The present invention relates to the field of expandable balloon members, particularly those for delivery of medical devices, particularly those delivered at or near a bifurcation of a body lumen.
Vascular disease is prevalent and often involves the development of a stenosis within a body vessel which causes narrowing of the vessel, or which can lead to complete blockage (or occlusion), which leads to restriction or cessation of blood flow through this vessel.
Within the vasculature, it is not uncommon for a stenosis to form at a vessel bifurcation. A bifurcation is an area of the vasculature or other portion of the body where a first (or parent) vessel is bifurcated into two or more branch vessels. Where a stenotic lesion or lesions form at such a bifurcation, the lesion(s) can affect only one of the vessels (i.e., either of the branch vessels or the parent vessel) two of the vessels, or all three vessels.
Implantable medical devices, such as stents, are well known, and may be designed for treatment at vessel bifurcations. Stents are implantable devices which are introduced percutaneously, delivered transluminally to the treatment site in a reduced diameter profile, and once in position, are radially expanded to an enlarged diameter. Stents may be implanted in a variety of body lumens or vessels such as within the vascular system, urinary tracts, bile ducts, fallopian tubes, coronary vessels, secondary vessels, etc. Stents may be used to reinforce body vessels and to prevent restenosis following angioplasty in the vascular system. They may be self-expanding, expanded by an internal radial force, such as when mounted on a balloon, or a combination of self-expanding and balloon expandable (hybrid expandable).
A stent is typically delivered using a stent delivery device, such as a stent delivery catheter. In one common technique, the stent is crimped down to its delivery position over an expandable member, which is disposed at the distal end of the delivery catheter. The delivery catheter, with the expandable element and the stent disposed thereon, is advanced to the treatment site, wherein the balloon and the catheter are expanded, the expandable member deflated and withdrawn, leaving the stent deployed at the site.
Stents for use at vessel bifurcations may have a variety of configurations including, for example, segmented structures which include a primary branch and at least one secondary branch which is positioned adjacent to and/or partially within the primary branch. These segmented systems may employ multiple catheters and/or balloons to deploy all of the stent segments.
Other bifurcated stents include single structure stents wherein the stent is comprised of a trunk with two or more branches extending therefrom.
Still other stent configurations employ a single substantially tubular stent which has a specialized side-branch opening through which an additional stent or structural component may be deployed. Many of these systems employ a stent delivery assembly having a dual-balloon system for deployment of the main and the side-branch of the bifurcation stent.
In any case, it is desirable also to have delivery systems and components thereof, including the expandable members, to be configured for efficient and accurate deployment of these such stents at vessel bifurcations.
There remains a need in the art for improved delivery systems and components thereof, for delivery of stents at vessel bifurcations.
The information described above is not intended to constitute an admission that such information referred to herein is “prior art” with respect to this invention.
Without limiting the scope of the invention a brief summary of some of the claimed embodiments of the invention is set forth below. Additional details of the summarized embodiments of the invention and/or additional embodiments of the invention may be found in the Detailed Description of the Invention below.
The present invention relates to expandable medical balloons useful for delivery of implantable medical devices at vessel bifurcations.
In particular, the present invention relates to a single expandable medical balloon which is configured so as to allow for deployment of a bifurcation stent which has both main and side-branch openings.
In one aspect, the present invention relates to an expandable medical balloon useful for treatment of a bifurcated vessel, the balloon having at least one expanded state, the balloon formed with at least one inner layer and at least one outer layer, the outer layer having at least one cavity wherein the cavity extends at least partially through the outer layer and allows protrusion of the inner layer therethrough when the balloon is in its at least one expanded state. In one embodiment, the cavity extends completely through the outer layer thereby forming an opening through which the inner layer is exposed. The cavity is suitably located in the balloon body.
More specifically, the balloon is formed having at least one inner layer and at least one outer layer, wherein the outer layer has at least one protrusion region, the outer layer of the protrusion region having at least a partial thickness.
In one embodiment, the balloon is employed for the delivery of a bifurcated stent having a main branch and a side branch, wherein the inner layer protrusion corresponds with and extends into, the side branch of the bifurcated stent for expansion of the side branch.
Using a single multilayer balloon according to the invention allows for a more simplistic approach to stent delivery at vessel bifurcations than use of a dual-balloon system, for example.
These and other aspects, embodiments and advantages of the present invention will become immediately apparent to those of ordinary skill in the art upon review of the Detailed Description and Claims to follow.
While this invention may be embodied in many different forms, there are described in detail herein specific embodiments of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.
All published documents, including all US patent documents, mentioned anywhere in this application are hereby expressly incorporated herein by reference in their entirety. Any copending patent applications, mentioned anywhere in this application are also hereby expressly incorporated herein by reference in their entirety.
The present invention relates to a multilayer expandable medical balloon which finds particular utility for use in treatment of vessel bifurcations and for delivery of stents for treatment at a vessel bifurcation.
The balloon includes at least one inner layer and at least one outer layer, the outer layer having a cavity extending at least partially therethrough. The cavity may extend all the way through the outer layer forming an opening through which the outer surface of the inner layer is exposed. In one embodiment, the cavity extends completely through the outer layer thereby forming an opening through which the inner layer is exposed. The cavity allows the inner layer to expand therethrough.
More specifically, the balloon is formed having at least one inner layer and at least one outer layer, wherein the outer layer has at least one protrusion region, the outer layer of the protrusion region having at least a partial thickness.
The expandable balloons according to the invention find particular utility for delivery of an implantable medical device such as a stent having a main and a side-branch for use at a vessel bifurcation, wherein the balloon is employed to expand the stent from its unexpanded configuration to its expanded configuration during deployment.
The main branch of the stent may be positioned in the main branch of the vessel bifurcation. The side-branch of the stent may be positioned at the secondary or side-branch of the vessel bifurcation.
During delivery and deployment of the stent at the vessel bifurcation, the stent may be positioned over the balloon so that the side-branch opening of the stent is positioned over the cavity in the outer layer of the balloon. During expansion, the at least one inner layer of the multi-layer balloon expands into the cavity of the at least one outer layer, and protrudes therethrough, thereby expanding the side-branch of the stent into the ostium of the secondary vessel of the vessel bifurcation.
Depicted in the following figures are various aspects of the invention. Elements depicted in one figure may be combined with, and/or substituted for, elements depicted in another figure as desired.
Turning now to the figures,
While the protrusion in
Balloon 10 shown in
One embodiment of a generic stent configuration for deployment at a vessel bifurcation, shown for illustrative purposes only, is shown perspectively in
Multilayer balloon 10 according to the invention may be made using any conventional balloon forming techniques known to those of skill in the art. One commonly employed method includes the basic steps of extruding a tubular parison or balloon preform, placing the tubular parison in a balloon mold, and expanding the tubular parison into the desired balloon configuration in the balloon mold. The main processing steps may include other steps therein such as stretching and radial orientation of the balloon material, for example, as well as annealing and heat setting, if desired. The tubular parison may be stretched prior to molding, for example, in a separate step. The stretching step may also be combined with the radial expansion step while the tubular parison is in the balloon mold. An example of a balloon forming process is disclosed in U.S. Pat. No. 4,490,421 which is incorporated by reference herein in its entirety. Other suitable methods are known in the art.
A second forming processing may be employed to create the final balloon 10 shown as a partial longitudinal cross-section in
However, the second forming process may not be necessary as protrusion of the inner layer may occur when the balloon is pressurized.
In an alternative process as shown in
Another suitable method which can be employed is intermittent layer coextrusion (ILC) wherein the opening(s) is provided in the outer layer 20 during coextrusion.
Tubular parison 15 may then be placed into a balloon mold, and radially expanded resulting in balloon 10 as shown in
After any of the molding steps, a heat set step may be employed if desired.
Once formed, the balloon may be folded and wrapped about its longitudinal axis as is known in the art.
It should be noted herein that the geometry of the protrusion can be changed by changing the geometry within the balloon mold.
Furthermore, if so desired, the process above can be modified so as to provide two or more cavities in the outer layer and two or more protrusions into the cavities from the inner layer.
Alternatively, the layers may be formed using other methods known in the art. For example, the tubular parison may be formed of a single layer, and subsequent layers may be applied using other techniques such as by chemical treatment, polymerization of an outer layer on the first, ion bombardment, etc.
A single layer balloon may also be formed followed by chemical treatment, polymerization of an outer layer, ion bombardment, etc.
Any suitable balloon material may be employed for the inner layer and the outer layer. Suitably, the outer layer is formed from a material which is different than that of the inner layer. Suitably, the at least one inner layer is made from a material which has a different compliance than that of the outer layer, i.e. is either more compliant or less compliant than the outer layer.
Suitably, the material for the outer layer is selected so as to be of the compliance desired for deployment of a stent in a main branch vessel. Examples of suitable balloon materials for the outer layer, for example, include, but are not limited to, polyolefins such as polyethylene, polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), and polyamides (nylons), for example, are commonly employed for deployment of a stent in a main branch vessel.
Materials which may form compliant or semi-compliant balloon layers are those which are relatively soft or flexible polymeric materials. Examples of these materials include, but are not limited to, polyethylene (high density, low density, intermediate density, linear low density), various copolymers and blends of polyethylene, ionomers, polyesters, polyurethanes, polycarbonates, polyamides, polyvinyl chloride, acrylonitrile-butadiene-styrene copolymers, polyether-polyester copolymers, polyether-polyamide copolymers, block copolymers having styrene endblocks and midblocks of isoprene, butadiene, ethylene/propylene, isobutylene and ethylene/butylene, PTFE (TEFLON®), polyester-ester elastomers, polyether-ester elastomers such as HYTREL® and ARNITEL®, polyether-ether ketone (PEEK), polyether-block amides (PEBAX®) and mixtures thereof.
It has been suggested that intermediate compliance balloons may be made polymers such as polyethylene ionomer, polyvinyl chloride, polyethylene or ethylene-vinyl acetate, nylon, polyether-block amides, and styrenic block copolymers, for example, as well as mixtures thereof.
Materials which may form relatively non-compliant balloon layers may be formed from relatively rigid or stiff polymeric materials. These materials include thermoplastic polymers and thermoset polymeric materials. Some examples of such materials include, but are not limited to, the polyalkylene terephthalates such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), polyimides, thermoplastic polyimides, polyamides, polyesters, polycarbonates, polyphenylene sulfides, polypropylene, rigid polyurethanes as well as mixtures thereof.
As can be seen, some classes of materials, such as polyethylene or polyamides, for example, have members which fall into one or more of the compliance categories, depending on their chemical composition, chemical structure and processing parameters to which they are subjected, for example.
For a discussion of compliance, see, for example, commonly assigned U.S. Pat. Nos. 6,171,278, 6,146,356, 5,951,941, 5,830,182, 5,556,383 and 5,447,497, each of which is incorporated by reference herein in its entirety.
Non-limiting examples of balloon materials may be found in commonly assigned U.S. Pat. Nos. 5,500,181, 5,403,340 and 5,348,538, each of which is incorporated by reference herein in its entirety.
Of course, either layer may include reinforcement materials. Examples include fiber or filament forms such as polyester, polyamide or carbon fiber, and further may be sphere and particulate forms such as glass. Examples of reinforcing materials include, but are not limited to, glass, carbon, ceramic, fluoropolymer, graphite, liquid crystal polymers, polyester, polyamide, stainless steel, titanium and other metals such as nitinol, or radiopaque materials (such as Bismuth or Tungsten) and the like. Reinforcement materials are disclosed in commonly assigned U.S. Pat. No. 6,024,722, the entire content of which is incorporated by reference herein.
Nanocomposite or microcomposite materials may be employed herein. “Nanocomposite” or “microcomposite” are terms art often used to refer to compositions that include a polymeric material and relatively small amounts (generally less than about 10% by weight) of nanometer-sized (average size smaller than 1 micrometer) mineral clay or nanosized ceramic particles dispersed therein, for example. Sometimes nanocomposites are referred to as “nanoclay” or “nanoceramic”. For example, nanocomposites are disclosed in commonly assigned copending WO 03/049795 A2, the entire content of which is incorporated by reference herein. See also WO 930004118, commonly assigned U.S. Patent Application No. 20050149177, and U.S. Pat. Nos. 5,385,776, and 6,251,980, each of which is incorporated by reference herein in its entirety.
These materials can be added for the purpose of restricting or controlling compliance. Radiopaque materials may be added to provide a visual aid for positioning of the balloon and/or stent at the treatment site in a body lumen, for example.
The above lists are intended for illustrative purposes only, and not as a limitation on the scope of the present invention.
The expandable balloon members according to the invention find utility in the treatment of vascular disease, particularly for the treatment of disease at vessel bifurcations. Procedures wherein such balloons may be employed include, for example, plain old balloon angioplasty (POBA) and percutaneous transluminal coronary angioplasty (PTCA), as well as delivery of implantable medical devices such as stent delivery.
The multilayer expandable balloon members as disclosed herein allow for delivery of stents at vessel bifurcations using a single balloon member. The use of a single balloon member is advantageous for a variety of reasons including easier, more efficient assembly, easier balloon folding/wrapping and crimping of the stents onto the balloon and reduced withdrawal force post-stent deployment.
The multilayer expandable balloon members can be employed in combination with any catheter assembly used for vascular treatment and in combination with any stent delivery device employed in such treatments.
The following non-limiting example is further illustrative of the present invention.
A tubular parison having an inner layer of PEBAX® 6333, poly(ether-block-amide), available from Arkema Inc. in Philadelphia, Pa., and an outer layer of Melinar Laser+® polyethylene terephthalate (PET), available from Advansa in Hoofddorp, The Netherlands, was coextruded. The inner diameter of the coextruded tubular parison was 0.023″ and the outer diameter of 0.046″. The inner layer and outer layer were extruded at equal mass flow rates. The extruder was employed with several heating zones ranging from about 350° F. (about 177° C.) to about 515° F. (about 268° C.). A balloon was formed by placing the tubular parison in a conventional balloon mold form such as disclosed in commonly assigned U.S. Pat. No. 5,714,110 to Wang (see
Once the balloon was formed, a substantially circular section having a diameter of about 1.5 mm was cut into the outer layer of the balloon with a UV laser, forming an opening extending all the way through the outer layer, exposing the outer surface of the inner layer.
Upon inflation to a pressure of about 10 atm, the main branch portion of the balloon was expanded. After inflation to 15 atm, the inner layer expanded through the opening to form a protrusion, i.e. the size branch portion of the balloon.
It should be noted that inflation pressures may vary depending on the materials selected, processing parameters, and balloon wall thickness.
Other factors which may affect side branch deployment include the shape and dimensions of the cavity and the thickness of the outer layer in the cavity region.
The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the attached claims. Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims attached hereto.
Number | Name | Date | Kind |
---|---|---|---|
4309994 | Grunwald | Jan 1982 | A |
4490421 | Levy | Dec 1984 | A |
4769005 | Ginsburg et al. | Sep 1988 | A |
4774949 | Fogarty | Oct 1988 | A |
4896670 | Crittenden | Jan 1990 | A |
4905667 | Foerster et al. | Mar 1990 | A |
4994071 | MacGregor | Feb 1991 | A |
5116318 | Hillstead | May 1992 | A |
5342387 | Summers | Aug 1994 | A |
5348538 | Wang et al. | Sep 1994 | A |
5385776 | Maxfield et al. | Jan 1995 | A |
5387235 | Chuter | Feb 1995 | A |
5403340 | Wang et al. | Apr 1995 | A |
5447497 | Sogard et al. | Sep 1995 | A |
5456712 | Maginot | Oct 1995 | A |
5476471 | Shifrin et al. | Dec 1995 | A |
5487730 | Marcadis et al. | Jan 1996 | A |
5500181 | Wang et al. | Mar 1996 | A |
5556383 | Wang et al. | Sep 1996 | A |
5591228 | Edoga | Jan 1997 | A |
5607444 | Lam | Mar 1997 | A |
5609605 | Marshall et al. | Mar 1997 | A |
5609627 | Goicoechea et al. | Mar 1997 | A |
5613980 | Chauhan | Mar 1997 | A |
5617878 | Taheri | Apr 1997 | A |
5632762 | Myler | May 1997 | A |
5632763 | Glastra | May 1997 | A |
5632772 | Alcime et al. | May 1997 | A |
5636641 | Fariabi | Jun 1997 | A |
5669924 | Shaknovich | Sep 1997 | A |
5669932 | Fischell et al. | Sep 1997 | A |
5676697 | McDonald | Oct 1997 | A |
5683450 | Goicoechea et al. | Nov 1997 | A |
5697971 | Fischell et al. | Dec 1997 | A |
5707348 | Krogh | Jan 1998 | A |
5709713 | Evans et al. | Jan 1998 | A |
5714110 | Wang et al. | Feb 1998 | A |
5720735 | Dorros | Feb 1998 | A |
5749825 | Fischell et al. | May 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5755734 | Richter et al. | May 1998 | A |
5755735 | Richter et al. | May 1998 | A |
5755771 | Penn et al. | May 1998 | A |
5755773 | Evans et al. | May 1998 | A |
5755778 | Kleshinski | May 1998 | A |
5782906 | Marshall et al. | Jul 1998 | A |
5824036 | Lauterjung | Oct 1998 | A |
5824040 | Cox et al. | Oct 1998 | A |
5826588 | Forman | Oct 1998 | A |
5827320 | Richter et al. | Oct 1998 | A |
5830182 | Wang et al. | Nov 1998 | A |
5843116 | Crocker et al. | Dec 1998 | A |
5851464 | Davila et al. | Dec 1998 | A |
5868777 | Lam | Feb 1999 | A |
5893887 | Jayaraman | Apr 1999 | A |
5951941 | Wang et al. | Sep 1999 | A |
5961548 | Shmulewitz | Oct 1999 | A |
5972017 | Berg et al. | Oct 1999 | A |
6013054 | Jiun Yan | Jan 2000 | A |
6017324 | Tu et al. | Jan 2000 | A |
6017363 | Hojeibane | Jan 2000 | A |
6024722 | Rau et al. | Feb 2000 | A |
6030414 | Taheri | Feb 2000 | A |
6033434 | Borghi | Mar 2000 | A |
6033435 | Penn et al. | Mar 2000 | A |
6056775 | Borghi et al. | May 2000 | A |
6059824 | Taheri | May 2000 | A |
6068655 | Seguin et al. | May 2000 | A |
6086611 | Duffy et al. | Jul 2000 | A |
6093203 | Uflacker | Jul 2000 | A |
6096073 | Webster et al. | Aug 2000 | A |
6099497 | Adams et al. | Aug 2000 | A |
6113579 | Eidenschink et al. | Sep 2000 | A |
6117117 | Mauch | Sep 2000 | A |
6117156 | Richter et al. | Sep 2000 | A |
6124007 | Wang et al. | Sep 2000 | A |
6129738 | Lashinski et al. | Oct 2000 | A |
6142973 | Carleton et al. | Nov 2000 | A |
6143002 | Vietmeier | Nov 2000 | A |
6146356 | Wang et al. | Nov 2000 | A |
6159238 | Killion et al. | Dec 2000 | A |
6165195 | Wilson et al. | Dec 2000 | A |
6168621 | Vrba | Jan 2001 | B1 |
6171278 | Wang et al. | Jan 2001 | B1 |
6183509 | Dibie | Feb 2001 | B1 |
6203568 | Lombardi et al. | Mar 2001 | B1 |
6210380 | Mauch | Apr 2001 | B1 |
6210429 | Vardi et al. | Apr 2001 | B1 |
6210433 | Larre | Apr 2001 | B1 |
6251980 | Lan et al. | Jun 2001 | B1 |
6254593 | Wilson | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6258116 | Hojeibane | Jul 2001 | B1 |
6261305 | Marotta et al. | Jul 2001 | B1 |
6261316 | Shaolian et al. | Jul 2001 | B1 |
6264662 | Lauterjung | Jul 2001 | B1 |
6264686 | Rieu et al. | Jul 2001 | B1 |
6290673 | Shanley | Sep 2001 | B1 |
6293968 | Taheri | Sep 2001 | B1 |
6325826 | Vardi et al. | Dec 2001 | B1 |
6334864 | Amplatz et al. | Jan 2002 | B1 |
6346089 | Dibie | Feb 2002 | B1 |
6355060 | Lenker et al. | Mar 2002 | B1 |
6361544 | Wilson et al. | Mar 2002 | B1 |
6361555 | Wilson | Mar 2002 | B1 |
6383213 | Wilson et al. | May 2002 | B2 |
6395018 | Castaneda | May 2002 | B1 |
6436104 | Hojeibane | Aug 2002 | B2 |
6436134 | Richter et al. | Aug 2002 | B2 |
6508836 | Wilson et al. | Jan 2003 | B2 |
6517558 | Gittings et al. | Feb 2003 | B2 |
6520988 | Colombo et al. | Feb 2003 | B1 |
6540779 | Richter et al. | Apr 2003 | B2 |
6579309 | Loos et al. | Jun 2003 | B1 |
6579312 | Wilson et al. | Jun 2003 | B2 |
6582394 | Reiss et al. | Jun 2003 | B1 |
6596020 | Vardi et al. | Jul 2003 | B2 |
6599316 | Vardi et al. | Jul 2003 | B2 |
6645242 | Quinn | Nov 2003 | B1 |
6689156 | Davidson et al. | Feb 2004 | B1 |
6692483 | Vardi et al. | Feb 2004 | B2 |
6695877 | Brucker et al. | Feb 2004 | B2 |
6706062 | Vardi et al. | Mar 2004 | B2 |
6749628 | Callol et al. | Jun 2004 | B1 |
6776793 | Brown et al. | Aug 2004 | B2 |
6811566 | Penn et al. | Nov 2004 | B1 |
6835203 | Vardi et al. | Dec 2004 | B1 |
6858038 | Heuser | Feb 2005 | B2 |
6884258 | Vardi et al. | Apr 2005 | B2 |
6896699 | Wilson et al. | May 2005 | B2 |
6932837 | Amplatz et al. | Aug 2005 | B2 |
6955687 | Richter et al. | Oct 2005 | B2 |
6955688 | Wilson et al. | Oct 2005 | B2 |
6962602 | Vardi et al. | Nov 2005 | B2 |
7018400 | Lashinski et al. | Mar 2006 | B2 |
7056323 | Mareiro et al. | Jun 2006 | B2 |
7060091 | Killion et al. | Jun 2006 | B2 |
7776079 | Gumm | Aug 2010 | B2 |
7799064 | Brucker et al. | Sep 2010 | B2 |
20010003161 | Vardi et al. | Jun 2001 | A1 |
20010004706 | Hojeibane | Jun 2001 | A1 |
20010004707 | Dereurne et al. | Jun 2001 | A1 |
20010012927 | Mauch | Aug 2001 | A1 |
20010016766 | Vardi et al. | Aug 2001 | A1 |
20010016767 | Wilson et al. | Aug 2001 | A1 |
20010016768 | Wilson et al. | Aug 2001 | A1 |
20010025195 | Shaolian et al. | Sep 2001 | A1 |
20010027291 | Shanley | Oct 2001 | A1 |
20010027338 | Greenberg | Oct 2001 | A1 |
20010029396 | Wilson et al. | Oct 2001 | A1 |
20010037116 | Wilson et al. | Nov 2001 | A1 |
20010037138 | Wilson et al. | Nov 2001 | A1 |
20010039448 | Dibie | Nov 2001 | A1 |
20010049552 | Richter et al. | Dec 2001 | A1 |
20010056297 | Hojeibane | Dec 2001 | A1 |
20020013618 | Marotta et al. | Jan 2002 | A1 |
20020013619 | Shanley | Jan 2002 | A1 |
20020022874 | Wilson | Feb 2002 | A1 |
20020026232 | Marotta et al. | Feb 2002 | A1 |
20020035392 | Wilson | Mar 2002 | A1 |
20020042650 | Vardi et al. | Apr 2002 | A1 |
20020052648 | McGuckin, Jr. et al. | May 2002 | A1 |
20020072790 | McGuckin, Jr. et al. | Jun 2002 | A1 |
20020111675 | Wilson | Aug 2002 | A1 |
20020156516 | Vardi et al. | Oct 2002 | A1 |
20020156517 | Perouse | Oct 2002 | A1 |
20020165604 | Shanley | Nov 2002 | A1 |
20020173835 | Bourang et al. | Nov 2002 | A1 |
20020173840 | Brucker et al. | Nov 2002 | A1 |
20020183763 | Callol et al. | Dec 2002 | A1 |
20020183780 | Wang | Dec 2002 | A1 |
20020193872 | Trout, III et al. | Dec 2002 | A1 |
20020193873 | Brucker et al. | Dec 2002 | A1 |
20030009209 | Hojeibane | Jan 2003 | A1 |
20030028233 | Vardi et al. | Feb 2003 | A1 |
20030050688 | Fischell et al. | Mar 2003 | A1 |
20030055378 | Wang et al. | Mar 2003 | A1 |
20030055483 | Gumm | Mar 2003 | A1 |
20030074047 | Richter | Apr 2003 | A1 |
20030093109 | Mauch | May 2003 | A1 |
20030097169 | Brucker | May 2003 | A1 |
20030114912 | Sequin et al. | Jun 2003 | A1 |
20030125791 | Sequin et al. | Jul 2003 | A1 |
20030125802 | Callol et al. | Jul 2003 | A1 |
20030130716 | Weber et al. | Jul 2003 | A1 |
20030135259 | Simso | Jul 2003 | A1 |
20030181923 | Vardi | Sep 2003 | A1 |
20030195606 | Davidson et al. | Oct 2003 | A1 |
20040006381 | Sequin et al. | Jan 2004 | A1 |
20040015227 | Vardi et al. | Jan 2004 | A1 |
20040044396 | Clerc et al. | Mar 2004 | A1 |
20040059406 | Cully et al. | Mar 2004 | A1 |
20040088007 | Eidenschink | May 2004 | A1 |
20040117003 | Ouriel et al. | Jun 2004 | A1 |
20040133268 | Davidson et al. | Jul 2004 | A1 |
20040138732 | Suhr et al. | Jul 2004 | A1 |
20040138737 | Davidson et al. | Jul 2004 | A1 |
20040148006 | Davidson et al. | Jul 2004 | A1 |
20040172121 | Eidenschink et al. | Sep 2004 | A1 |
20040186560 | Alt | Sep 2004 | A1 |
20040225345 | Fischell et al. | Nov 2004 | A1 |
20040267352 | Davidson et al. | Dec 2004 | A1 |
20050004656 | Das | Jan 2005 | A1 |
20050010278 | Vardi et al. | Jan 2005 | A1 |
20050015108 | Williams et al. | Jan 2005 | A1 |
20050015135 | Shanley | Jan 2005 | A1 |
20050060027 | Khenansho et al. | Mar 2005 | A1 |
20050096726 | Sequin et al. | May 2005 | A1 |
20050102021 | Osborne | May 2005 | A1 |
20050102023 | Yadin et al. | May 2005 | A1 |
20050119731 | Brucker et al. | Jun 2005 | A1 |
20050125076 | Ginn | Jun 2005 | A1 |
20050131526 | Wong | Jun 2005 | A1 |
20050149161 | Eidenschink et al. | Jul 2005 | A1 |
20050149177 | Weber et al. | Jul 2005 | A1 |
20050154442 | Eidenschink et al. | Jul 2005 | A1 |
20050154444 | Quadri | Jul 2005 | A1 |
20050183259 | Eidenschink et al. | Aug 2005 | A1 |
20050209673 | Shaked | Sep 2005 | A1 |
20050222668 | Schaeffer et al. | Oct 2005 | A1 |
20050228483 | Kaplan et al. | Oct 2005 | A1 |
20050273149 | Tran et al. | Dec 2005 | A1 |
20060036315 | Yadin et al. | Feb 2006 | A1 |
20060041303 | Israel | Feb 2006 | A1 |
20060074476 | Holman et al. | Apr 2006 | A1 |
20060079956 | Eigler et al. | Apr 2006 | A1 |
20060173528 | Feld et al. | Aug 2006 | A1 |
20070073376 | Krolik et al. | Mar 2007 | A1 |
20080208307 | Ben-Muvhar et al. | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
2220864 | Jul 1999 | CA |
9014845 | Feb 1991 | DE |
29701758 | Mar 1997 | DE |
29701883 | May 1997 | DE |
0479730 | Oct 1991 | EP |
0751752 | Jan 1997 | EP |
0 768 097 | Apr 1997 | EP |
0783873 | Jul 1997 | EP |
0804907 | Nov 1997 | EP |
0479557 | Jul 1998 | EP |
0876805 | Nov 1998 | EP |
0880949 | Dec 1998 | EP |
0891751 | Jan 1999 | EP |
0895759 | Feb 1999 | EP |
0904745 | Mar 1999 | EP |
0937442 | Aug 1999 | EP |
0347023 | Dec 1999 | EP |
1031328 | Aug 2000 | EP |
1031329 | Aug 2000 | EP |
0883384 | Dec 2000 | EP |
0862392 | Aug 2001 | EP |
0808140 | Dec 2001 | EP |
0884028 | Feb 2002 | EP |
1190685 | Mar 2002 | EP |
0897700 | Jul 2002 | EP |
0684022 | Feb 2004 | EP |
1157674 | Jul 2005 | EP |
1031330 | Nov 2005 | EP |
1070513 | Jun 2006 | EP |
2678508 | Jan 1993 | FR |
2740346 | Oct 1995 | FR |
2756173 | Nov 1996 | FR |
2337002 | May 1998 | GB |
8806026 | Aug 1988 | WO |
WO 9304118 | Mar 1993 | WO |
9521592 | Aug 1995 | WO |
9629955 | Oct 1996 | WO |
9634580 | Nov 1996 | WO |
9641592 | Dec 1996 | WO |
9707752 | Mar 1997 | WO |
9715346 | May 1997 | WO |
9716217 | May 1997 | WO |
9726936 | Jul 1997 | WO |
9741803 | Nov 1997 | WO |
9745073 | Dec 1997 | WO |
9746174 | Dec 1997 | WO |
9819628 | May 1998 | WO |
9836709 | Aug 1998 | WO |
9837833 | Sep 1998 | WO |
9847447 | Oct 1998 | WO |
9848879 | Nov 1998 | WO |
9903426 | Jan 1999 | WO |
9904726 | Feb 1999 | WO |
9915103 | Apr 1999 | WO |
9915109 | Apr 1999 | WO |
9924104 | May 1999 | WO |
9934749 | Jul 1999 | WO |
9936002 | Jul 1999 | WO |
9936015 | Jul 1999 | WO |
9944539 | Sep 1999 | WO |
9956661 | Nov 1999 | WO |
9965419 | Dec 1999 | WO |
0007523 | Feb 2000 | WO |
0010489 | Mar 2000 | WO |
0016719 | Mar 2000 | WO |
0027307 | May 2000 | WO |
0027463 | May 2000 | WO |
0028922 | May 2000 | WO |
0145594 | Jun 2000 | WO |
0044307 | Aug 2000 | WO |
0044309 | Aug 2000 | WO |
0047134 | Aug 2000 | WO |
0048531 | Aug 2000 | WO |
0049951 | Aug 2000 | WO |
0051523 | Sep 2000 | WO |
0057813 | Oct 2000 | WO |
0067673 | Nov 2000 | WO |
0071054 | Nov 2000 | WO |
0071055 | Nov 2000 | WO |
0074595 | Dec 2000 | WO |
0121095 | Mar 2001 | WO |
0121109 | Mar 2001 | WO |
0121244 | Mar 2001 | WO |
0135715 | May 2001 | WO |
0135863 | May 2001 | WO |
0139697 | Jun 2001 | WO |
0139699 | Jun 2001 | WO |
0141677 | Jun 2001 | WO |
0143665 | Jun 2001 | WO |
0143809 | Jun 2001 | WO |
0145785 | Jun 2001 | WO |
0149342 | Jul 2001 | WO |
0154621 | Aug 2001 | WO |
0154622 | Aug 2001 | WO |
0158385 | Aug 2001 | WO |
0160284 | Aug 2001 | WO |
0170294 | Sep 2001 | WO |
0170299 | Sep 2001 | WO |
0174273 | Oct 2001 | WO |
0189409 | Nov 2001 | WO |
0200138 | Jan 2002 | WO |
02053066 | Jul 2002 | WO |
02068012 | Sep 2002 | WO |
03007842 | Jan 2003 | WO |
WO03049795 | Jun 2003 | WO |
03055414 | Jul 2003 | WO |
03063924 | Aug 2003 | WO |
2004026174 | Apr 2004 | WO |
2004026180 | Apr 2004 | WO |
2005009295 | Feb 2005 | WO |
2005014077 | Feb 2005 | WO |
2005041810 | May 2005 | WO |
WO 2005041810 | May 2005 | WO |
2006028925 | Mar 2006 | WO |
2006074476 | Jul 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080065188 A1 | Mar 2008 | US |