Now referring to the figures, wherein like numerals identify like elements,
Outer face plate 20 forming part of the showerhead housing is provided at a distal extent 18a of main shell 18 and has a rotatable actuation member 22 operative thereadjacent. Actuation member 22 is provided in freely rotatable registry with outer face plate 20 and includes at least one grasping portion 24 that accommodates placement of one or more digits thereon and effects rotation of the actuation member relative to the outer face plate. Actuation member 22 may also include at least one optional indicator 26 that provides visual confirmation of the selection of shower mode. Indicator 26 may be provided in combination with corresponding indices 28, 28a and 28b provided on outer face plate 20 (see
Ball joint 14 includes a filter 30 disposed therein and a nozzle 32 defined therethrough. Ball joint 14 has a proximate extent 14a fixed to a fluid delivery conduit (i.e., a cantilever-type arm, not shown) that establishes fluid communication between a water delivery source and ball joint 14. Water entering ball joint 14 in the direction shown in
Shell nut 16 has a proximate extent 16a adjacent ball joint 14 and an opposed bottom extent 16b adjacent main shell 18. Proximate shell nut extent 16a and distal shell nut extent 16b have a coextensive wall 16c of predetermined height defined by an outer peripheral surface 16c′ and an inner peripheral surface 16c″. An annular rim 16d provided at proximate shell nut extent 16a engages ball joint 14 such that ball joint 14 is pivotably received in a receiving region 16e defined by inner peripheral surface 16c″. Orientation of showerhead 10 is effected by manual pivoting of the showerhead relative to the fixed ball joint (although electronic positioning means may be employed as is known in the art).
If shell nut 16 and main shell 18 are not constructed as an integral unit, inner peripheral surface 16c″ may also include means for engagement of the shell nut and the main shell. As shown in
Bottom shell nut extent 16b is supported adjacent a top extent 18a of main shell 18 and more particularly a top surface 18a′ thereof. Top main shell extent 18a and an opposed bottom extent 18b have a coextensive, generally frustoconical wall 18c of predetermined height defined therebetween (although wall 18c can assume any known geometry that is amenable to the practice of the present invention). Main shell wall 18c has an outer peripheral surface 18c′ upon which desired aesthetic effects are provided (including but not limited to finishes, etchings, appliqués and any combination thereof) and an inner peripheral surface 18c″ delineating a main housing region 18d in which the operational elements of showerhead 10 are lodged (as further described hereinbelow).
An annular extension 18e protrudes generally normally relative to main shell top surface 18a′ and has a lumen 18e′ to accommodate water flow therethrough. Main shell top surface 18a′ supports bottom shell nut extent 16b such that receiving region 16e of shell nut 16 accommodates annular extension 18e therein, such accommodation being effecting by threaded engagement, snap-fit engagement, epoxy or alternative comparable means as described hereinabove.
Top main shell extent 18a further includes an opposed bottom surface 18a″ from which a depending extension 18f protrudes generally normally. Depending extension 18f has a receiving aperture 18g defined therein that accommodates additional elements of showerhead 10 (as further described below). Annular extension 18e and depending extension 18f are concentrically arranged such that an unoccluded fluid flow path is provided from ball joint 14 to depending extension 18f and more particularly to cartridge assembly 40 adjacent thereto.
Cartridge assembly 40 includes a cartridge housing 42 having an elongate cylindrical body 44 that terminates at an annular flange 46 provided at a distal extent 44b thereof. A generally cylindrical wall 48 of predetermined length extends from distal extent 44b to an opposed proximate extent 44a and is coextensive therewith. Cartridge body wall 48 has an outer peripheral surface 48a along which a biasing spring 50 is coaxially disposed and in which a guide recess 52 is provided in a generally helical configuration along at least a portion of the length of cartridge body wall 48 (see
Cartridge body wall 48 also has an inner peripheral surface 48b that delineates an operating region 54 wherein operable members of cartridge assembly 40 are lodged. A generally annular cartridge holder 56 is provided in operating region 54 at cartridge body proximate extent 48a such that an annular wall 56a of cartridge holder 56 is coaxially disposed relative to annular extension 18e and depending extension 18f (see
Annular cartridge holder wall 56a depends upwardly from an annular flange 56b having a top surface 56b′ that communicates with depending extension 18f and a bottom surface 56b″ in communication with an adjacent cartridge disc 62. As further shown in
Referring to
Movement of cartridge disc 62 relative to cartridge holder 56 during operation of showerhead 10 adjusts the position of each recess 63 relative to clutch pin 72. In each position, the operation of showerhead 10 changes to achieve a desired and predictable shower pattern. The inclusion of a detent feature, which is triggered upon operation of actuation member 22 and enhanced by alignment with indices 28, 28a and 28b, provides an audible and tactile feedback to the bather upon selection of the desired shower mode. Cartridge disc 62 with detent recesses 63 defined thereon, is designed such that the protrusion of clutch pin tail portion 72b will align with corresponding recesses 63. The action of cartridge disc 62 is such that as the cartridge disc rotates upon rotation of actuation member 22, thereby pushing clutch pin 72 inward along spring 73. As actuation member 22 reaches an indexed location, clutch pin tail portion 72b is biased by spring 73 into a detent recess 63. This results in a physical “snap” action that is felt and heard by the bather, thereby providing sensory confirmation of proper selection of the desired spray mode.
Also offset from the axial lumen is at least one, and desirably two, cup regions 80 provided in cartridge holder 56. Each cup region 80 has a resilient cup seal member 82 disposed therein in combination with a spring 83 (see
A cartridge 90 that is also provided in operating region 54 is coaxially disposed relative to cartridge housing 42 and detachably fastened thereto such that rotation of cartridge disc 62 remains unimpeded. Cartridge 90 has an annular flange 92 with a top surface 92a in communication with a bottom surface 62b of cartridge disc 62 and an opposed bottom flange surface 92b. Top flange surface 92a has an upper annular wall 94 extending upwardly therefrom, and bottom flange surface 92b has a lower annular wall 96 extending generally downwardly therefrom. Upper annular wall 94 delineates at least one fluid ingress 98 therein to accommodate fluid flow through a cartridge aperture 67 in alignment therewith. At least one such fluid ingress 98 may selectively have a flow regulator disposed thereat that is selected from one of a plurality of commercially available flow regulators such as those sold under the trademark NEOPERL (NEOPERL is a registered trademark of Neoperl Servisys AG Corporation, Switzerland).
Lower annular wall 96 further delineates an engagement region wherein a face plate 100 is detachably secured. Face plate 100 has a distal extent 100b at which an annular face portion 102 is provided. Annular face portion 102 includes fluid delivery surface 102a having a plurality of fluid delivery ports 104 defined therethrough. Fluid delivery ports 104 accommodate insertion of corresponding nozzles 106 therethrough, which nozzles may be dispersed along an annular nozzle ring 108. Nozzle ring 108 is disposed adjacent a fluid impingement surface 102b opposed to fluid delivery surface 102a of annular face portion 102 and may be secured via a water-repellant epoxy or equivalent means. Securement of face plate 100 with cartridge assembly 40 (or more particularly with cartridge housing 12 as shown in
Face plate 100 further includes a cylindrical extension 110 depending from fluid impingement surface 102b. Extension 110 has an outer peripheral surface 112 with an annular shoulder 114 defined thereat for engagement with a corresponding annular shoulder 116 defined at a distalmost extent of lower annular cartridge wall 96. A predefined gap x is provided between face plate extension shoulder 114 and annular shoulder 116 to accommodate elevation of the former relative to the latter during operation of showerhead 10 (see
A lumen 120 defined in face plate extension 110 terminates in a platform 122 having an upper surface 122a and a lower surface 122b. Upper platform surface 122a supports a compression plate 126 thereon that biases face plate 100 toward cartridge housing distal extent 44b (see
A rotating turbine member 130 is affixed to platform 126 via a rivet 131 or comparable fixation member such that fluid flows through the platform apertures (not shown) and impinges turbine blades 132, consequently causing rotation of turbine member 130. Showerhead 10 desirably employs a turbine as taught by U.S. Pat. No. 7,066,407 to Lu (hereinafter referred to as “Lu” and incorporated in its entirety by reference herein). Lu shows a shower head assembly having an outer housing with an inner housing mounted thereon. The inner housing includes a mediate portion characterized by a separation wall having a plurality of ejection holes through which water passes. A catch cap disposed on a first side of the separation wall has an air chamber in communication with the ejection holes and further in communication with a water inlet hole. An impeller is rotatably mounted on a second side of the separation wall and has a plurality of blades selectively aligning with the ejection holes. The impeller is rotatably mounted on a pivot shaft and removably mounted thereon by a fastener such as a retaining pin. In operation, water from a water delivery source travels to a universal connector passage for delivery to the inner housing. Water further traverses the water inlet hole, the air chamber, the ejection holes and the impeller for outward radial ejection from the outer housing and delivery to a bather. As the water flow causes rotation of the impeller, water drops outward along the blades in discrete portions to provide an enjoyable fluttering effect for the bather. This fluttering effect is achieved at a constant flow rate of no more than 2.0 GPM when used as the sole water delivery mechanism (although water delivery is limited to no more than 1.5 GPM when the second combined spray mode is selected, as further described hereinbelow). Thus, introduction of the water flow through the water inlet hole into the air chamber reduces the water flow rate to achieve water conservation benefits. In addition, water is ejected from the ejection holes in an atomized manner to create a pleasing tactile spray for the bather.
A reversing mechanism such as reverse ring 134 is disposed along cartridge body wall 48 and supported by annular flange 46 when showerhead 10 is not in operation. Reverse ring 134 is generally an annular member having an outer wall 134a and an inner wall 134b having an engagement means such as inclined notch 135 integrally defined thereon (see
A user of showerhead 10 may select from one of three different flow rates for delivery of desired water massage action without compromise of water conservation benefits. Referring to
In operation, showerhead 10 is initially in the first mode wherein water is initially delivered at no more than about 1.5 GPM to turbine member 130 to derive a concentrated fluttering spray effect therefrom. Pressure incurred by the water flow forces clutch pin 72 down into a first detent recess 63 corresponding to alignment of a first sup seal member 82 with a first cartridge disc aperture 67. In order to change from the first mode to the second mode, a user operates actuation member 22 so as to rotate actuation member 22 and correspondingly rotate cartridge housing 44. Consequently, reverse ring 164, and particularly notch 135 thereof, traverses guide recess 52 to compress biasing spring 50. Elevation of reverse ring 134 relative to cartridge housing wall 48 is limited by stops 140 defined in main shell housing region 18d (see
As cartridge housing 44 rotates, so does face plate 100 and cartridge 90 in engagement therewith. Such rotation in turn rotates cartridge disc 62. As spring 50 compresses, pressure on clutch pin 72 is reduced to accommodate rotation of cartridge disc 62 relative to clutch pin 72 and subsequent engagement of a second detent recess 63 corresponding to the second mode. Upon turning actuation member 22, a user will tactilely experience such engagement between clutch pin 72 and consecutive detent recesses 63 so as to know when a successful selection of modes has been achieved. If further selection of showerhead modes is desired, the user will again operate actuation member 22 and feel the engagement of clutch pin 72 with a third detent recess 63 as water continues to flow through showerhead 10 and induce pressure on clutch pin 72. At the conclusion of a shower event and discontinuance of water delivery, there is no such water pressure on clutch pin 72. Spring 50 thereby biases clutch pin 72 to its initial rest position in the first water saver mode and releases clutch pin 72 from its position in the second or third detent recess 63. Simultaneously, compression plate 126 biases cartridge assembly 40 toward the assembly's starting position, thereby relieving compression of spring 50 and guiding reverse ring 134 along guide recess 52 back to its initial starting position supported by annular flange 46. When water pressure drops below a predetermined bottom threshold (such as upon cessation of the shower), showerhead 10 thereby automatically returns to the first operational mode to ensure water conservation during all subsequent shower events.
Showerhead 10, or any portion thereof, is selectively fabricated from metals, plastics, composites or any combination thereof that is amenable to practice of the present invention. One or more of housing 12 and cartridge assembly 40 may be produced as integral elements, ultrasonically welded or mechanically assembled for ease of manufacturability and assembly. Showerhead 10, or any portion thereof, may also have one or more treatments applied thereon to enhance the showerhead's performance. Such treatments may include coatings, glazes and/or additives having one or more of hydrophobic, hydrophilic, antimicrobial, antibacterial, biocidal, odor suppressing, anti-viral and algicidal properties. Such coatings are well known within the industry to promote the cleanliness of sanitary fittings and fixtures and to deter the transmission of undesirable contagions.
The present invention showerhead delivers a stark improvement in water conservation efforts by permitting selection of various shower effects without attenuating the device water conservation benefits. No showerhead in the existing art discloses a showerhead that delivers different flow rates for different spray functions such that each spray function has a predetermined maximum water flow rate. Such art further does not show aggregate flow rates for a combination spray that does not exceed a predetermined maximum flow rate for the entire showerhead. The showerhead of the present invention, however, is desirably provided in multiple aesthetic embodiments, all of which accommodate a first concentrated fluttering spray mode at a first water saver flow rate; a second spray mode that combines the first spray pattern with a second radially dispersed precision spray pattern having a second water flow rate that exceeds the first water flow rate, and a third mode that delivers the radially dispersed precision spray pattern at the second water flow rate. The cumulative flow rate of the second mode never exceeds the second, higher water flow rate. In this manner, the present invention provides the bather with a selection of desirably spray functions that are tactilely pleasing, yet restrains the total consumption of water for each shower event. This is achieved in concert with the automatic return feature which further eliminates wasteful consumption of precious water resources.
The showerhead of the present invention further obviates any override of the showerhead's beneficial features. In conventional showerheads, the flow control device can be overridden or rendered ineffective by the installer or user. The flow control devices of the present invention showerhead, however, are disposed deep within the showerhead housing to eliminate tampering thereof. This feature inures to the present invention's benefit of successfully communicating with a preexisting bath shower control valve upon the fall of water pressure below a predetermined bottom threshold (typically below 20 PSI).
Various changes to the foregoing described and shown structures are now evident to those skilled in the art. The matter set forth in the foregoing description and accompanying drawings is therefore offered by way of illustration only and not as a limitation. Accordingly, the particularly disclosed scope of the invention is set forth in the following claims.