The field of representative embodiments of this disclosure relates to audio processing methods, apparatuses, or implementations, and, more particularly, to multichip dynamic range enhancement (“DRE”) audio processing methods, apparatuses, and implementations.
Audio processing methods, apparatuses, and implementations for processing digital audio input signals into analog audio output signals can be implemented or provided on a single integrated circuit (“IC”) and include a way(s) for enhancing the dynamic range (e.g., a dynamic range enhancement (“DRE”) feature/capability) of audio signals processed by the single IC. Such a DRE solution/controller is typically provided and confined within the single audio processing IC.
Adaptive noise cancellation (“ANC”) algorithms are well known in the art and have been implemented for processing audio signals (e.g., AUDIO IN 102) in effectively cancelling or filtering ambient or background noise. In ANC processing, there is a desire to place ANC microphones as close to a user's ear as possible. ANC microphones are typically located in the mobile device or computer 202 of
Thus, a number of desired reasons exist for processing audio signals as digital signals instead of analog signals. Some of these desired reasons include but are not limited to providing higher fidelity, lessening susceptibility to noise, interference and coupling effects, lessening degradation of signals along the transmission path, allowing for more sophisticated error correction algorithms, and maybe even lowering power consumption.
In accordance with the teachings of the present disclosure, one or more disadvantages and problems associated with existing approaches to avoiding signal distortion in a signal processing system may be reduced or eliminated.
In accordance with embodiments of the present disclosure, a multichip circuit for processing audio signals having dynamic range enhancement information over two or more integrated circuits may include a host integrated circuit and a client integrated circuit. The host integrated circuit may be configured to determine a dynamic range enhancement gain for a digital audio input signal, process the digital audio input signal in accordance with the dynamic range enhancement gain, and transmit audio data based on the processed digital audio input signal. The client integrated circuit may be coupled to the host integrated circuit and may be configured to receive the audio data and wherein the client integrated circuit is provided with the dynamic range enhancement gain and the client integrated circuit is configured to process the audio data with the dynamic range enhancement gain.
In accordance with these and other embodiments of the present disclosure, a host integrated circuit for use in a multichip circuit for processing audio signals having dynamic range enhancement information over two or more integrated circuits may include a host controller and a transmitter. The host controller may be configured to determine a dynamic range enhancement gain for a digital audio input signal and process the digital audio input signal in accordance with the dynamic range enhancement gain. The transmitter may be configured to transmit audio data based on the processed digital audio input signal to a client integrated circuit coupled to the host integrated circuit, such that the client integrated circuit is provided with the dynamic range enhancement gain in order to process the audio data with the dynamic range enhancement gain.
In accordance with these and other embodiments of the present disclosure, a client integrated circuit for use in a multichip circuit for processing audio signals having dynamic range enhancement information over two or more integrated circuits may include a receiver and a client controller. The receiver may be configured to receive audio data from a host integrated circuit in accordance with the dynamic range enhancement gain. The client controller may be configured to determine a dynamic range enhancement gain for a digital audio input signal and process the audio data in accordance with the dynamic range enhancement gain.
In accordance with these and other embodiments of the present disclosure, a method for processing audio signals having dynamic range enhancement information over two or more integrated circuits may include processing, by a host integrated circuit, a digital audio input signal. The method may also include determining, by the host integrated circuit, a dynamic range enhancement gain for the digital audio input signal. The method may further include transmitting audio data based on the processed digital audio input signal. The method may additionally include receiving, by the client integrated circuit, the audio data. The method may also include providing the dynamic range enhancement gain to the host integrated circuit and the client integrated circuit. The method may further include processing, by the client integrated circuit, the audio data with the dynamic range enhancement gain.
Technical advantages of the present disclosure may be readily apparent to one skilled in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.
A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
Embodiments of the present disclosure may provide the processing of audio signals with dynamic range enhancement (“DRE”) data/information among at least two or more integrated circuits (“ICs”). The audio signals with the DRE data/information may be processed so that the communication between or among the two or more ICs may be accomplished or done digitally (e.g., digital communication between or among the two or more ICs). The DRE data/information for the audio signals may be provided to the two or more ICs. Various ways of providing the DRE data/information to the ICs may be provided in the embodiments of the present disclosure. Other data or information, such as adaptive noise cancellation (“ANC”) data or information, can also be provided or processed and digitally communicated between or among the two or more ICs too. The embodiments of the present disclosure may have the advantage of eliminating or reducing analog communication between two or more devices that process and/or transmit audio signals, and instead provide a way of digitally communicating between two or more devices (e.g., providing digital link communications). Thus, the embodiments of the present disclosure may provide the desired advantages of digital communication/processing across two or more devices over analog signal communication/processing. Such example desired advantages were previously discussed and mentioned in the background section.
A first example multichip or multi-IC audio processing configuration 400 according to the present disclosure is shown in
Host IC 401 may have a path that has coupled in series a signal processing block 104, a DRE gain block 105 having a DRE gain 106, a modulator 108, and a transmitter/coder (TX/CODER) block 404 as shown in
The TX/CODER block 404 may be a transmitter with an optional coder/serializer that codes the audio data (e.g., for digital transmission/communication) as well as the DRE gain information into digital data format. For example, the TX/CODER block 404 may code the audio information into N-bit digital data 405 wherein N is an integer of one or greater. In example configuration 400, the N-bit digital data 405 may comprise at least datagrams that have the audio and DRE information coded in digital form (e.g., AUDIO+DRE datagrams). An AUDIO datagram may comprise the digital audio content for digital data that may have been modulated by the modulator 108. A DRE datagram may have the DRE information for the respective AUDIO datagram and may identify the gain (e.g., DRE gain) applied to the digital data stream that is stored in the corresponding AUDIO datagram.
The DRE-H controller 402 may receive a processed audio input signal (based on audio input signal 102) from signal processing block 104. The DRE-H controller 402 may monitor the audio input signal 102 and determine when to apply a DRE gain 106 to the audio input signal 102. The DRE-H controller 402 may also determine how much of a DRE gain 106 to apply to the audio input signal 102. Based on characteristics of the audio input signal 102, the DRE-H controller 402 may adjust a DRE gain 106 at DRE gain block 105. Example characteristics of audio input signal 102 may include but are not limited to monitoring threshold detection, peak detection, peak and/or envelope tracking of the audio input signal 102.
N-bit digital data 405 may have a data format, such as, for example, the example data format 413 shown in
Each client IC (e.g., client IC 420-1 . . . 420-N) may include a receiver/decoder (RX/DECODER) block 406, a digital-to-analog converter (“DAC”) 110, and a driver 112 having a driver gain 116 coupled together in series in the manner shown in
A second example multichip or multi-IC audio processing configuration 500 according to the present disclosure is shown in
Configuration 500 shows a host IC 501 that may digitally communicate with one or more client IC(s) 520-1 . . . 520-N (e.g., N number of client ICs) wherein N is an integer that is one or greater. The processing of audio signals may also be divided or split among or between the host IC 501 and the one or more client ICs 520-1 . . . 520-N. The digital communication among or between the host IC 501 and one or more client ICs 520-1 . . . 520-N may eliminate or reduce the analog communication that would otherwise consume power between two or more devices or device components.
Host IC 501 may have a path that has coupled in series a signal processing block 104, a modulator with variable gain block 506, and a transmitter/coder (TX/CODER) block 510 as shown in
The TX/CODER block 510 may be a transmitter with an optional coder/serializer that codes the audio data into digital data format. For example, the TX/CODER block 510 may code the audio information into N-bit digital data 511 wherein N is an integer that is one or greater. In example configuration 500, the N-bit digital data 511 may include at least datagrams that have the audio information coded in digital form (e.g., AUDIO datagrams). An AUDIO datagram may include the digital audio content for a digital data stream.
The DRE-H Rule Based Module 508 may set certain rules to modify the variable gain (e.g., DRE gain) 507 based on the output data of modulator with variable gain block 506. Example rule based algorithms or methods include but are not limited to looking for specific bit patterns or certain most-significant-bits (MSBs) or certain least-significant-bits (LSBs) being a zero or one for a specific amount of time. Modulator with variable gain block 506 may send its output to DRE-H controller 502, and DRE-H controller 502 may change or adjust the variable gain (e.g., DRE gain) 507 based on the set rules such that the product of the variable gain (e.g., DRE gain) 507 for the host IC 501 and each of the driver gain 116 of the client IC(s) 520-1 . . . 520-N equals one or another constant value.
In
Because configurations 800 and 900 may provide communications/transmission paths to and from the earbuds/headphone speakers 810-1 and 810-2 that are digital communications/transmission paths, the signals between the earbuds/headphone speakers 810-1 and 810-2 and the mobile device or computer 830 and/or the external box 940 may still be digital. Thus, if an ANC algorithm is implemented by configurations 800 and 900, digital signals may be communicated and processed all the way to the earbuds/headphone speakers 810-1 and 810-2. With the existence of digital processing within the earbuds/headphone speakers 810-1 and 810-2, ANC microphones can be located or at least be more easily located (e.g., with less challenges) in the earbuds/headphone speakers 810-1 and 810-2.
It should be understood—especially by those having ordinary skill in the art with the benefit of this disclosure—that that the various operations described herein, particularly in connection with the figures, may be implemented by other circuitry or other hardware components. The order in which each operation of a given method is performed may be changed, and various elements of the systems illustrated herein may be added, reordered, combined, omitted, modified, etc. It is intended that this disclosure embrace all such modifications and changes and, accordingly, the above description should be regarded in an illustrative rather than a restrictive sense.
This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the exemplary embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the exemplary embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative.
All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present inventions have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4446440 | Bell | May 1984 | A |
4972436 | Halim et al. | Nov 1990 | A |
4999628 | Kakubo et al. | Mar 1991 | A |
4999830 | Agazzi | Mar 1991 | A |
5148167 | Ribner | Sep 1992 | A |
5321758 | Charpentier et al. | Jun 1994 | A |
5323159 | Imamura et al. | Jun 1994 | A |
5550923 | Hotvet | Aug 1996 | A |
5600317 | Knoth et al. | Feb 1997 | A |
5714956 | Jahne et al. | Feb 1998 | A |
2810477 | Abraham et al. | Sep 1998 | A |
5808575 | Himeno et al. | Sep 1998 | A |
6088461 | Lin | Jul 2000 | A |
6201490 | Kawano et al. | Mar 2001 | B1 |
6271780 | Gong et al. | Aug 2001 | B1 |
6353404 | Kuroiwa | Mar 2002 | B1 |
6745355 | Tamura | Jun 2004 | B1 |
6768443 | Willis | Jul 2004 | B2 |
6822595 | Robinson | Nov 2004 | B1 |
6853242 | Melanson et al. | Feb 2005 | B2 |
6888888 | Tu et al. | May 2005 | B1 |
7020892 | Levesque et al. | Mar 2006 | B2 |
7023268 | Taylor et al. | Apr 2006 | B1 |
7061312 | Andersen et al. | Jun 2006 | B2 |
7167112 | Andersen et al. | Jan 2007 | B2 |
7216249 | Fujiwara et al. | May 2007 | B2 |
7403010 | Hertz | Jul 2008 | B1 |
7440891 | Shozakai et al. | Oct 2008 | B1 |
7522677 | Liang | Apr 2009 | B2 |
7583215 | Yamamoto et al. | Sep 2009 | B2 |
7679538 | Tsang | Mar 2010 | B2 |
7893856 | Ek et al. | Feb 2011 | B2 |
8060663 | Murray et al. | Nov 2011 | B2 |
8289425 | Kanbe | Oct 2012 | B2 |
8330631 | Kumar et al. | Dec 2012 | B2 |
8362936 | Ledzius et al. | Jan 2013 | B2 |
8717211 | Miao et al. | May 2014 | B2 |
8804111 | Golovanevsky | Aug 2014 | B2 |
8873182 | Liao et al. | Oct 2014 | B2 |
8952837 | Kim et al. | Feb 2015 | B2 |
9071267 | Schneider et al. | Jun 2015 | B1 |
9071268 | Schneider et al. | Jun 2015 | B1 |
9148164 | Schneider et al. | Sep 2015 | B1 |
9306588 | Das et al. | Apr 2016 | B2 |
9337795 | Das et al. | May 2016 | B2 |
9391576 | Satoskar et al. | Jul 2016 | B1 |
20010009565 | Singvall | Jul 2001 | A1 |
20040184621 | Andersen et al. | Sep 2004 | A1 |
20050258989 | Li et al. | Nov 2005 | A1 |
20050276359 | Xiong | Dec 2005 | A1 |
20060056491 | Lim et al. | Mar 2006 | A1 |
20060098827 | Paddock et al. | May 2006 | A1 |
20060284675 | Krochmal et al. | Dec 2006 | A1 |
20070057720 | Hand et al. | Mar 2007 | A1 |
20070092089 | Seefeldt et al. | Apr 2007 | A1 |
20070103355 | Yamada | May 2007 | A1 |
20070120721 | Caduff et al. | May 2007 | A1 |
20070123184 | Nesimoglu et al. | May 2007 | A1 |
20080030577 | Cleary et al. | Feb 2008 | A1 |
20080159444 | Terada | Jul 2008 | A1 |
20090021643 | Hsueh et al. | Jan 2009 | A1 |
20090058531 | Hwang et al. | Mar 2009 | A1 |
20090084586 | Nielsen | Apr 2009 | A1 |
20090220110 | Bazarjani et al. | Sep 2009 | A1 |
20100183163 | Matsui et al. | Jul 2010 | A1 |
20110013733 | Martens et al. | Jan 2011 | A1 |
20110025540 | Katsis | Feb 2011 | A1 |
20110063148 | Kolze et al. | Mar 2011 | A1 |
20110096370 | Okamoto | Apr 2011 | A1 |
20110136455 | Sundstrom et al. | Jun 2011 | A1 |
20110150240 | Akiyama et al. | Jun 2011 | A1 |
20110170709 | Guthrie et al. | Jul 2011 | A1 |
20110242614 | Okada | Oct 2011 | A1 |
20120047535 | Bennett et al. | Feb 2012 | A1 |
20120133411 | Miao et al. | May 2012 | A1 |
20120177201 | Ayling et al. | Jul 2012 | A1 |
20120177226 | Silverstein et al. | Jul 2012 | A1 |
20120188111 | Ledzius et al. | Jul 2012 | A1 |
20120207315 | Kimura et al. | Aug 2012 | A1 |
20120242521 | Kinyua | Sep 2012 | A1 |
20120250893 | Carroll et al. | Oct 2012 | A1 |
20120263090 | Porat et al. | Oct 2012 | A1 |
20120280726 | Colombo et al. | Nov 2012 | A1 |
20130106635 | Doi | May 2013 | A1 |
20130188808 | Pereira et al. | Jul 2013 | A1 |
20140105256 | Hanevich et al. | Apr 2014 | A1 |
20140105273 | Chen et al. | Apr 2014 | A1 |
20140135077 | Leviant et al. | May 2014 | A1 |
20140184332 | Shi et al. | Jul 2014 | A1 |
20140269118 | Taylor et al. | Sep 2014 | A1 |
20150214974 | Currivan | Jul 2015 | A1 |
20150214975 | Gomez et al. | Jul 2015 | A1 |
20150295584 | Das et al. | Oct 2015 | A1 |
20150381130 | Das et al. | Dec 2015 | A1 |
20160072465 | Das et al. | Mar 2016 | A1 |
20160080862 | He et al. | Mar 2016 | A1 |
20160080865 | He et al. | Mar 2016 | A1 |
20160173112 | Das et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
0966105 | Dec 1999 | EP |
1575164 | Sep 2005 | EP |
1753130 | Feb 2007 | EP |
1798852 | Jun 2009 | EP |
2207264 | Jul 2010 | EP |
1599401 | Sep 1981 | GB |
2119189 | Nov 1983 | GB |
2307121 | Jun 1997 | GB |
2507096 | Apr 2014 | GB |
2527637 | Dec 2015 | GB |
2008294803 | Dec 2008 | JP |
WO0054403 | Sep 2000 | WO |
0237686 | May 2002 | WO |
2008067260 | Jun 2008 | WO |
2014113471 | Jul 2014 | WO |
2015160655 | Oct 2015 | WO |
2016040165 | Mar 2016 | WO |
2016040171 | Mar 2016 | WO |
2016040177 | Mar 2016 | WO |
Entry |
---|
Thaden, Rainer et al., A Loudspeaker Management System with FIR/IRR Filtering; AES 32nd International Conference, Hillerod, Denmark, Sep. 21-23, 2007; pp. 1-12. |
Thaden, Rainer et al., A Loudspeaker Management System with FIR/IRR Filtering; Slides from a presentation given at the 32nd AES conference “DSP for Loudspeakers” in Hillerod, Denmark in Sep. 2007; http://www.four-audio.com/data/AES32/AES32FourAudio.pdf; 23 pages. |
GB Patent Application No. 1419651.3, Improved Analogue-to-Digital Convertor, filed Nov. 4, 2014, 65 pages. |
Combined Search and Examination Report, GB Application No. GB1506258.1, Oct. 21, 2015, 6 pages. |
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/025329, mailed Aug. 11, 2015, 9 pages. |
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/048633, mailed Dec. 10, 2015, 11 pages. |
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/048591, mailed Dec. 10, 2015, 11 pages. |
Combined Search and Examination Report, GB Application No. GB1510578.6, Aug. 3, 2015, 3 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2015/056357, mailed Jan. 29, 2015, 13 pages. |
Combined Search and Examination Report, GB Application No. GB1514512.1, Feb. 11, 2016, 7 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2015/048609, mailed Mar. 23, 2016, 23 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2016/022578, mailed Jun. 22, 2016, 12 pages. |
Combined Search and Examination Report, GB Application No. GB1600528.2, Jul. 7, 2016, 8 pages. |
Combined Search and Examination Report, GB Application No. GB16036287, Aug. 24, 2016, 6 pages. |
International Search Report and Written Opinion, International Application No. PCT/EP2016/062862, mailed Aug. 26, 2016, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20160286310 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
62139123 | Mar 2015 | US |