This invention relates to improvements in bi-focus lenses. More specifically, this invention relates to bi-focus lenses for use in lights adapted for use in theatre, film, television, and image capture applications.
Litepanels LLC, Chatsworth, Calif., part of Vitec Videocom, has previously produced and sold continuously-adjustable multiple beam-angle LED light panels whose performance has been commercially successful, particularly in the film, television, theatrical, and image capture industries. The Litepanels bi-focus LED panel lights with 5 mm LEDs is presently the state of the art.
Other attempts at bi-focus technology with a range of performance have met limited success. Shortcomings of previous bi-focus LED lighting technologies are the limited range of focus, or beam angles. A 20 degree range is presently all that is considered possible for a smooth continuous sweep of beam angles. A panel light projecting a smooth continuous beam angle sweep from 15 degrees, or even more narrow, to up to 50 degrees, or wider, would simulate the performance of a Fresnel light with a panel light and is needed in the art. An additional need exists for a multi-focus, multi-channel panel light.
The present disclosure and invention is the use of multiple channels of LED/Lens combinations to achieve a smooth and continuous range of emitted beam angles of light in a wider range of beam angles than previously possible through only two channels of LED/Lens combinations.
The present disclosure is an improvement in and to bi-focus lenses. The disclosure relates to the use of multiple channels of LED/Lens combinations to achieve a smooth and continuous range of emitted beam angles of light in a wider range of beam angles than previously possible through only two channels of LED/Lens combinations. The resultant product will produce a continuous range of beam angles in a range exceeding 35 degrees from narrowest bean angle to widest beam angle.
The present disclosure includes a light panel including an array of LEDs. Preferably the LEDs are arranged in a module. Multiple modules are arranged into a panel array. The panel array is integrated into a housing to form a light panel. At least one processor and output circuitry place the processor in communication with the panel array and input selection means, such as knobs or the like as well as DMX control.
A plurality of primary beam angles are interweaved throughout the modules which form the panel array. In a preferred embodiment, four primary beam angles are interweaved throughout the array. These primary beam angles are combined to vary the total output beam angle of the light panel. In a broad arrangement beam angles may range between 8° and 120°, and more preferably between 10° and 100°, and most preferably 10° and 80°.
The following advantages are contemplated by the present invention:
The lens channels selected are weighted so as to maximize the contribution of a single channel lens to the overall beam projection. The lower beam angles have a higher weighting in the sense that a small contribution of a lower beam angle may result in larger change to the overall beam projection. The choice of static lens beam angles depends on where the continuity of the beam angle is most desired. As a result, a lens beam angle selection for four primary channels may include 10°, 20°, 40° and 80° or any angle in between, for example. As a result, a light panel with a smooth continuous sweep of 110°, 80°, 60°, or anywhere in between is contemplated.
All of the above are intended to produce a goal of a blended, homogeneous light across the panel array when multiple lenses are used. This results in even and smooth adjustment between various beam angles.
The foregoing has outlined in broad terms the more important features of the invention disclosed herein so that the detailed description that follows may be more clearly understood, and so that the contribution of the instant inventors to the art may be better appreciated. The instant invention is not limited in its application to the details of the construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. Rather the invention is capable of other embodiments and of being practiced and carried out in various other ways not specifically enumerated herein. Additionally, the disclosure that follows is intended to apply to all alternatives, modifications and equivalents as may be included within the spirit and the scope of the invention as defined by the appended claims. Further, it should be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting, unless the specification specifically so limits the invention.
The embodiments herein and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments that are illustrated in the accompanying drawings and detailed in the following description. Descriptions of well-known components and processes and manufacturing techniques are omitted so as to not unnecessarily obscure the embodiments herein. The examples used herein are intended merely to facilitate an understanding of ways in which the invention herein may be practiced and to further enable those of skill in the art to practice the embodiments herein. Accordingly, the examples should not be construed as limiting the scope of the claimed invention.
With reference to
A major factor in the quantification of a multiple focus light's performance is the light's ability to emit circular and homogenous light beams throughout a selected/desired range of beam widths. It has been found to be difficult to achieve beam quality through a larger range of beam angles because the two types of lenses do not superimpose respective light beams well, thus, at mid-beam-angle setting, the superimposed beam angles lose their circularity and homogeneity. In other words, it becomes visually apparent that one light beam is superimposed upon another because they each retain their respective boundaries and intensities and do not appear blended.
A solution to this problem in accordance with the present disclosure is to add intermediate beam-angles to the composite beam. The addition of a 3rd, or 4th, or more channels of LED electronics, plus LEDs, plus optics will improve the quality of the composite beam along a wider range of beam angles.
In developing a light fixture that possesses the capability to output more than one beam-width of light, many measures must be taken to insure that the intermediary “mixed” beam widths from emitters of discrete beam widths are mixed such that a perceptually smooth transition is made. Factors such as optics design choices and LED driver dim curves all contribute to this perceptual smoothness. The lens channels selected are weighted so as to maximize the contribution of a single channel lens to the overall beam projection. The lens channels selected are weighted so as to maximize the contribution of a single channel lens to the overall beam projection. The lower beam angles have a higher weighting in the sense that a small contribution of a lower beam angle may result in larger change to the overall beam projection. The choice of static lens beam angles depends on where the continuity of the beam angle is most desired. As a result, a lens beam angle selection for four primary channels may include 10°, 20°, 40° and 80°, for example.
It should be understood that the lenses described are exemplary. The spacing between beam angles does not, necessarily have to be even. In fact, it is anticipated that the channels are selected such that they are weighted, such as toward narrow beam angles.
As shown in module 90, there are four of each primary lenses, collectively and respectively, 92, 94, 96, and 98, arranged in an array in module 90. In a preferred arrangement, lenses 92, 94, 96, and 98 may be positioned in an interwoven arrangement to form an array. It should be understood, however, that the beam angle of any particular lens could vary as desired. Moreover, the number of different lenses could vary with a desired number of channels. In addition, the number and arrangement of each respective lens 92, 94, 96, and 98 could be varied as desired/required. Moreover, a bi-color fixture could be created by adding LEDs of differing output temperature and their respective lenses to the panel array.
Dim curves are arrived at both empirically and mathematically. Such curves are preferably entered into the lookup table stored in a database in memory accessible by the processor contained in the housing of light panel 10. To achieve a perceptually smooth transition, the software control by the processor of the independent “Spot” and “Flood” channels is tailored to match the brain's ability to perceive the region within the beam and field where discontinuities occur.
As shown in
With reference to
An exemplary preferred transition between a narrow lens emission (spot) 110 to a medium lens emission 114 to a wide lens emission (flood) 116 is depicted in
As the input selection (such as knob 14 of
Following transition 112, if the input is set (knob 14 of
As the input selector (such as knob 14 of
Following transition 116, if the input is set (knob 14 of
The LEDs on a lens channel positioned to emit light through wide lenses (such as lenses 98 of the module 90 of
It will be understood by one of skill in the art that if dimmer knob (such as knob 16 of
It is to be understood that the terms “including”, “comprising”, “consisting” and grammatical variants thereof do not preclude the addition of one or more components, features, steps, or integers or groups thereof and that the terms are to be construed as specifying components, features, steps or integers.
If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element.
It is to be understood that where the claims or specification refer to “a” or “an” element, such reference is not be construed that there is only one of that element.
It is to be understood that where the specification states that a component, feature, structure, or characteristic “may”, “might”, “can” or “could” be included, that particular component, feature, structure, or characteristic is not required to be included.
Where applicable, although state diagrams, flow diagrams or both may be used to describe embodiments, the invention is not limited to those diagrams or to the corresponding descriptions. For example, flow need not move through each illustrated box or state, or in exactly the same order as illustrated and described.
Methods of the present invention may be implemented by performing or completing manually, automatically, or a combination thereof, selected steps or tasks.
The term “method” may refer to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the art to which the invention belongs.
The term “at least” followed by a number is used herein to denote the start of a range beginning with that number (which may be a ranger having an upper limit or no upper limit, depending on the variable being defined). For example, “at least 1” means 1 or more than 1. The term “at most” followed by a number is used herein to denote the end of a range ending with that number (which may be a range having 1 or 0 as its lower limit, or a range having no lower limit, depending upon the variable being defined). For example, “at most 4” means 4 or less than 4, and “at most 40%” means 40% or less than 40%. Terms of approximation (e.g., “about”, “substantially”, “approximately”, etc.) should be interpreted according to their ordinary and customary meanings as used in the associated art unless indicated otherwise. Absent a specific definition and absent ordinary and customary usage in the associated art, such terms should be interpreted to be ±10% of the base value.
When, in this document, a range is given as “(a first number) to (a second number)” or “(a first number)-(a second number)”, this means a range whose lower limit is the first number and whose upper limit is the second number. For example, 25 to 100 should be interpreted to mean a range whose lower limit is 25 and whose upper limit is 100. Additionally, it should be noted that where a range is given, every possible subrange or interval within that range is also specifically intended unless the context indicates to the contrary. For example, if the specification indicates a range of 25 to 100 such range is also intended to include subranges such as 26-100, 27-100, etc., 25-99, 25-98, etc., as well as any other possible combination of lower and upper values within the stated range, e.g., 33-47, 60-97, 41-45, 28-96, etc. Note that integer range values have been used in this paragraph for purposes of illustration only and decimal and fractional values (e.g., 46.7-91.3) should also be understood to be intended as possible subrange endpoints unless specifically excluded.
It should be noted that where reference is made herein to a method comprising two or more defined steps, the defined steps can be carried out in any order or simultaneously (except where context excludes that possibility), and the method can also include one or more other steps which are carried out before any of the defined steps, between two of the defined steps, or after all of the defined steps (except where context excludes that possibility).
Thus, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned above as well as those inherent therein. While presently preferred embodiments have been described for purposes of this disclosure, numerous changes and modifications will be apparent to those skilled in the art. Such changes and modifications are encompassed within the spirit of this invention as defined by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 62/323,581 filed Apr. 15, 2016, herein incorporated by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62323581 | Apr 2016 | US |