MULTIMEDIA DEVICE TEST SYSTEM

Information

  • Patent Application
  • 20120054567
  • Publication Number
    20120054567
  • Date Filed
    August 30, 2010
    14 years ago
  • Date Published
    March 01, 2012
    12 years ago
Abstract
A test system includes a supervisor unit coupled to a control interface, the control interface coupled to first and second test modules. Each test module may include a first logic module to test macro blocking errors; a second logic module to perform optical character recognition; a third logic module to perform signal to noise ratio measurement; and a fourth logic module to perform random noise measurement. Each test module coupled to a device under test.
Description
TECHNICAL FIELD

The present disclosure relates to test systems.


BACKGROUND

Existing test systems for set tops and other devices suffer from lack of scalability. In existing systems a central processing unit employs a defined test sequence, receives and processes raw test data, and then analyzes and stores results. This is an inefficient and error prone approach.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, the same reference numbers and acronyms identify elements or acts with the same or similar functionality for ease of understanding and convenience. To easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the figure number in which that element is first introduced.



FIG. 1 is a block diagram illustration of an embodiment of a test system.



FIG. 2 is a block diagram illustration of an embodiment of logic modules in a test unit.



FIG. 3 is a block diagram illustration of an embodiment of a test system including a pluggable, type-specific modular interface between a test unit and a unit under test.





DETAILED DESCRIPTION

References to “one embodiment” or “an embodiment” do not necessarily refer to the same embodiment, although they may.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “above,” “below” and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. When the claims use the word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.


“Logic” refers to machine memory circuits, machine readable media, and/or circuitry which by way of its material and/or material-energy configuration comprises control and/or procedural signals, and/or settings and values, that may be applied to influence the operation of a device. Magnetic media, electronic circuits, electrical and optical memory (both volatile and nonvolatile), and firmware are examples of logic. Those skilled in the art will appreciate that logic may be distributed throughout one or more devices, and/or may be comprised of combinations memory, media, processing circuits and controllers, other circuits, and so on. Therefore, in the interest of clarity and correctness logic may not always be distinctly illustrated in drawings of devices and systems, although it is inherently present therein.


The techniques and procedures described herein may be implemented via logic distributed in one or more computing devices. The particular distribution and choice of logic is a design decision that will vary according to implementation.


A novel test system includes a supervisor unit coupled to a control interface. The control interface is coupled to multiple test modules. Each test module is coupled to a device under test with inputs and outputs that are decoded and sent to the test unit for further diagnostics. Each test module includes multiple logic modules. Among the logic modules are a first logic module to test macro blocking errors; a second logic module to perform optical character recognition; a third logic module to perform signal to noise ratio measurement; and a fourth logic module to perform random noise measurement. New or different logic modules may be included in the test module to configure the device under test under new specifications and/or requirements and process information to meet new test requirements.


The supervisor unit includes logic to start and control each module. Each test module includes server logic that is adapted to control each logic module of the test modules as a server service. Thus, the supervisor module may interact with each logic module of each test module using a client-server communication model.


Each test module may include additional logic modules, including one to communicate commands to setup the proper menus on the device under test, and one or more to perform tests with the multimedia device (e.g. Audio, DVR, Video).


The supervisor unit communicates control commands via the control interface to the multiple test modules. Each test module is associated with a device under test. Each (video related) logic module obtains a video frame from the device under test and operates on the video frame according to the control commands received from the supervisor unit. Each audio related logic module may configures the hardware on the test module to decode audio (e.g. PCM, Dolby) and processes information from the device under test (e.g. Frequency, THD). Each logic unit communicates to the supervisor unit, via the server interface of the associated test module, a result of operating on the video frame.


Commands from the supervisor unit to the test units (e.g. OCR, DVR, HSL, THD) may be implemented via a server-client messaging model. The test unit may include server logic which responds to commands from the server by initiating and/or controlling particular logic modules as server services on behalf of the supervisor unit.


The test modules may comprise logic to store in nonvolatile memory one or more reference patterns for use by the logic modules. Commands from the supervisor unit to the test units to control certain logic modules (e.g. for macroblocking, for SNR) may solely use the reference pattern (e.g. HSL reading), or the test unit may use a combination of the test patterns stored in nonvolatile memory and the reference pattern(s) being used as the source signal to verify the multimedia device presents no video related issues (e.g macroblocking, SNR).



FIG. 1 is a block diagram illustration of an embodiment of a test system. A supervisor unit 102 comprises logic to communicate commands to a plurality of test units 104-106. Each test unit 104-106 responds to the commands by performing certain tests on a unit under test (UUT) 108-110.


Each test unit 104-106 operates under remote control of the supervisor unit 102, and also operates somewhat autonomously. Described herein is a unique combination of remote control and autonomous operation for particular test procedures, including optical character recognition (OCR), signal to noise ratio (SNR), random noise measurement, audio quality, and video quality (e.g. macroblocking).



FIG. 2 is a block diagram illustration of an embodiment of a test unit. The test unit 202 comprises a plurality of logic modules 204-209, including logic modules to perform an OCR test 204, SNR test 205, macro blocking test 206, random noise test 207, unit under test setup 208, and also potentially other tests and procedures 209.


The test unit 202 further comprises server logic 211 which enables the logic modules 204-209 to be controlled as server processes via a client-server communication mechanism.


One embodiment of commands to control the various logic modules is provided in Table 1. The following parameters are common to several of the commands:


handler—a reference to the logic module to which the command is directed.


SKT—Socket number, indicates which of a plurality of logic boards to direct the OCR command to (SKT=1, 2, 3 etc.).


STBType—an identifier of the type of the unit under test (e.g. make/model, series number, firmware/software revision number, etc.).


IRCmds—infra red commands (OEM dependant) directed to the unit under test to set its state and/or control its behavior for testing purposes.














Command
Description
Parameters







oemOCR (handler, SKT, STBType,
Commands the OCR
pageNo—A self-


PageNo, IRCmds, res)
logic that converts a
diagnostic menu the device



video frame or image
under test provides with



into an ASCII text file.
information in regards to



This function call
its statuses, provisioning



instructs the OCR
and code download object



logic to get an area of a
that can be analyzed



frame, or a ROI
through OCR via logic



(Region of Interest) on
modules.



a video output of the
res—res is a memory



set-top box, and
location where results of



converts it to text.
conversion are stored. The



Once the text is
contents of res are



obtained, the OCR
formatted as ASCII text.



logic may determine



whether an identified



set of characters is



present in the text.


DVRFct (handler, SKT, STBType, ch1,
Commands the signal-
ch1—identifies the channel


outSNR1, outHSL1, ch2, outSNR2,
to-noise ratio test logic
that is played on the primary


outHSL2)
based on monitoring
tuner of the unit under test.



the maximum and
The content on ch1 may be



minimum values of a
recorded and analyzed.



video signal during a
outSNR1—the value



time window. The
obtained by calculation of



parameters of different
the Signal to Noise Ratio on



test patterns are stored
the content on channel ch1.



into logic (e.g. an
This value is passed back to



FPGA) of the test unit.
the caller.




outHSL1—Hue, Saturation




and Luma values obtained




from the content on ch1.




ch2—identifies the channel




that is played on the




secondary tuner of the unit




under test. The secondary




channel ch2 is exercised to




stress the unit under test




during the recording of the




content on ch1 (the primary




channel).




outSNR2—the calculation of




the Signal to Noise Ratio for




the secondary channel.




outHSL2—Hue, Saturation




and Luma obtained from the




content from the secondary




channel.


AudTest (handler, SKT, STBType,
Commands the audio
anCh—the channel used for


anCh, digCh, audType, IRcmds, res)
test logic to verify the
analog audio verification.



quality of the unit
The channel has a defined



under test analog and
(expected) amplitude and



digital audio outputs.
frequency.



The unit under test is
digCh—the channel to use



to be set on a defined
for digital audio



test pattern,
verification. This channel



comprising an audio
has a defined (expected)



tone with a known
amplitude and frequency.



frequency and
audType—indicates the type



amplitude. The audio
of the output being



from the unit under test
evaluated. The test module



is demodulated and
configures its hardware to



output to the test unit.
decode an analog signal as




well as digital audio such as




PCM and Dolby 5.1 format.




res—return value, equal to




zero when no errors were




found in the audio signal




tested.


MacroTest (handler, SKT, STBType,
Commands the macro
pattern—the pattern to use as


pattern, ch, res)
block test logic. A
a reference. Each test



stream of video frames
pattern has unique number -



are compared against a
1, 2, 3 . . . etc. Different types of



reference frame in real
unit under test require



time. Excessive macro
specific reference test



blocking in the stream
patterns. The pattern itself



indicates faulty video
may be stored by the test



codec logic in the unit
unit.



under test.
ch—channel to tune for the




video stream to test. The




channel may vary




depending on the type of




unit under test.




res—a memory location




where results of testing are




stored. A value of zero




indicates no errors where




found. If there were frames




with excessive macroblocks




this value indicates the




number of defective frames




detected during the test




time.


Pretest (handler, SKT, STBType, defCh)
Commands logic to set
defCh—used as a reference



up menus of the unit
for some types of unit under



under test and perform
test. Depending on the



other pretesting.
configuration of the unit




under test, after




initialization the unit




displays the default




configuration (e.g. specific




channel) and statuses that




indicates the unit is ready




for testing.


VideoTest (handler, SKT, STBType,
1. Configure the
remCh—the channel to tune


remCh, pattern, videoType, ch, res)
input to be analyzed by
for the video test. For many



the test module.
types of devices under test,



2. Grab the frame
this will be channel 3 or 4.



or sets of frames for
pattern—this parameter is



evaluation
passed when a golden



3. Video analysis
pattern is needed in order to



with the test module to
define which values and



determine quality of
lines to extract from the



the frame(s)
video frame. It might not be



4. For testing
required when the feed is a



colors space accuracy
live video sample.



the color bars pattern
videoType—indicates the



applied to UUT and
type of video output from



then firmware related
which to sample the video



algorithm samples
frames. Some values are



video signals from
baseband, rf output, high



different lines (up to 8)
definition component, or



and for each color bar.
HDMI signal.



Then the algorithm
ch—Specific channel the



calculates average
device under test is locked



values of video
to before performing audio



samples for each color
and video analysis. Test



bar, reconstructs RGB
patterns or a specific live



values and then
video is being displayed on



calculates HSL values.
the various outputs of the



5. PSNR. The
device under test and then



ratio between the
the signal is decoded by the



maximum power of the
test module.



signal and the power of
res—when res is equal to



the noise can be
zero it indicates no errors



obtained by the test
where found during the call.



module calculation
If there was a system error



representing the degree
or a failure on the unit, an



of quality of the video
error code may be used to



frame obtained
troubleshoot or fail a bad




unit.










FIG. 3 illustrates an embodiment of a novel automated test system for end-user devices. Inputs to a unit under test (UUT) are received at a pluggable interface module 302, which adapts and positions the signals to be received by the UUT 304. The interface module 302 comprises inputs to and outputs from the UUT 304.


A multi-media format board 306 (MFB) may be configured with logic that is downloaded and installed on the board 306, making it a programmable multi-media format board (PMFB). This may enable use of a single PMFB with multiple makes and models of UUT. The PMFB 306 may be configured to provide all of the inputs that the UUT 304 receives, and to receive all outputs of interest for testing from the UUT 304. In this manner, it may be possible to simply disengage a particular UUT from the interface module 302, and plug in a new UUT, without manually removing or installing any cabling or connections to the UUT 304 or PMFB 306. A daughter board 322 may be employed to couple the PMFB 306 the interface module 302.


The daughter board 322 may comprise an identification (e.g. an assembly part number) that corresponds to the supported model. This identification may be coded into a non-volatile memory of the daughter board 322. The PMFB 306 may be adapted to automatically detect the make and model of a UUT 304 coupled thereto by interacting with the UUT 304 and/or with the daughter board 322, and may download and/or activate appropriate logic (e.g. from the test/analysis logic 308) to interact with and facilitate the testing of the UUT 304. Upon detecting the make and model of a UUT 304, the PMFB 306 may inform the supervisor logic 308 of this information, so that the supervisor logic 308 may select appropriate test and analysis logic for the UUT 304. Logic of the test system may provide for parallel processing, such that each UUT 304 may be tested independently and concurrently. Multi-threading may be employed to accomplish this.


The PMFB 306 may convert outputs of the UUT 304 to a binary format suitable for processing and analysis. Each PMFB 306 may have associated test logic modules and may output results in parallel to shared supervisor logic 308. Outputs of the PMFB 306 to supervisor logic 308 may be provided in some embodiments via universal serial bus (USB), Ethernet, wireless, or other transport method. The pluggable interface module 302 may be adapted to fit, e.g. slot into, a retainer 310. The interface module 302 is interchangeable and may be specific to a make and model of UUT 304, whereas the retainer 310 may comprise a universal configuration (inputs and outputs) common among all makes and models of UUT 304. A slide rack 312 driven by a lever 314, crank, or other mechanism may be provided for loading the UUT 304 and for mechanically engaging it with the interface module 302 via operation of the lever 314 or other control The lever 314 or other control may likewise be employed to disengage the UUT 304 from the interface module 302, at which point the UUT 304 and/or the modular interface 302 may be removed and replaced with another UUT 304 and/or interface module 302. The pluggable interface may include an identification in non-volatile memory of a number of times it has been interfaced (e.g. plugged into) units under test.


The PMFB 306 may comprise logic for the decoding and reformatting of various media formats. The format logic may also support S/PDIF and/or coaxial/optical audio formats, to name just some examples. Logic to decode different media formats may be downloaded by the PMFB 306 in some embodiments. Thus, a single PMFB 306 may be employed with various UUTs that operate upon or output various media formats.


Polling, control, initialization, and configuration signals provided by the service provider (e.g., a cable television network operator, an Internet Service Provider, etc.) to the UUT are provided via a source signal selector 316. The source signal selector 316 may choose from among multiple available service provider sources and direct signals from the chosen source to the interface module 302 (note that the signals from the chosen source may in some implementations be directed to the retainer 310, which may comprise inputs and outputs common to all makes and models of UUT 304. For example, the source signal selector 316 may choose signals from a particular headend of a cable television provider, depending upon the make/model of the UUT 304. The source signal selector 316 may choose signals from different service providers depending on the type of UUT (e.g. set top box, game console, etc.). The source signal selector 316 may comprise a configurable RF attenuation control to stress the RF input of the unit under test. This may be employed to detect anomalies on units failing when the RF level is below certain threshold levels.


A carousel server (OLL, e.g. a Motorola Offline Loader, not shown in drawings) may be employed to load code objects on various set-top boxes. Deploying an OLL may increase the throughput of loading desired code objects independent from a service provider source. The signal selector 316 may be used in conjunction with the OLL to help prepare the set-top boxes with specific code objects.


The supervisor 308 may determine the make and/or model of the UUT 304. If the supervisor 308 makes this determination, it may in some embodiments communicate the make/model information to the PMFB 306 to direct the source signal selector 316 to select a particular source. Media signals may be provided via a tunable RF channel from a local source 318, instead of from the provider network. The local source need not be “local” to the test system, but may be any source other than the service provider network. The local media test signals may be substituted for signals from the provider network (e.g. the provider signals may be filtered out and replaced), or the local signals may supplement the polling, control, initialization, and configuration signals normally provided by the service provider.


The source 318 of the local media test signals may be a separate server for this purpose. In some embodiments, the media test signals may be selected according to the make and/or model of the UUT 304. The system may include logic to apply the media test signals to the UUT via a same physical medium as service provider configuration signals are applied to the UUT. This logic may be comprised by the source signal selector 316, the pluggable interface module 302, the media format board 306, or some other device (e.g. an RF coupler in the signal path).


Control signals that drive features of the UUT 304 may be provided, for example by an IR port and/or USB from the PMFB 306. PCI or SPI control and data exchange may also be employed to interact with the UUT 304. The PMFB 306 may operate as a frame grabber which captures one or more frames output by the UUT 304, buffers the captured frame(s), tests the frames, and transfers results to the supervisor logic 308, for example via a USB interface.


Logic to capture and process new/updated or different media formats, or to interact with new/different makes and models of UUT 304, may be dynamically loaded to the PMFB 306 by the supervisor logic 308 or another device. Dynamic loading of logic to the PMFB 306 may be based upon a determination of the make and/or model number of the UUT 304.


A test platform employing features of the described test system embodiment(s) may be arranged in horizontal, vertical, and/or grid configurations, to name some of the possibilities.


IMPLEMENTATIONS AND ALTERNATIVES

Those having skill in the art will appreciate that there are various logic implementations by which processes and/or systems described herein can be effected (e.g., hardware, software, and/or firmware), and that the preferred vehicle will vary with the context in which the processes are deployed. “Software” refers to logic that may be readily readapted to different purposes (e.g. read/write volatile or nonvolatile memory or media). “Firmware” refers to logic embodied in read-only memories and/or media. Hardware refers to logic embodied in analog and/or digital circuits. If an implementer determines that speed and accuracy are paramount, the implementer may opt for a hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a solely software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware. Hence, there are several possible vehicles by which the processes described herein may be effected, none of which is inherently superior to the other in that any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary. Those skilled in the art will recognize that optical aspects of implementations may involve optically-oriented hardware, software, and or firmware.


The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood as notorious by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. Several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and/or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies equally regardless of the particular type of signal bearing media used to actually carry out the distribution. Examples of a signal bearing media include, but are not limited to, the following: recordable type media such as floppy disks, hard disk drives, CD ROMs, digital tape, and computer memory; and transmission type media such as digital and analog communication links using TDM or IP based communication links (e.g., packet links).


In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment).


Those skilled in the art will recognize that it is common within the art to describe devices and/or processes in the fashion set forth herein, and thereafter use standard engineering practices to integrate such described devices and/or processes into larger systems. That is, at least a portion of the devices and/or processes described herein can be integrated into a network processing system via a reasonable amount of experimentation.


The foregoing described aspects depict different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality.

Claims
  • 1. A test system comprising: a supervisor unit coupled to a control interface;the control interface coupled to first and second test modules, each test module comprising a first logic module to test macro blocking errors;a second logic module to perform optical character recognition;a third logic module to perform signal to noise ratio measurement;and a fourth logic module to perform random noise measurement;each test module coupled to a device under test.
  • 2. The test system of claim 1, further comprising: each test module comprising a fifth logic module to communicate commands to setup the proper menus on the device under test.
  • 3. The test system of claim 1, further comprising: the supervisor unit comprising logic to configure a behavior of each logic module.
  • 4. The test system of claim 1, each test module comprising server logic, the server logic adapted to control each logic module as a server service.
  • 5. The test system of claim 1, further comprising: the test modules comprising logic to store in nonvolatile memory one or more reference patterns for use by the logic modules.
  • 6. A process comprising: a supervisor unit communicating control commands via a control interface to multiple test modules, the commands communicated to each of a first logic module to test macro blocking errors; a second logic module to perform optical character recognition; a third logic module to perform signal to noise ratio measurement; and a fourth logic module to perform random noise measurement;each logic module obtaining a video frame from a device under test and operating on the video frame according to the control commands received from the supervisor unit;each logic unit communicating a result of operating on the video frame to the supervisor unit.
  • 7. The process of claim 6, each test module comprising server logic and communicating with the supervisor unit via a client-server communication model.
  • 8. A test system comprising: a supervisor unit coupled to a control interface;the control interface coupled to first and second test units, each test unit comprising logic modules to test audio and video outputs of a unit under test coupled to the test unit;the logic modules to test audio and video outputs being remotely controlled by the supervisor unit via the control interface; andeach test module coupled to a device under test via a pluggable interface unique to a type of the device under test.
  • 9. The test system of claim 8, further comprising: logic to determine a make and/or model of the unit under test.
  • 10. The test system of claim 8, further comprising: logic to determine a type of the unit under test and return an indication of the type to the supervisor unit; andlogic to identify the type of the unit under test in function calls to control the logic modules.
  • 11. The test system of claim 8, further comprising: service provider configuration signals applied to the unit under test via the pluggable interface.
  • 12. The test system of claim 8, further comprising: a slide onto which the unit under test is mounted.
  • 13. The test system of claim 8, further comprising: a control to move the slide to engage a mounted unit under test with the pluggable interface.
  • 14. The test system of claim 8, further comprising: logic to select parameters for function calls from the supervisor logic to control the logic modules according to a type of the unit under test.
  • 15. The test system of claim 8, further comprising: logic to apply media test signals to the unit under test via the pluggable interface module, the media test signals selected from a source other than a service provider network for the unit under test.
  • 16. The test system of claim 15, further comprising: logic to select the media test signals according to a make and/or model of the unit under test.
  • 17. The test system of claim 8, further comprising: a retainer to engage and disengage the pluggable interface to and from the test unit.
  • 18. The test system of claim 15, further comprising: logic to apply the media test signals to the unit under test via a same physical medium as service provider configuration signals are applied to the unit under test.
  • 19. The test system of claim 8, further comprising: the pluggable interface comprising an identification in non-volatile memory of a make and/or model of unit under test with which it is compatible.
  • 20. The test system of claim 8, further comprising: the pluggable interface comprising an identification in non-volatile memory of a number of times it has been interfaced with units under test.