 63 read out the columns of region 26 (overlaid by filter zone 34), while amplifiers 64 read out the columns of regions 28, 30, 32 (overlaid respectively by filter zones 36, 38, 40). Thus, the IR image signals are read out via amplifiers 63, while the RGB image signals are read out by amplifiers 64. This arrangement is advantageous, since it allows a different gain setting to be applied to the IR signal from that applied to the RGB signals. In the 3D mapping applications described above, for example, the IR image is typically faint, and amplifiers 63 may therefore be set to a higher gain than amplifiers 64. In other applications, in which region 26 receives ambient IR radiation, amplifiers 63 may be set to a lower gain.


The arrangement of amplifiers 63, 64 along the edge of the image sensor is also advantageous in that it does not depart from the layout of image sensor chips that are known in the art (other than having different, possibly adjustable gain controls for the different amplifiers). Alternatively, further sense amplifiers and readout lines may be provided on substrate 22 to enable independent gain settings for zones 28, 30 and 32, as well.


Additionally or alternatively, the relative F-numbers of lenses 44, 46, 48 and 50 may be chosen so that the amount of light focused onto each of regions 26, 28, 30, 32 is adjusted to compensate for the different sensitivities of the regions. In other words, more light may be focused onto the less sensitive regions, and less light onto the more sensitive regions, thus enhancing the overall dynamic range of the imaging module.


As yet another alternative imaging module 20 may be used to implement high dynamic range imaging, by dividing the image sensor into more sensitive and less sensitive regions. The variation in the respective levels of sensitivity may be achieved by appropriate choice of the corresponding lens F-numbers. The more sensitive region will capture details in the low-light parts of the image, while the less sensitive region will simultaneously capture high-light parts. A processor combines the simultaneously-acquired image information from both regions to create a single image with a dynamic range that is higher than the dynamic range of the electrical signals that are output by the detector elements of the image sensor.


A processor 62 receives the electrical signals that are output by detector elements 24 on substrate 22. Although FIG. 3, for the sake of conceptual clarity, shows separate connections between processor 62 and the different regions of the image sensor, in practice the signals from all of the detector elements in the different regions may be read out through common output circuits to the processor, which then uses timing information to separate out the corresponding images. Furthermore, although the processor is shown in the figure as a separate unit from the image sensor, the processor may alternatively be formed on substrate 22 alongside the matrix of detector elements.


Processor 62 typically registers the images formed on regions 26, 28, 30 and 32 to generate multispectral image data with respect to objects in field of view 52. For example, processor 62 may use an infrared image, captured in region 26, of a pattern that is projected onto objects in the field of view in order to produce a 3D map of the objects, and may integrate the 3D map with a color image of the objects captured by regions 28, 30 and 32. Suitable circuits and techniques for this purpose are described in the above-mentioned U.S. Patent Application Publication 2010/0007717. Alternatively or additionally, processor 62 may carry out other sorts of image processing operations, as are known in the art.


As noted earlier, lenses 44, 46, 48 and 50 are designed to have the same back focal length, but it may happen due to production tolerances that after module 20 is assembled, some of these lenses will be better focused than others. The defocus may be measured, for example, by capturing an image of a suitable resolution target. Processor 62 may then be programmed to compensate for the focal quality differences by applying a deblurring algorithm to the images, with differential deblurring for the different regions. Algorithms that are known in the art may be used, mutatis mutandis, for this purpose. For example, in one embodiment, processor 62 applies the Lurry-Richardson algorithm, as described by Richardson in an article entitled “Bayesian-Based Iterative Method of Image Restoration,” Journal of the Optical Society of America 62:1, pages 55-59 (1972), which is incorporated herein by reference.



FIG.4 is a flow chart that schematically illustrates a method for imaging, in accordance with an embodiment of the present invention. At step 70, a matrix of detector elements is formed on a single semiconductor substrate and configured to output electrical signals in response to optical radiation that is incident on the detector elements. At step 72, a filter layer is overlaid on the detector elements, comprising multiple filter zones overlying different, respective, convex regions of the matrix and having different, respective passbands. The filter zones define filters, such that each filter filters the light that is focused onto a different, respective one of the regions. At step 74, objective optics are aligned to focus light onto the matrix of the detector elements so as to form respective images of a common field of view on different, respective regions of the matrix. Optionally, at step 76, image data from a first region are processed in order to generate a 3D map of the field of view. At step 78, the 3D map is registered with a 2D image generated by at least a second region.



FIG. 5 is a flow chart that schematically illustrates a method for imaging, in accordance with another embodiment of the present invention. At step 80, a matrix of detector elements is formed on a single semiconductor substrate and configured to output electrical signals having a first dynamic range in response to optical radiation that is incident on the detector elements. At step 82, objective optics are aligned to focus light onto the matrix of the detector elements so as to form respective regions of the matrix so that the regions sense the optical images with different, respective levels of sensitivity. At step 84, the electrical signals output by the detector elements in the respective regions are processed so as to generate a combined electronic image of the common field of view with a second dynamic range that is greater than the first dynamic range.


It will be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.

Claims
  • 1. An imaging module, comprising: a matrix of detector elements formed on a single semiconductor substrate and configured to output electrical signals in response to optical radiation that is incident on the detector elements; anda filter layer, which is disposed over the detector elements and comprises multiple filter zones overlying different, respective, convex rectangular regions of the matrix and having different, respective passbands, each of the rectangular regions comprising multiple rows and columns of the detector elements,wherein the filter zones and the respective convex regions share a common aspect ratio, while the filter zones comprise at least first and second zones of different, respective, first and second sizes that share the common aspect ratio.
  • 2. The imaging module according to claim 1, wherein the respective passbands of the filter zones comprise an infrared passband and at least one visible passband.
  • 3. The imaging module according to claim 2, wherein the at least one visible passband comprises red, green and blue passbands.
  • 4. The imaging module according to claim 1, wherein the imaging module comprises a plurality of sense amplifiers, which are formed on the substrate and are coupled to read out photocharge from the detector elements in respective columns of the matrix, wherein the sense amplifiers that are coupled to read out the photocharge from a first one of the convex regions have a different gain from the sense amplifiers that are coupled to read out the photocharge from at least a second one of the convex regions.
  • 5. The imaging module according to claim 1, and comprising objective optics, which are configured to form respective images of a common field of view on all of the regions of the matrix.
  • 6. The imaging module according to claim 5, wherein the filter zones comprise at least first and second zones of different, respective sizes, and wherein the objective optics comprise at least first and second lenses of different, respective magnifications, which are configured to form the respective images on the respective regions of the matrix that are overlaid by at least the first and second zones.
  • 7. The imaging module according to claim 5, wherein the objective optics comprise a transparent wafer, which is etched to define focusing elements for forming the respective images, and which is overlaid on the substrate.
  • 8. The imaging module according to claim 5, and comprising a processor, which is configured to process the electrical signals output by the detector elements in the respective regions so as to generate, based on the respective images, multispectral image data with respect to an object in the images.
  • 9. An imaging module, comprising: a matrix of detector elements formed on a single semiconductor substrate and configured to output electrical signals in response to optical radiation that is incident on the detector elements;objective optics, which are configured to focus light onto the matrix of the detector elements so as to form respective images of a common field of view on different, respective regions of the matrix,wherein the regions of the matrix comprise at least first and second regions of different, respective sizes, and wherein the objective optics comprise at least first and second lenses of different, respective magnifications, which are configured to form the respective images on at least the first and second regions; andmultiple optical filters, which have different, respective passbands and are positioned so that each filter filters the light that is focused onto a different, respective one of the regions.
  • 10. The imaging module according to claim 9, wherein the objective optics comprise multiple lenses, which are configured to form the respective images, and wherein the filters are formed as coatings on the lenses.
  • 11. The imaging module according to claim 9, wherein the filters comprise filter layers overlaid on the matrix of the detector elements.
  • 12. The imaging module according to claim 11, wherein the optical filters further comprise an interference filter, which defines a narrow passband for the light incident on one of the regions of the matrix without affecting the respective passbands of the other regions.
  • 13. The imaging module according to claim 9, wherein the respective passbands of the filter zones comprise an infrared passband and at least one visible passband.
  • 14. The imaging module according to claim 13, wherein the at least one visible passband comprises red, green and blue passbands.
  • 15. The imaging module according to claim 9, wherein the respective passbands of the filter zones comprise a luminance passband and chrominance passbands.
  • 16. The imaging module according to claim 9, wherein the regions of the matrix comprise at least first and second regions of different, respective sensitivities, and wherein the objective optics comprise at least first and second lenses of different, respective F-numbers, which are configured to form the respective images on at least the first and second regions.
  • 17. The imaging module according to claim 9, wherein the objective optics comprise a transparent wafer, which is etched to define a plurality of lenses, and which is overlaid on the substrate.
  • 18. The imaging module according to claim 9, and comprising a processor, which is configured to process the electrical signals output by the detector elements in the respective regions so as to generate, based on the respective images, multispectral image data with respect to an object in the images.
  • 19. The imaging module according to claim 18, wherein the respective passbands of the filter zones comprise an infrared passband for a first region of the matrix and at least one visible passband for at least a second region of the matrix, and wherein the processor is configured to process the image data from the first region in order to generate a three-dimensional (3D) map of the field of view, and to register the 3D map with a two-dimensional (2D) image generated by at least the second region.
  • 20. The imaging module according to claim 18, wherein the processor is configured to apply differential deblurring to the image data from different regions of the matrix.
  • 21. A method for imaging, comprising: providing a matrix of detector elements formed on a single semiconductor substrate and configured to output electrical signals in response to optical radiation that is incident on the detector elements; andoverlaying a filter layer on the detector elements, the filter layer comprising multiple filter zones overlying different, respective, convex rectangular regions of the matrix and having different, respective passbands, each of the rectangular regions comprising multiple rows and columns of the detector elements,wherein the filter zones and the respective convex regions share a common aspect ratio, while the filter zones comprise at least first and second zones of different, respective, first and second sizes that share the common aspect ratio.
  • 22. The method according to claim 21, and comprising aligning objective optics so as to form respective images of a common field of view on all of the regions of the matrix.
  • 23. A method for imaging, comprising: providing a matrix of detector elements formed on a single semiconductor substrate and configured to output electrical signals in response to optical radiation that is incident on the detector elements;aligning objective optics to focus light onto the matrix of the detector elements so as to form respective images of a common field of view on different, respective regions of the matrix,wherein the regions of the matrix comprise at least first and second regions of different, respective sizes, and wherein aligning the objective optics comprise providing at least first and second lenses of different, respective magnifications so as to form the respective images on at least the first and second regions; andpositioning multiple optical filters, which have different, respective passbands, so that each filter filters the light that is focused onto a different, respective one of the regions.
  • 24. The method according to claim 23, wherein the respective passbands of the filter zones comprise an infrared passband for a first region of the matrix and at least one visible passband for at least a second region of the matrix, and wherein the method comprises processing the image data from the first region in order to generate a three-dimensional (3D) map of the field of view, and registering the 3D map with a two-dimensional (2D) image generated by at least the second region.
  • 25. An imaging module, comprising: a matrix of detector elements formed on a single semiconductor substrate and configured to output electrical signals having a first dynamic range in response to optical radiation that is incident on the detector elements;objective optics, which are configured to focus light onto the matrix of the detector elements so as to form respective optical images of a common field of view on different, respective regions of the matrix so that the regions sense the optical images with different, respective levels of sensitivity,wherein the objective optics comprise lenses having different, respective F-numbers for focusing the light onto the different, respective regions, wherein the F-numbers are chosen so as to provide the different, respective levels of sensitivity; anda processor, which is configured to process the electrical signals output by the detector elements in the respective regions so as to generate a combined electronic image of the common field of view with a second dynamic range that is greater than the first dynamic range.
  • 26. A method for imaging, comprising: providing a matrix of detector elements formed on a single semiconductor substrate and configured to output electrical signals having a first dynamic range in response to optical radiation that is incident on the detector elements;aligning objective optics to focus light onto the matrix of the detector elements so as to form respective images of a common field of view on different, respective regions of the matrix so that the regions sense the optical images with different, respective levels of sensitivity,wherein the objective optics comprise lenses having different, respective F-numbers for focusing the light onto the different, respective regions, wherein the F-numbers are chosen so as to provide the different, respective levels of sensitivity; andprocessing the electrical signals output by the detector elements in the respective regions so as to generate a combined electronic image of the common field of view with a second dynamic range that is greater than the first dynamic range.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application 61/471,215, filed Apr. 4, 2011, which is incorporated herein by reference.

US Referenced Citations (182)
Number Name Date Kind
4336978 Suzuki Jun 1982 A
4542376 Bass et al. Sep 1985 A
4802759 Matsumoto Feb 1989 A
4843568 Krueger et al. Jun 1989 A
5075562 Greivenkamp et al. Dec 1991 A
5483261 Yasutake Jan 1996 A
5630043 Uhlin May 1997 A
5636025 Bieman et al. Jun 1997 A
5712682 Hannah Jan 1998 A
5835218 Harding Nov 1998 A
5838428 Pipitone et al. Nov 1998 A
5856871 Cabib et al. Jan 1999 A
5909312 Mendlovic et al. Jun 1999 A
6041140 Binns et al. Mar 2000 A
6081269 Quarendon Jun 2000 A
6084712 Harding Jul 2000 A
6088105 Link Jul 2000 A
6099134 Taniguchi et al. Aug 2000 A
6100517 Yahav et al. Aug 2000 A
6101269 Hunter et al. Aug 2000 A
6108036 Harada et al. Aug 2000 A
6167151 Albeck Dec 2000 A
6259561 George et al. Jul 2001 B1
6262740 Lauer et al. Jul 2001 B1
6268923 Michniewicz et al. Jul 2001 B1
6301059 Huang et al. Oct 2001 B1
6377700 Mack et al. Apr 2002 B1
6438263 Albeck et al. Aug 2002 B2
6494837 Kim et al. Dec 2002 B2
6495813 Fan et al. Dec 2002 B1
6495848 Rubbert Dec 2002 B1
6650357 Richardson Nov 2003 B1
6686921 Rushmeier et al. Feb 2004 B1
6700669 Geng Mar 2004 B1
6731391 Kao et al. May 2004 B1
6741251 Malzbender May 2004 B2
6750906 Itani et al. Jun 2004 B1
6751344 Grumbine Jun 2004 B1
6754370 Hall-Holt et al. Jun 2004 B1
6759646 Acharya et al. Jul 2004 B1
6765617 Tangen et al. Jul 2004 B1
6803777 Pfaff et al. Oct 2004 B2
6810135 Berenz et al. Oct 2004 B1
6813440 Yu et al. Nov 2004 B1
6825985 Brown et al. Nov 2004 B2
6841780 Cofer et al. Jan 2005 B2
6859326 Sales Feb 2005 B2
6937348 Geng Aug 2005 B2
7006952 Matsumoto et al. Feb 2006 B1
7009742 Brotherton-Ratcliffe et al. Mar 2006 B2
7013040 Shiratani Mar 2006 B2
7076024 Yokhin Jul 2006 B2
7112774 Baer Sep 2006 B2
7120228 Yokhin et al. Oct 2006 B2
7127101 Littlefield et al. Oct 2006 B2
7194105 Hersch et al. Mar 2007 B2
7231069 Nahata Jun 2007 B2
7256899 Faul et al. Aug 2007 B1
7335898 Donders et al. Feb 2008 B2
7369685 DeLean May 2008 B2
7385708 Ackerman et al. Jun 2008 B2
7433024 Garcia et al. Oct 2008 B2
7551719 Yokhin et al. Jun 2009 B2
7560679 Gutierrez Jul 2009 B1
7659995 Knighton et al. Feb 2010 B2
7700904 Toyoda et al. Apr 2010 B2
7751063 Dillon et al. Jul 2010 B2
7811825 Fauver et al. Oct 2010 B2
7840031 Albertson et al. Nov 2010 B2
7952781 Weiss et al. May 2011 B2
8018579 Krah Sep 2011 B1
8035806 Jin et al. Oct 2011 B2
8126261 Medioni et al. Feb 2012 B2
8326025 Boughorbel Dec 2012 B2
20010016063 Albeck et al. Aug 2001 A1
20020041327 Hildreth et al. Apr 2002 A1
20020075456 Shiratani Jun 2002 A1
20020154215 Schechterman et al. Oct 2002 A1
20020154315 Myrick Oct 2002 A1
20030038938 Jung et al. Feb 2003 A1
20030048237 Sato et al. Mar 2003 A1
20030057972 Pfaff et al. Mar 2003 A1
20030156756 Gokturk et al. Aug 2003 A1
20040001145 Abbate Jan 2004 A1
20040063235 Chang Apr 2004 A1
20040105580 Hager et al. Jun 2004 A1
20040130730 Cantin et al. Jul 2004 A1
20040130790 Sales Jul 2004 A1
20040174770 Rees Sep 2004 A1
20040186382 Modell et al. Sep 2004 A1
20040213463 Morrison Oct 2004 A1
20040218262 Chuang et al. Nov 2004 A1
20040228519 Littlefield et al. Nov 2004 A1
20040264764 Kochi et al. Dec 2004 A1
20050018209 Lemelin et al. Jan 2005 A1
20050024520 Yamamoto Feb 2005 A1
20050052637 Shaw et al. Mar 2005 A1
20050062863 Takeuchi et al. Mar 2005 A1
20050111705 Waupotitsch et al. May 2005 A1
20050134582 Claus et al. Jun 2005 A1
20050135555 Claus et al. Jun 2005 A1
20050200838 Shaw et al. Sep 2005 A1
20050200925 Brotherton-Ratcliffe et al. Sep 2005 A1
20050231465 DePue et al. Oct 2005 A1
20050271279 Fujimura et al. Dec 2005 A1
20060017656 Miyahara Jan 2006 A1
20060039010 Reese et al. Feb 2006 A1
20060054782 Olsen et al. Mar 2006 A1
20060066922 Nishi Mar 2006 A1
20060072851 Kang et al. Apr 2006 A1
20060156756 Becke Jul 2006 A1
20060221218 Adler et al. Oct 2006 A1
20060221250 Rossbach et al. Oct 2006 A1
20060269896 Liu et al. Nov 2006 A1
20070057946 Albeck et al. Mar 2007 A1
20070060336 Marks et al. Mar 2007 A1
20070133840 Cilia Jun 2007 A1
20070165243 Kang et al. Jul 2007 A1
20070262985 Watanable et al. Nov 2007 A1
20080018595 Hildreth et al. Jan 2008 A1
20080031513 Hart Feb 2008 A1
20080037829 Givon Feb 2008 A1
20080106746 Shpunt et al. May 2008 A1
20080118143 Gordon et al. May 2008 A1
20080158344 Schechterman et al. Jul 2008 A1
20080198355 Domenicali et al. Aug 2008 A1
20080212835 Tavor Sep 2008 A1
20080240502 Freedman et al. Oct 2008 A1
20080247670 Tam et al. Oct 2008 A1
20080278572 Gharib et al. Nov 2008 A1
20080285827 Meyer et al. Nov 2008 A1
20090016642 Hart Jan 2009 A1
20090046152 Aman Feb 2009 A1
20090060307 Ghanem et al. Mar 2009 A1
20090096783 Shpunt et al. Apr 2009 A1
20090183125 Magal et al. Jul 2009 A1
20090183152 Yang et al. Jul 2009 A1
20090185274 Shpunt Jul 2009 A1
20090225217 Katsuda et al. Sep 2009 A1
20090226079 Katz et al. Sep 2009 A1
20090244309 Maison et al. Oct 2009 A1
20100007717 Spektor et al. Jan 2010 A1
20100013860 Mandella et al. Jan 2010 A1
20100020078 Shpunt Jan 2010 A1
20100033611 Lee et al. Feb 2010 A1
20100059844 Tanaka Mar 2010 A1
20100118123 Freedman et al. May 2010 A1
20100128221 Muller et al. May 2010 A1
20100142014 Rosen et al. Jun 2010 A1
20100177164 Zalevsky et al. Jul 2010 A1
20100182406 Benitez Jul 2010 A1
20100194745 Leister et al. Aug 2010 A1
20100201811 Garcia et al. Aug 2010 A1
20100225746 Shpunt et al. Sep 2010 A1
20100243899 Ovsiannikov et al. Sep 2010 A1
20100245826 Lee Sep 2010 A1
20100265316 Sali et al. Oct 2010 A1
20100278384 Shotton et al. Nov 2010 A1
20100283842 Guissin et al. Nov 2010 A1
20100284082 Shpunt et al. Nov 2010 A1
20100290698 Shpunt et al. Nov 2010 A1
20100303289 Polzin et al. Dec 2010 A1
20110001799 Rothenberger et al. Jan 2011 A1
20110025827 Shpunt et al. Feb 2011 A1
20110043403 Loffler Feb 2011 A1
20110069189 Venkataraman et al. Mar 2011 A1
20110074932 Gharib et al. Mar 2011 A1
20110096182 Cohen et al. Apr 2011 A1
20110134114 Rais et al. Jun 2011 A1
20110158508 Shpunt et al. Jun 2011 A1
20110187878 Mor et al. Aug 2011 A1
20110188054 Petronius et al. Aug 2011 A1
20110211044 Shpunt et al. Sep 2011 A1
20110241549 Wootton Oct 2011 A1
20110279648 Lutian et al. Nov 2011 A1
20110285910 Bamji et al. Nov 2011 A1
20110310125 McEldowney et al. Dec 2011 A1
20120012899 Jin et al. Jan 2012 A1
20120051588 McEldowney Mar 2012 A1
20120098972 Hansen et al. Apr 2012 A1
20120140109 Shpunt et al. Jun 2012 A1
20140118493 Sali et al. May 2014 A1
Foreign Referenced Citations (22)
Number Date Country
19736169 Aug 1997 DE
19638727 Mar 1998 DE
2352901 Feb 2001 GB
62206684 Sep 1987 JP
01-240863 Sep 1989 JP
03-029806 Feb 1991 JP
H03-040591 Feb 1991 JP
06-273432 Sep 1994 JP
H08-186845 Jul 1996 JP
H10-327433 Dec 1998 JP
2000131040 May 2000 JP
2001141430 May 2001 JP
2002122417 Apr 2002 JP
2002-152776 May 2002 JP
2002-213931 Jul 2002 JP
2002-365023 Dec 2002 JP
2006-128818 May 2006 JP
9303579 Feb 1993 WO
9827514 Jun 1998 WO
9828593 Jul 1998 WO
9828593 Jul 1998 WO
2005010825 Feb 2005 WO
Non-Patent Literature Citations (131)
Entry
Japanese Patent Application # 2011-517308 Official Action dated Dec. 5, 2012.
U.S. Appl. No. 12/844,864 Official Action dated Dec. 6, 2012.
U.S. Appl. No. 12/758,047 Official Action dated Oct. 25, 2012.
U.S. Appl. No. 13/036,023 Official Action dated Jan. 7, 2013.
Korean Patent Application # 10-2008-7025030 Office Action dated Feb. 25, 2013.
U.S. Appl. No. 12/707,678 Office Action dated Feb. 26, 2013.
U.S. Appl. No. 12/758,047 Office Action dated Apr. 25, 2013.
U.S. Appl. No. 12/844,864 Office Action dated Apr. 11, 2013.
Japanese Patent Application # 2011-517308 Office Action dated Jun. 19, 2013.
U.S. Appl. No. 13/036,023 Office Action dated Jul. 17, 2013.
U.S. Appl. No. 12/707,678 Office Action dated Jun. 20, 2013.
International Application PCT/IB2013/051189 Search Report dated Jun. 18, 2013.
U.S. Appl. No. 13/036,023 Office Action dated Sep. 3, 2013.
Japanese Patent Application # 2008558981 Official Action dated Nov. 2, 2011.
U.S. Appl. No. 12/522,171 Official Action dated Dec. 22, 2011.
U.S. Appl. No. 12/522,172 Official Action dated Nov. 30, 2011.
Japanese Patent Application # 2008558984 Official Action dated Nov. 1, 2011.
U.S. Appl. No. 13/043,488 Official Action dated Jan. 3, 2012.
Japanese Patent Application # 2008535179 Official Action dated Nov. 8, 2011.
Chinese Patent Application # 2006800038004.2 Official Action dated Nov. 24, 2011.
Marcia et al., “Superimposed Video Disambiguation for Increased Field of View”, Optics Express 16:21, pp. 16352-16363, year 2008.
Guan et al., “Composite Structured Light Pattern for Three Dimensional Video”, Optics Express 11:5, pp. 406-417, year 2008.
Hart, D., U.S. Appl. No. 09/616,606 “Method and System for High Resolution , Ultra Fast 3-D Imaging” filed on Jul. 14, 2000.
International Application PCT/IL2007/000306 Search Report dated Oct. 2, 2008.
International Application PCT/IL20027/000262 Search Report dated Oct. 16, 2008.
International Application PCT/IL2008/000458 Search Report dated Oct. 28, 2008.
International Application PCT/IL2008/000327 Search Report dated Sep. 26, 2008.
International Application PCT/IL2006/000335 Preliminary Report on Patentability dated Apr. 24, 2008.
Sazbon et al., “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding”, Pattern Recognition Letters 26, pp. 1772-1781, year 2005.
Sjodahl et al., “Measurement of shape by using projected random and patterns and temporal digital speckle photography”, Applied Optics, vol. 38, No. 10, Apr. 1, 1999.
Garcia et al., “Three dimensional mapping and range measurement by means of projected speckle patterns”, Applied Optics, vol. 47, No. 16, Jun. 1, 2008.
Chen et al., “Measuring of a Three-Dimensional Surface by Use of a Spatial Distance Computation”, Applied Optics, vol. 42, issue 11, pp. 1958-1972, Apr. 10, 2003.
Ypsilos et al., “Speech-driven Face Synthesis from 3D Video”, 2nd International Symposium on 3D Processing, Visualization and Transmission, Thessaloniki, Greece, Sep. 6-9, 2004.
Hanson et al., “Optics and Fluid Dynamics Department”, Annual Progress Report for 1997 (an abstract).
Ypsilos et al., “Video-rate capture of Dynamic Face Shape and Appearance”, Sixth IEEE International Conference on Automatic Face and Gesture Recognition (FGR 2004), Seoul, Korea, May 17-19, 2004.
Goodman, J.W., “Statistical Properties of Laser Speckle Patterns”, Laser Speckle and Related Phenomena, pp. 9-75, Springer-Verlag, Berlin Heidelberg, 1975.
Dainty, J.C., “Introduction”, Laser Speckle and Related Phenomena, pp. 1-7, Springer-Verlag, Berlin Heidelberg, 1975.
Avidan et al., “Trajectory triangulation: 3D reconstruction of moving points from amonocular image sequence”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, No. 4, pages, Apr. 2000.
Leclerc et al., “The direct computation of height from shading”, Proceedings of Computer Vision and Pattern Recognition, pp. 552-558, year 1991.
Zhang et al., “Height recovery from intensity gradients”, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 508-513, year 1994.
Zigelman et al., “Texture mapping using surface flattening via multi-dimensional scaling”, IEEE Transactions on Visualization and Computer Graphics, 8 (2), pp. 198-207, year 2002.
Kimmel et al., “Analyzing and synthesizing images by evolving curves with the Osher-Sethian method”, International Journal of Computer Vision, 24(1), pp. 37-56 , year 1997.
Koninckx et al., “Efficient, Active 3D Acquisition, based on a Pattern-Specific Snake”, Luc Van Gool (Editor), (DAGM 2002) Pattern Recognition, Lecture Notes in Computer Science 2449, pp. 557-565, Springer 2002.
Horn, B., “Height and gradient from shading”, International Journal of Computer Vision, No. 5, pp. 37-76, year 1990.
Bruckstein, A., “On shape from shading”, Computer Vision, Graphics, and Image Processing, vol. 44, pp. 139-154, year 1988.
Zhang et al., “Rapid Shape Acquisition Using Color Structured Light and Multi-Pass Dynamic Programming”, 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT), Padova, Italy, Jul. 2002.
Besl, P., “Active Optical Range Imaging Sensors”, Machine Vision and Applications, No. 1, pp. 127-152, USA 1988.
Horn et al., “Toward optimal structured light patterns”, Proceedings of International Conference on Recent Advances in 3D Digital Imaging and Modeling, pp. 28-37, Ottawa, Canada, May 1997.
Mendlovic, et al., “Composite harmonic filters for scale, projection and shift invariant pattern recognition”, Applied Optics, vol. 34, No. 2, pp. 310-316, Jan. 10, 1995.
Asada et al., “Determining Surface Orientation by Projecting a Stripe Pattern”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, No. 5, year 1988.
Winkelbach et al., “Shape from Single Stripe Pattern Illumination”, Luc Van Gool (Editor), (DAGM 2002) Patter Recognition, Lecture Notes in Computer Science 2449, p. 240-247, Springer 2002.
EZconn Czech A.S., “Site Presentation”, Oct. 2009.
Zhu et al., “Fusion of Time-of-Flight Depth and Stereo for High Accuracy Depth Maps”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, Jun. 24-26, 2008.
Luxtera Inc., “Luxtera Announces World's First 10GBit CMOS Photonics Platform”, Carlsbad, USA, Mar. 28, 2005 (press release).
Lee et al., “Variable Pulse Mode Driving IR Source Based 3D Robotic Camera”, MVA2005 IAPR Conference on Machine Vision Applications, pp. 530-533, Japan, May 16-18, 2005.
Mordohai et al., “Tensor Voting: A Perceptual Organization Approach to Computer Vision and Machine Learning”, Synthesis Lectures on Image, Video and Multimedia Processing, issue No. 8, Publishers Morgan and Claypool, year 2006.
Beraldin et al., “Active 3D Sensing”, Scuola Normale Superiore Pisa, vol. 10, pp. 22-46, Apr. 2000.
Bhat et al., “Ordinal Measures for Image Correspondence”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, No. 4, pp. 415-423, Apr. 1998.
Bradley et al., “Synchronization and Rolling Shutter Compensation for Consumer Video Camera Arrays”, IEEE International Workshop on Projector-Camera Systems—PROCAMS 2009 (Miami Beach, Florida, 2009).
De Piero et al., “3D Computer Vision Using Structured Light: Design Calibration and Implementation Issues”, Advances in Computers, vol. 43, pp. 243-278, Academic Press 1996.
Hongjun et al., “Shape Measurement by Digital Speckle Temporal Sequence Correlation Method”, Acta Optica Sinica Journal, vol. 21, No. 10, pp. 1208-1213, Oct. 2001 (with English abstract).
Hongjun, D., “Digital Speckle Temporal Sequence Correlation Method and the Application in Three-Dimensional Shape Measurement”, Chinese Doctoral Dissertations & Master's Theses, Full-text Database (Master) Basic Sciences, No. 1, Mar. 15, 2004.
Hsueh et al., “Real-time 3D Topography by Speckle Image Correlation”, Proceedings of SPIE Conference on Input/Output and Imaging Technologies, vol. 3422, pp. 108-112, Taiwan, Jul. 1998.
Chinese Patent Application # 200780009053.8 Official Action dated Apr. 15, 2010 (English translation).
Chinese Patent Application # 200680038004.2 Official Action dated Mar. 30, 2010 (English translation).
Chinese Patent Application # 200680038004.2 Official Action dated Aug. 3, 2011 (English translation).
Engfield, N., “Use of Pseudorandom Encoded Grid in U.S. Appl. No. 11/899,542”, Andrews Robichaud, Jun. 22, 2011.
U.S. Appl. No. 61/471,215, filed Apr. 4, 2011.
U.S. Appl. No. 12/844,864 Office Action dated Sep. 26, 2013.
U.S. Appl. No. 13/921,224 Office Action dated Oct. 3, 2013.
U.S. Appl. No. 12/958,427 Office Action dated Nov. 22, 2013.
U.S. Appl. No. 12/522,171 Official Action dated Apr. 5, 2012.
U.S. Appl. No. 12/397,362 Official Action dated Apr. 24, 2012.
International Application PCT/IB2011/053560 Search Report dated Jan. 19, 2012.
International Application PCT/IB2011/055155 Search Report dated Apr. 20, 2012.
U.S. Appl. No. 13/311,589, filed Dec. 6, 2011.
U.S. Appl. No. 12/522,176 Official Action dated Aug. 2, 2012.
U.S. Appl. No. 61/598,921, filed Feb. 15, 2012.
Richardson, W. H., “Bayesian-Based Iterative Method of Image Restoration”, Journal of the Optical Society of America, vol. 62, No. 1, pp. 55-59, Jan. 1972.
Omnivision Technologies Inc., “OV2710 1080p/720p HD Color CMOS Image Sensor with OmniPixel3-HS Technology”, Dec. 2011.
U.S. Appl. No. 13/541,775, filed on Jul. 5, 2012.
U.S. Appl. No. 12/282,517 Official Action dated Jun. 12, 2012.
U.S. Appl. No. 12/522,172 Official Action dated Jun. 29, 2012.
U.S. Appl. No. 12/703,794 Official Action dated Aug. 7, 2012.
JP Patent Application # 2008558984 Office Action dated Jul. 3, 2012.
Abramson, N., “Holographic Contouring by Translation”, Applied Optics Journal, vol. 15, No. 4, pp. 1018-1976, Apr. 1976.
Achan et al., “Phase Unwrapping by Minimizing Kikuchi Free Energy”, IEEE International Geoscience and Remote Sensing Symposium, pp. 1738-1740, Toronto, Canada, Jun. 2002.
Theocaris et al., “Radial Gratings as Moire Gauges”, Journal of Scientific Instruments (Journal of Physics E), series 2, vol. 1, year 1968.
International Application PCT/IB2011/053560 “Scanning Projectors and Image Capture Modules for 3D Mapping” filed on Aug. 10, 2011.
International Application PCT/IL2009/000285 Search Report dated Jun. 11, 2009.
Brooks et al., “Moire Gauging Using Optical Interference Patterns”, Applied Optics Journal, vol. 8, No. 5, pp. 935-940, May 1969.
Hovanesian et al., “Moire Contour-Sum Contour-Difference, and Vibration Analysis of Arbitrary Objects”, Applied Optics Journal, vol. 10, No. 12, pp. 2734-2738, Dec. 1971.
Bryngdahl, O., “Characteristics of Superposed Patterns in Optics”, Journal of Optical Society of America, vol. 66, No. 2, pp. 87-94, Feb. 1976.
International Application PCT/IL2008/000095 Search Report dated Jul. 24, 2008.
Chen et al., “Overview of Three-Dimensional Shape Measurement Using Optical Methods”, Society of Photo-Optical Instrumentation Engineers Journal 39(1), pp. 10-22, Jan. 2000.
Cohen et al., “High-Resolution X-ray Diffraction for Characterization and Monitoring of Silicon-On-Insulator Fabrication Processes”, Applied Physics Journal, vol. 93, No. 1, pp. 245-250, Jan. 2003.
Zhang et al., “Shape from intensity gradient”, IEEE Transactions on Systems, Man and Cybernetics—Part A: Systems and Humans, vol. 29, No. 3, pp. 318-325, May 1999.
Doty, J.L., “Projection Moire for Remote Contour Analysis”, Journal of Optical Society of America, vol. 73, No. 3, pp. 366-372, Mar. 1983.
Ben Eliezer et al., “Experimental Realization of an Imaging System with an Extended Depth of Field”, Applied Optics Journal, vol. 44, No. 14, pp. 2792-2798, May 10, 2005.
Tay et al., “Grating Projection System for Surface Contour Measurement”, Applied Optics Journal, vol. 44, No. 8, pp. 1393-1400, Mar. 10, 2005.
Takeda et al., “Fourier Transform Methods of Fringe-Pattern Analysis for Computer-Based Topography and Interferometry”, Journal of Optical Society of America, vol. 72, No. 1, Jan. 1982.
Takasaki, H., “Moire Topography”, Applied Optics Journal, vol. 12, No. 4, pp. 845-850, Apr. 1973.
Takasaki, H., “Moire Topography”, Applied Optics Journal, vol. 9, No. 6, pp. 1467-1472, Jun. 1970.
Hildebrand et al., “Multiple-Wavelength and Multiple-Source Holography Applied to Contour Generation”, Journal of Optical Society of America Journal, vol. 57, No. 2, pp. 155-162, Feb. 1967.
Su et al., “Application of Modulation Measurement Profilometry to Objects with Surface Holes”, Applied Optics Journal, vol. 38, No. 7, pp. 1153-1158, Mar. 1, 1999.
Btendo, “Two Uni-axial Scanning Mirrors Vs One Bi-axial Scanning Mirror”, Kfar Saba, Israel, Aug. 13, 2008.
Hung et al., “Time-Averaged Shadow-Moire Method for Studying Vibrations”, Applied Optics Journal, vol. 16, No. 6, pp. 1717-1719, Jun. 1977.
Idesawa et al., “Scanning Moire Method and Automatic Measurement of 3-D Shapes”, Applied Optics Journal, vol. 16, No. 8, pp. 2152-2162, Aug. 1977.
Iizuka, K., “Divergence-Ratio Axi-Vision Camera (Divcam): A Distance Mapping Camera”, Review of Scientific Instruments 77, 0451111 (2006).
Lim et al., “Additive Type Moire with Computer Image Processing”, Applied Optics Journal, vol. 28, No. 13, pp. 2677-2680, Jul. 1, 1989.
Piestun et al., “Wave Fields in Three Dimensions: Analysis and Synthesis”, Journal of the Optical Society of America, vol. 13, No. 9, pp. 1837-1848, Sep. 1996.
Post et al., “Moire Methods for Engineering and Science—Moire Interferometry and Shadow Moire”, Photomechanics (Topics in Applied Physics), vol. 77, pp. 151-196, Springer Berlin / Heidelberg, Jan. 1, 2000.
Chinese Patent Application # 200780006560.6 Official Action dated Oct. 11, 2010.
International Application PCT/IB2010/053430 Search Report dated Dec. 28, 2010.
Scharstein et al., “High-Accuracy Stereo Depth Maps Using Structured Light”, IEEE Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 165-171, Jun. 18, 2003.
Koschan et al., “Dense Depth Maps by Active Color Illumination and Image Pyramids”, Advances in Computer Vision, pp. 137-148, Springer 1997.
Marcia et al., “Fast Disambiguation of Superimposed Images for Increased Field of View”, IEEE International Conference on Image Processing, San Diego, USA, Oct. 12-15, 2008.
Microvision Inc., “Micro-Electro-Mechanical System (MEMS) Scanning Mirror”, years 1996-2009.
U.S. Appl. No. 61/419,891 “Lens Arrays for Pattern Projection and Imaging” filed Dec. 6, 2010.
U.S. Appl. No. 61/415,352 “Depth mapping using time-coded illumination” filed Nov. 19, 2010.
Lavoie et al., “3-D Object Model Recovery From 2-D Images Using Structured Light”, IEEE Transactions on Instrumentation and Measurement, vol. 53, No. 2, pp. 437-443, Apr. 2004.
Chinese Application # 200780016625.5 Office Action dated May 12, 2011.
U.S. Appl. No. 11/899,542 Office Action dated Apr. 4, 2011.
U.S. Appl. No. 11/724,068 Office Action dated Mar. 1, 2011.
Chinese Application # 200780009053.8 Office Action dated Mar. 10, 2011.
Japanese Application # 2008535179 Office Action dated Apr. 1, 2011.
Kun et al., “Gaussian Laser Beam Spatial Distribution Measurement by Speckles Displacement Method”, HICH Power Laser and Particle Beams, vol. 12, No. 2, Apr. 2000.
Chinese Patent Application # 200680038004.2 Official Action dated Dec. 24, 2010.
Chinese Patent Application # 200780016625.5 Official Action dated Oct. 26, 2010.
Chinese Patent Application # 200780006560.6 Official Action dated Feb. 1, 2011.
Yao Kun et al., “Measurement of Space Distribution of Laser Gaussian Beam by Speckles Displacement Method”, High Power Laser and Particle Beams, vol. 12, No. 2, pp. 141-144, Apr. 30, 2000.
Related Publications (1)
Number Date Country
20120249744 A1 Oct 2012 US
Provisional Applications (1)
Number Date Country
61471215 Apr 2011 US