Claims
- 1. A photoconductive assembly including in combination a conductive substrate, a first semiconductive layer of a type of one carrier polarity, said first layer having a band gap, said first layer being in low-resistance contact with said conductive substrate, and a light-absorbing second semiconductive layer of a type of opposite carrier polarity to the carrier polarity of said first layer, said second layer having a band gap wider than the band gap of said first layer, said first and second layers forming a rectifying heterojunction therebetween.
- 2. A photoconductive assembly including in combination a conductive substrate, a first semiconductive layer comprising lead-cadmium-sulphide alloy, said first layer having a band gap and being in low-resistance contact with said conductive substrate, and a light-absorbing second layer comprising cadmium-zinc-sulphide alloy, said second layer having a band gap wider than the band gap of said first layer, said first and second layers forming a rectifying heterojunction therebetween.
- 3. A photoconductive assembly including in combination a conductive substrate, a first semiconductive layer comprising a cadmium-lead-sulphide alloy having the formula Cd.sub.1-x Pb.sub.x S where x lies between 0.5 and 0.3, said first layer having a band gap and being in low-resistance contact with said conductive substrate, and a lightabsorbing second semiconductive layer having an n-type carrier polarity and a band gap wider than the band gap of said first layer, said first and second layers forming a rectifying heterojunction therebetween.
- 4. A photoconductive assembly including in combination a conductive substrate, a first semiconductive layer of a type of one carrier polarity having a thickness in the order of one micron or less, said first layer having a band gap, said first layer being in low-resistance contact with said conductive substrate, and a light-absorbing second semiconductive layer having a thickness of five microns or more of a type of opposite carrier polarity to the carrier polarity of said first layer, said second layer having a band gap wider than the band gap of said first layer, said first and second layers forming a rectifying heterojunction therebetween.
- 5. A photoconductive assembly including in combination a conductive substrate, a first semiconductive layer of a type of one carrier polarity and having a thickness in the order of one micron or less, said first layer having a band gap, said first layer being in lowresistance contact with said conductive substrate, said low resistance being in the order of 1.7.times.10.sup.6 ohms per square centimeter or less, and a light-absorbing second semiconductive layer of a type of opposite carrier polarity to the carrier polarity of said first layer, said second layer having a band gap wider than the band gap of said first layer, said first and second layers forming a rectifying heterojunction therebetween.
- 6. A photoconductive assembly including in combination a conductive substrate, a first semiconductive layer formed of cadmium sulphide having the formula Cd.sub.1-x Pb.sub.x S in which x is 0.2 or more, said first semiconductive layer being doped to a positive carrier polarity and having a band gap, said first layer being in lowresistance contact with said conductive substrate, and a light-absorbing second semiconductive layer of negative carrier polarity, said second layer having a band gap wider than the band gap of said first layer, said first and second layers forming a heterojunction therebetween.
- 7. A photoconductive assembly including a combination a conductive substrate, a first semiconductive layer comprising cadmium-lead-sulphide alloy having a formula Cd.sub.1-x Pb.sub.x S where x lies between 0.5 and 0.3, said first layer being doped with copper to have a positive carrier polarity, said first layer having a band gap and being in low-resistance contact with said conductive substrate, said low resistance being in the order of 1.7.times.10.sup.6 ohms per square centimeter or less, and a light-absorbing second semiconductive layer having an in-type carrier polarity and a band gap wider than the band gap of said first layer, said first and second layers forming a rectifying heterojunction therebetween.
- 8. A photoconductive assembly including in combination a conductive substrate, a first semiconductive layer comprising a germanium-silicon alloy having the general formula Ge.sub.1-x Si.sub.x in which x is 0.25 or less, said first layer being doped to one carrier polarity, said first layer having a band gap and being in low-resistance contact with said conductive substrate, and a light-absorbing second semiconductive layer formed of amorphous silicon and doped to be of a type of opposite carrier polarity to the carrier polarity of said first layer, said second layer having a band gap wider than the band gap of said first layer, said first and second layers forming a rectifying heterojunction therebetween.
- 9. A photoconductive assembly including in combination a conductive substrate, a first semiconductive layer comprising a cadmium-lead-sulphide alloy doped n-type with chlorine, said first layer having a band gap and being in low-resistance contact with said conductive substrate, and a light-absorbing second semiconductive layer comprising a lead-cadmium-sulphide alloy doped positive with copper, said second layer having a thickness in the order of five times or more the thickness of said first layer, said second layer having a band gap wider than the band gap of said first layer, said first and second layers forming a rectifying heterojunction therebetween.
- 10. A photoconductive assembly including in combination a conductive substrate, a first semiconductive layer comprising a lead-cadmium-sulphide alloy, said first layer being in low resistance contact with said conductive substrate, and a light-absorbing second semiconductive layer comprising a cadmium sulphide-zinc sulphide alloy, said first and second layers forming a rectifying heterojunction therebetween.
- 11. A photoconductive assembly including in combination a conductive substrate, a first semiconductive layer comprising a cadmium sulphide-lead sulphide alloy doped negative, said first layer being in low-resistance contact with said conductive substrate, and a light-absorbing second semiconductive layer comprising a cadmium sulphide-zinc sulphide alloy doped with copper, said first and second layers forming a rectifying heterojunction therebetween.
- 12. A photoconductive assembly including in combination a conductive substrate, a first semiconductive layer comprising a lead sulphide-cadmium sulphide alloy forming a low-resistance contact with said conductive substrate, and a light-absorbing second semiconductive layer formed on said first layer, said second layer comprising a major amount of cadmium sulphide and a minor amount of zinc sulphide, said first and second layers forming a rectifying heterojunction therebetween.
- 13. A photoconductive assembly including in combination a conductive substrate, first and second semiconductive layers in contact with each other, said first semiconductive layer being of a type of carrier polarity opposite to that of the highest mobility species of said second semiconductive layer, said first layer having a band gap, said first layer being in low-resistance contact with said conductive substrate, said second semiconductive layer being nearly intrinsic and having a band gap wider than the band gap of said first layer, said first and second layers forming a rectifying heterojunction therebetween.
- 14. A photoconductive assembly adapted to be corona-charged with a charge of a certain polarity sign including in combination a conductive substrate, a first semiconductive layer of a type of carrier polarity opposite to that of the sign of said corona charge, said first layer having a band gap, said first layer being in low-resistance contact with said conductive substrate, and a lightabsorbing nearly intrinsic second semiconductive layer, said second layer having a band gap wider than the band gap of said first layer, said first and second layers forming a rectifying heterojunction therebetween.
CROSS-REFERENCE TO RELATED APPLICATION
This application is an improvement over the copending application of John B. Mooney and Ivor Brodie, Ser. No. 236,739, filed Feb. 23, 1981, relating to a photoconductor comprising a homogeneous alloy of metal sulphides, including a major amount of cadmium sulphide and a minor amount of zinc sulphide.
US Referenced Citations (9)