This Application is a U.S. National Phase Application of PCT International Application PCT/JP03/015858.
The present invention relates to an array type choke coil for use in various electronic apparatuses and to an electronic apparatus using same, particularly a power supply apparatus.
In inductors such as choke coils, there is a desire for size and thickness reduction in order to cope with size and weight reduction of electronic apparatuses. For speed and integration increase in LSIs such as CPUs, the inductor is desired for use on large current at several amperes to several tens of amperes in the high frequency region.
Accordingly, there is a desire to inexpensively supply an inductor which is reduced in size and lowered in electric resistance for suppressing heat generation, reduced in loss in high-frequency region and less in inductance value lowering due to direct current superimposition even on large current.
Recently, in DC/DC converters or the like, a circuit scheme called the multi-phase scheme is adopted as a power supply circuit for achieving current increase in the high-frequency band. This circuit scheme is a scheme for sequential operation in parallel by use of a switch while phase-controlling a plurality of DC/DC converters. This scheme has a feature capable of realizing the reduction of ripple currents and increase of current in the high-frequency band with efficiency.
However, the above circuit structure solely is not necessarily sufficient in realizing the increase of current in the high-frequency band. For the choke coil for use on such a power supply circuit apparatus, size reduction and current increase in the high-frequency band is required.
In respect of such a problem, the choke coil disclosed in JP-A-2002-246242 is structured in that in a magnetic material is buried a hollow-cored coil formed by winding in a coil form a conductor wire having an insulation film such as of polyurethane. This magnetic material is made by solidifying magnetic powder whose surface is coated with two kinds or more of resin materials. The magnetic material is fitted with a metal terminal worked by bending. The hollow-cored coil and the metal terminal are electrically connected together by welding, soldering or a conductive adhesive or the like.
However, the conventional choke coil structure requires post-fixing of a metal terminal, making it difficult to reduce direct-current resistance value. Meanwhile, arranging the foregoing coils in plurality corresponding to the number of multi-phases results in an increased setup space, making size reduction difficult. Furthermore, in the case of use in multi-phase, there is a problem that characteristic cannot be fully exhibited because of inductance variation between the plurality of coils.
Meanwhile, when using in the multi-phase scheme a hollow-cored coil formed by winding in a coil form a conductor wire having an insulation film such as of polyurethane, in case a plurality of hollow-cored coils are vertically arranged in line, for example, the total height is increased thus making it impossible to reduce the thickness. Furthermore, such a hollow-cored coil requires to increase the number of turns in order to increase the inductance value, raising a problem of size-increasing of the choke coil itself.
The present invention is for solving these problems, and it is an object thereof to provide an array type choke coil which is excellent in direct-current superimposition characteristic, operable on large current while securing the inductance value in high-frequency band, and capable of being reduced in size.
An array type choke coil of the present invention has a structure comprising: a coil group in which a plurality of terminal-integrated type coils formed by bending a metal sheet in a preset development form are arranged to have a set positional relationship; and a magnetic material burying therein the coil group. Due to this structure, the coil parts of a plurality of terminal integrated type coils are buried in an insulative magnetic material. Therefore, it is possible to obtain an array type choke coil favorable in characteristic in high-frequency band, small in inductance value variation and less in short circuit occurrence, and excellent in producibility.
An array type choke coil of the present invention may be structured in that the plurality of coils constituting the coil group are arranged such that the axes thereof are set the coils in parallel, and also a center point of at least one coil selected from the plurality of coils and a center point of a coil other than the selected coil are arranged to be staggered. This can realize an array type choke coil which is small in size, capable of providing a high coupling and capable of coping with a large current.
In the above structure, the structure may be such that a predetermined inductance value is obtained by changing a distance between a center point of at least one coil selected from the coil group and a center point of at least one coil selected from the plurality of coils other than the selected coil. Otherwise, the structure may be such that a predetermined inductance value is obtained by changing a height of a center point of at least one coil selected from the coil group and a center point of at least one coil selected from the plurality of coils other than the selected coil. This structure can easily realize a small-sized short-structured array type choke coil having coils equal in the number of turns but different in inductance value.
In the above structure, the structure may be such that at least one coil selected from the coil group and both coils immediately adjacent to the selected coil are in a V-form or inverted V-form arrangement, to make a direction of a magnetic flux extending through the coil caused upon flow of a current to the selected coil and a direction of a magnetic flux extending through the coil caused upon flow of a current to the both coils arranged immediately adjacent different in direction from each other. This structure can realizes an array type choke coil small in size while increasing the inductance value.
In the above structure, the structure may be such that at least one coil selected from the coil group and both coils immediately adjacent to the selected coil are in a V-form or inverted V-form arrangement, to make a direction of a magnetic flux caused upon flow of a current to the selected coil and a direction of a magnetic flux caused upon flow of a current to the both coils arranged immediately adjacent same in direction. This structure can realize an array type choke coil excellent in direct-current superimposition characteristic and structured small and short.
In the above structure, the structure may be such that the coils constituting the coil group have the number of turns of (N+0.5) turns (where N is an integer equal to or greater than 1), to provide an arrangement structure of stacking an N-turn portion of the coil selected from the coil group and an (N+0.5)-turn portion of the coil immediately adjacent to the selected coil. This structure can realize an array type choke coil structured small and short.
In the above structure, the structure may be such that a predetermined inductance value is obtained by changing respective distances between a center point of the coil selected and center points of the both coils arranged immediately adjacent. This structure can easily realize a small-sized array type choke coil equal in the number of turns of the coil but different in inductance value.
In the above structure, the structure may be such that the center points of the plurality of coils constituting the coil group are on a same plane. This can realize an array type choke coil less in inductance value variation between a plurality of coils, short in structure, and capable of coping with large current and frequency increase.
In the above structure, the structure may be such that a predetermined inductance value is obtained by changing a distance between center points of two coils immediately adjacent among the plurality of coils. This can easily realize an array type choke coil using coils equal in the number of turns but different in inductance value.
In the above structure, the structure may be such that the coil group is arranged such that magnetic fluxes in the coils caused upon flowing currents respectively to the plurality of coils alternate in direction. This can realize an array type choke coil great in inductance value due to the respective magnetic fluxes being superimposed.
In the above structure, the structure may be such that the coil group is arranged such that magnetic fluxes in the coils caused upon flowing currents respectively to the plurality of coils are same in direction. This can realize an array type choke coil excellent in direct-current superimposition characteristic because of capability of suppressing magnetic flux saturation.
The array type choke coil of the present invention is structured, in the above structure, such that the center axes of the plurality of coils constituting the coil group are arranged in parallel, distance between a center point of at least one coil selected from the plurality of coils and a center point of a coil immediately adjacent to the selected coil is a half or smaller than the sum of an outer diameter of the selected coil and a diameter of the adjacent coil, and at least one turn portion of the selected coil is arranged in a manner meshing with the adjacent coil. This structure can realize an array type choke coil small in size, capable of providing a high coupling and capable of coping with a large current.
In the above structure, the structure may be such that the selected coil and the adjacent coil have the number of turns of N turn (where N is an integer equal to or greater than 2), to provide an arrangement such that (N−1) turn portion of the selected coil is in mesh with the adjacent coil. This can realize an array type choke coil small in size, capable of providing a high coupling and capable of coping with a large current.
In the above structure, the coil group may be arranged such that a difference between an outer diameter and an inner diameter of the selected coil and a difference between an outer diameter and an inner diameter of the adjacent coil are equal, and a distance between a center point of the selected coil and a center point of the adjacent coil coincides with a half of the sum of the outer diameter of the selected coil and the inner diameter of the adjacent coil. This can realize an array type choke coil small in size, capable of providing a high coupling and capable of coping with a large current.
In the above structure, the structure may be such that a predetermined inductance value is obtained by changing a distance between a center point of at least one coil selected from the coil group and a center point of a coil adjacent to the selected coil. This can set a predetermined inductance value more freely because different inductance values can be obtained even if the coils are equal in the number of turns.
In the above structure, the coil group may be arranged such that a direction of a magnetic flux in a coil upon flow of a current to at least one coil selected from the coil group and a direction of a magnetic flux upon flow of a current to a coil adjacent the selected coil are same in direction. This can provide an excellent direct-current superimposition characteristic and a small-sized, short structure.
In the above structure, the coil group is arranged such that a direction of a magnetic flux in a coil upon flow of a current to at least one coil selected from the coil group and a direction of a magnetic flux upon flow of a current to a coil adjacent the selected coil are different. This can further increase the inductance value while keeping a small-sized form.
In the above structure, the coil group may be arranged with the plurality of coils all in line. This can control the inductance value with high accuracy.
In the above-explained array type choke coil, the structure may be such that at least one coil selected from the plurality of coils is arranged in a position deviated from a plurality of other coils arranged in line. This can further size-reduce the array type choke coil entire form because a plurality of coils can be efficiently charged and arranged within a magnetic material.
In the above-explained array type choke coil, the coil group may be arranged such that at least one of selected two or more input terminals and output terminals is arranged on the same surface in an exposed manner. This can facilitate circuit arrangement with a semiconductor integrated circuit or the like, making it easy to carry out array type choke coil mounting and operation of confirming the same.
In the above-explained array type choke coil, the structure may be such that the coil group has a plurality of coils constituting the coil group buried within the magnetic material in a longitudinal direction. This structure can provide the operation region in a high-frequency region and reduce inductance value and direct-current resistance value. Moreover, it is possible to realize an array type choke coil capable of coping with a large current and of being reduced in size.
In the above structure, a predetermined inductance value may be obtained by changing an interval of the plurality of coils. This can easily realize a desired inductance value because inductance value can be changed even with the same number of turns.
In the above structure, the coil group may be arranged such that magnetic fluxes in the coils caused upon flowing currents to the plurality of coils are in the same direction. This can reduce ripple currents.
In the above structure, the coil group may be arranged such that magnetic fluxes in the coils caused upon flowing currents to the plurality of coils alternate in direction. This can improve the direct-current superimposition characteristic.
In the above structure, the plurality of coils may have the number of turns of (N+0.5) turns (where N is an integer equal to or greater than 1), to provide an arrangement structure in that coils in upper and lower positions have respective 0.5 turn portions lying on the same plane. This can reduce the overall height.
In the above structure, at least one of all of input terminals and output terminals of the plurality of coils may be exposed in a same surface. This can improve mountability.
In the above array type choke coil, the magnetic material may be formed at least one selected from the group consisting of a ferrite magnetic material, a composite of a ferrite magnetic powder and an insulating resin and a composite of a metal magnetic powder and an insulating resin. This can reduce short circuit occurrences and realize an array type choke coil capable of coping with high-frequency band because the coil group is buried within an insulating magnetic material.
In the above array type choke coil, an insulation film may be formed on the surface of the coil. Due to this, even in case a metal sheet structuring the coil is bent and closely contacted, there is no possibility to cause short circuit between metal sheets, making possible to increase area occupation ratio.
In the above array type choke coil, the coil group may be structured having at least two terminals exposed from respective different surfaces. This can improve heat dissipation property because the terminal can be taken broad in width. Furthermore, reliability can be improved because connection strength can be increased at terminal region.
In the above array type choke coil, the coil group may be structured having at least one terminal exposed at least two surfaces: a bottom surface and the surrounding surface thereof. This can improve mounting density and reliability.
In the above array type choke coil, the coil group may have a terminal portion exposed at least in a surface, the terminal portion being constituted of an underlying layer formed of nickel (Ni) or a nickel (Ni) containing layer, and an uppermost layer formed of a solder layer or thin (Sn) layer. Due to this, soldering can be done positively and reliably.
In the above array type choke coil, the magnetic material may be provided with an indication area indicative of at least one of input terminal and output terminal. This facilitates mounting operation and inspection before/after mounting.
In the above array type choke coil, the magnetic material may be formed in a rectangular prism form. This can facilitate automated mounting.
Meanwhile, by mounting the array type choke coil on a power supply apparatus, it is possible to realize a power supply apparatus capable of being reduced in size and operating on large current. Thus, various electronic apparatus can be reduced in size and thickness.
Hereunder, embodiments of the present invention will be explained in detail while referring to the drawings. Note that, in the ensuing drawings, like structural elements are attached with like references and hence omitted of explanations thereof.
There is provided an arrangement such that an axis of first coil 1 and an axis of second coil 4 are in parallel and wherein first coil 1 is in the upper position while second coil 4 is in the lower position. Incidentally, the respective axes refer to axes passing the center of the ring-formed coil. Because first coil 1 and second coil 4 have the same number of turns, whose center points are also different in height.
First coil 1 and second coil 4 are buried within magnetic material 7. Magnetic material 7 in the entire is formed nearly a rectangular prism form. Accordingly, the array type choke coil of the present embodiment, because nearly in a rectangular prism form in the entire, is easy to handle during automated mounting. Mistaken chucking or the like less occurs during mounting.
Here, first coil 1 and second coil 4 is explained in concrete structure by use of
Insulation film 51 is formed over a surface of three arcuate parts 31. This insulation film 51 can be easily formed if applying an insulating resin, e.g., polyimide. This prevents short circuit between the coils when arcuate parts 31 are folded and vertically superimposed to form coil part 34. Because insulation film 51 is not provided on connection 33, there is no occurrence of breakage or stripping of insulation film 51 even if connection 33 is bent, thus preventing characteristic deterioration resulting from insulation film 51.
Three arcuate parts 31 of the blanked plate are bent at connection 33 such that the center points are overlapped one with another as shown in
Due to this, first coil 1 and second coil 4 realize a coil structure in that insulation treatment is done by insulation film 51 in coil parts 34. Accordingly, superposition is possible without providing any gap between the respective coils or between arcuate parts 31. As a result, an array type choke coil is to be realized great in area occupation ratio.
Next, magnetic material 7 can use a composite magnetic material in which, for example, a soft magnetic alloy powder is added with a silicone resin by 3.3 weight part and mixed together followed by being passed through a mesh into a regulated-particle powder. The composite magnetic material like this has a structure in that the particle of the soft magnetic alloy powder is covered by silicone resin. The soft magnetic alloy powder can use a soft magnetic alloy powder in a ratio of iron (Fe)-nickel (Ni) of 50:50 having a mean particle size of 13 μm prepared by, for example, water atomization method.
The magnetic material 7 for the array type choke coil of this embodiment used the soft magnetic alloy powder as a metal magnetic powder and the silicone resin as an insulation resin, thereby forming a composite thereof. However, this is not limitative. For example, it may be a composite of a ferrite magnetic material and an insulation resin or a composite of a metal magnetic powder other than the above and an insulation resin. Furthermore, it may be of only a ferrite magnetic material instead of a composite. Although resistance is higher than the case using a metal magnetic powder, conversely eddy currents can be prevented from occurring because of the increased resistance. Favorable characteristics is obtainable in the high frequency band.
It is possible to use a metal magnetic powder containing 90 weight percentage or more in total of iron (Fe), nickel (Ni) and cobalt (Co) in composition wherein the metal magnetic powder is at a filling ratio of 65 volume percentage to 90 volume percentage. The use of such a magnetic powder can obtain magnetic material 7 formed of a composite high in saturation magnetic flux density and in magnetic permeability. The metal magnetic powder having a mean particle size of 1 μm-100 μm is effective in reducing eddy currents.
Magnetic material 7 excellent in insulation can prevent short circuit between a plurality of coils or coil parts 34, enabling to realize highly reliable array type choke coil. Meanwhile, because the use of such magnetic material 7 can suppress an eddy current from occurring in magnetic material 7 due to flow of a current to the array type choke coil, it is possible to realize an array type choke coil capable of coping with high-frequency band. Furthermore, where a power circuit apparatus or the like is configured by use of the array type choke coil, insulation from other components, etc. can be kept.
Underlying layer 52 is formed on first input terminal 2, first output terminal 3, second input terminal 5 and second output terminal 6, in a part exposed out of the surface of magnetic material 7. Uppermost layer 53 is formed in a manner so as to cover underlying layer 52. Underlying layer 52 is preferably a nickel (Ni) layer, and uppermost layer 53 is preferably a solder layer or thin (Sn) layer. Incidentally, insulation film 51 is formed on the surface of coil part 34 buried in magnetic material 7.
As in the above, the solder layer as uppermost layer 52 is formed over the terminal exposed out of the surface of the array type choke coil, including the bottom thereof. This enables the array type choke coil to be positively mounted by means of a board or the like. Meanwhile, because the terminals are bent not to the side surface but to the underside of the array type choke coil, it is possible to reduce the mounting occupation area in mounting the array type choke coil onto a board or the like. Furthermore, because the terminal is formed with the Ni layer as underlying layer 52 and the solder layer as uppermost layer 53 in the present embodiment, it is possible to prevent the Ni layer from oxidizing and make solderability favorable.
In the case of an array type choke coil in the conventional structure for example, when it is used in an insufficient state of mounting of one terminal of the choke coil on the board or the like, there encounters a case in which the terminal is detached from the board or the like by heat generation or a case of occurrence of a phenomenon in which the array type choke coil is inverted from the board or the like. However, in the case of the array type choke coil of the present embodiment, because a terminal region excellent in solderability is formed over from the side surface to the bottom, such a trouble can be positively prevented from occurring.
Because first coil 1 and second coil 4 are structured by blanking and bending a metal sheet, even if used in a high frequency band, smaller direct-current resistance value and sufficient inductance value can be held and large current can be flowed as compared to the coil structured by winding a conductor wire. Meanwhile, because a sufficient inductance value can be secured without increasing the number of coil turns, it is possible to realize a small, short structured array type choke coil.
First coil 1 and second coil 4 are buried within magnetic material 7. Magnetic material 7 is excellent in insulatability. Accordingly, it is possible to prevent a trouble occurrence such as short circuit between the plurality of coils or coil parts 34. Particularly, by using a material containing at least one or more of iron (Fe), nickel (Ni) and cobalt (Co) as a main component of the metal magnetic powder for magnetic material 7, magnetic material 7 can be obtained that has a magnetic characteristic satisfying a high saturation magnetic flux density and high permeability capable of coping with a large current, thus realizing an array type choke coil having a great inductance value.
Hereunder, the operation of the gang choke coil of this embodiment is explained in the following. First coil 1 and second coil 4 are given equal in the number of turns and the same in the winding direction. Although a magnetic field is caused if flowing a current from first input terminal 2 and second input terminal 5, the magnetic fluxes extending through the respective coils are in the same direction. First coil 1 and second coil 4 are arranged to be staggered to provide a magnetic coupling.
A magnetic flux is caused by flow of a current to first coil 1. The magnetic flux constitutes a magnetic circuit extending through an in-coil center of first coil 1, to pass an outside of first coil 1 and return again to the in-coil center of first coil 1. When flowing a current to second coil 4, the magnetic flux similarly constitutes a magnetic circuit extending through an in-coil center of second coil 4, to pass an outside of second coil 4 and return again to the in-coil center of second coil 4. Because first coil 1 and second coil 4 are arranged to be staggered at this time, there is a magnetic flux superimposed over a magnetic flux of a magnetic circuit caused by flow of a current to second coil 4, of the magnetic flux of a magnetic circuit caused by flow of a current to first coil 1. Meanwhile, when flowing a current to second coil 4, there is similarly a magnetic flux superimposed over the magnetic flux of a magnetic circuit caused by flow of a current to first coil 1, of the magnetic flux of the magnetic circuit.
Due to this, coupling takes place between first coil 1 and second coil 4. Because first coil 1 and second coil 4 are arranged to be staggered, further increased is the superimposition of the magnetic flux of the magnetic circuit caused by first coil 1 and the magnetic flux of the magnetic circuit caused by second coil 4, thus realizing a high coupling.
In the case of an array type choke coil, the inductance value is influenced by a coupling of first coil 1 and second coil 4. The coupling of first coil 1 and second coil 4 changes depending upon a superimposition degree of a magnetic flux of a magnetic circuit caused by flow of a current to first coil 1 and a magnetic flux of a magnetic circuit caused by flow of a current to second coil 4. This superimposition changes depending upon an arrangement of first coil 1 and second coil 4. Consequently, in case the distance is changed between a center point of first coil 1 and a center point of second coil 4, a change is also caused in the superimposition of the magnetic fluxes. Therefore, the inductance value of the array type choke coil can be changed without changing the number of turns of first coil 1 and second coil 4. Namely, by suitably changing the distance between the center point of first coil 1 and the center point of second coil 4, a predetermined inductance value can be easily obtained.
Similarly, by changing the height of the center point of first coil 1 and the center point of second coil 4, a change is similarly caused in the superimposition of the magnetic fluxes. Accordingly, by this method, the inductance value of the array type choke coil can be also changed without changing the number of turns of first coil 1 and second coil 4. Particularly, if the coil height is changed, it is possible to readily realize more small-sized short structure.
As described above, the array type choke coil of the present embodiment can realize an array type choke coil small in size, capable of providing a high coupling and capable of coping with large current. Particularly, the array type choke coil of the present embodiment is preferably used in a power supply circuit having an arrangement in which a plurality of DC/DC converters are connected in parallel, as shown in its circuit diagram in
Meanwhile, in order to provide a power supply circuit coping with large current, there is a need to prevent the magnetic flux of choke coil 63 from saturating when a large current flows. In order for this, the inductance value of choke coil 63 is preferably small. In case the inductance value is decreased, the direct-current superimposition characteristic of choke coil 63 can be enhanced thus making it possible to cope with greater current. Meanwhile, the above power supply circuit is assumably mounted on an electronic apparatus, e.g., a notebook personal computer, choke coil 63 is required small in size.
For this reason, the array type choke coil of the present embodiment is used as choke coil 63 for the power supply circuit shown in
Although the array type choke coil of the present embodiment had two terminal-integrated type coils in the gang, those may be three, four or more in the number. Those terminal-integrated type coils may be arranged in line. Alternatively, the terminal-integrated type coils arranged in line may be arranged in two rows, three rows or more on a plane, or otherwise may be in a stack arrangement. The number of turns is not limited to 1.5 turns. Furthermore, there is no especial need to provide the coils the same in the number and winding direction.
As in the above, the array type choke coil of the present embodiment can realize an array type choke coil that is small in size, capable of providing a high coupling and capable of coping with a large current, hence being effective where the array type choke coil is mounted on an electronic apparatus such as a cellular telephone.
While referring to
Meanwhile, there is provided an arrangement such that the center axis of first coil 71, the center axis of second coil 74 and the center axis of third coil 74 are in parallel and wherein first coil 71 and third coil 77 are positioned in the upper stand while second coil 74 is positioned in the lower stand. This places first coil 71, second coil 74 and third coil 77 in a V-formed arrangement. First coil 71, second coil 74 and third coil 77 are buried within a magnetic material 7. The magnetic material 7 is formed to assume a rectangular prism. First coil 71, second coil 74 and third coil 77 are terminal-integrated type coils formed by blanking and folding a metal sheet similarly to the terminal-integrated type coils used in the array type choke coil in embodiment 1 of the present invention. The manufacturing method is the same and hence omitted of explanation.
In the case of
Meanwhile, in the case of
The gang choke coil of the above structure is explained of its operation in the below.
In
Namely, of the magnetic flux caused by flow of a current to first coil 71, there is a magnetic flux extending through an in-coil center of second coil 74. Likewise, of the magnetic flux caused by flowing a current to third coil 77, there is a magnetic flux extending through an in-coil center of second coil 77. Because the same are the direction of the magnetic flux extending through the in-coil center of second coil 74 and the direction of the magnetic flux extending through the in-coil center of second coil 74 upon flowing a current to second coil 74, there is an increase in the magnetic flux extending through the center of second coil 74.
Meanwhile, of the magnetic flux caused by flowing a current to second coil 74, there are magnetic fluxes extending through in-coil centers of first coil 71 and third coil 77. Because the same are the direction of the magnetic fluxes extending through the in-coil centers of first coil 71 and third coil 77 and the direction of the magnetic fluxes extending through the in-coil center of first coil 71 and through the in-coil center of third coil 77 upon flowing currents to first coil 71 and third coil 77, there is an increase in the magnetic fluxes extending through the in-coil center of first coil 71 and through the in-coil center of third coil 77.
This causes a great magnetic field through the array type choke coil, thereby increasing the inductance value furthermore. Accordingly, in case this positive-coupled array type choke coil is used as a power supply circuit choke coil 63 shown in
In the case of a structure shown in
Of the magnetic flux caused by flow of a current to first coil 71, there is a magnetic flux extending through an in-coil center of second coil 74. Likewise, of the magnetic flux caused by flowing a current to third coil 77, there is a magnetic flux extending through an in-coil center of second coil 74. Because opposite are the direction of the magnetic flux extending through the in-coil center of second coil 74 and the direction of the magnetic flux extending through the in-coil center of second coil 74 upon flowing a current to second coil 74, there is a decrease in the magnetic flux extending through the center of second coil 74.
Meanwhile, of the magnetic flux caused by flow of a current to second coil 74, there are magnetic fluxes extending through in-coil centers of first coil 71 and third coil 77. Because different are the direction of the magnetic fluxes extending through the in-coil centers of first coil 71 and third coil 77 and the direction of the magnetic fluxes extending through the in-coil center of first coil 71 and through the in-coil center of third coil 77 upon flowing currents to first coil 71 and third coil 77, there is a decrease in the magnetic fluxes extending through the in-coil center of first coil 71 and through the in-coil center of third coil 77.
This results in a decreased magnetic field caused on the array type choke coil, thereby enabling to decrease the inductance value. Accordingly, in case of that such a negative-coupled array type choke coil is used as power supply circuit choke coil 63 shown in
The inductance value of the array type choke coil in the present embodiment is influenced by a coupling of first coil 71, second coil 74 and third coil 77. Namely, the coupling of first coil 71, second coil 74 and third coil 77 changes depending upon a superimposition degree of a magnetic-circuit magnetic flux caused by flow of currents to first coil 71, second coil 74 and third coil 77. The superimposition changes depending upon an arrangement of first coil 71, second coil 74 and third coil 77. Accordingly, by respectively changing the distances to the centers of first coil 71 and to third coil 77, that are coils on the both sides of second coil 74, with reference to second coil 74, the superimposition of magnetic flux can be varied. By a change of magnetic flux superimposition, the inductance value of the array type choke coil can be changed without changing the number of turns of first coil 71, second coil 74 and third coil 77.
Here, there is shown, in
This can realizes an array type choke coil obtaining desired inductance value L by varying distance D and height H through changing the positions of the center point of first coil 71 and center point of third coil 77. Although the present embodiment set the distance between the center point of first coil 71 and the center point of second coil 74 equal to the distance between the center point of third coil 77 and the center point of second coil 74, the present invention is not limited to this. These distances may be different, respectively. Meanwhile, although the present embodiment set the heights of first coil 71 and third coil 77 equal, these may be not necessarily equal but be different.
From the result of these, in case an array type choke coil in an arrangement structure having a distance to a center point of first coil 71 and to center point of third coil 77 with reference to second coil 74 designed to increase the inductance value is used as choke circuit 63 of a power supply circuit shown in
Meanwhile, in case an array type choke coil in an arrangement structure having a distance between a center point of first coil 71 and center point of third coil 77 designed to suppress the inductance value is used as choke coil 63 of the power supply circuit shown in
Incidentally, although the array type choke coil of the present embodiment had the terminal-integrated type coils three in the gang, those may be four or more in the gang thus being increased in line. The terminal-integrated type coils arranged in line may be arranged in two rows, three rows or more on a plane, or otherwise may be in a stack arrangement. The number of coil turns is not limited to 1.5 turns. Furthermore, there is no especial need to make equal the number and winding direction of the coils. Although the present embodiment arranged the coils in a V-form, they may be arranged in an inverted V-form.
As shown in
As in the above, the array type choke coil of the present embodiment can realize an array type choke coil capable of being reduced in size, providing a high coupling and capable of coping with a large current. Hence, it exhibits great effect if used on an electronic apparatus such as a cellular telephone.
While referring to
The array type choke coil in the above structure is explained of its operation in the below.
The array type choke coil of the present embodiment can be reduced in size, provide a high coupling and cope with a large current, which is similar to embodiment 1. The array type choke coil of the present embodiment provides a characterization in the number of turns of coil and arrangement of the coils, thereby making it possible to realize a further small-sized shorter structure.
As shown in
In case such an array type choke coil is used as a choke coil 63 of a power supply circuit shown in
An array type choke coil structure in embodiment 4 of the present invention is explained with using
At first, because the terminal-integrated type coil 50 may be fabricated similarly to the fabrication method shown in
The array type choke coil of the present embodiment is structured by arranging a plurality of terminal-integrated type coils 50 within magnetic material 7. For an array type choke coil, terminal-integrated type coils 50 are first respectively arranged in predetermined positional relationship, and press-formed by covering the part excepting ends with magnetic material 7. The condition of press-forming is satisfactorily done similarly to embodiment 1, and hence omitted of explanation.
The ends extended from magnetic material 7 are exposed at and bent on the outer layer, and the exposed region is formed with underlying layer 52 of nickel (Ni) or an alloy containing nickel (Ni) in order to prevent the terminals of copper or silver from oxidizing and to improve connection reliability of solder or the like. Furthermore, an uppermost layer 53 of solder, thin (Sn) or lead (Pb) is formed on the underlying layer 52 of Ni or an alloy containing Ni.
All the exposed ends are bent along the bottom and the surface adjacent to the bottom of the array type choke coil, and formed into input terminal 20 and output terminal 30. This provides substantially a leadless structure, enabling high density mounting as compared to the conventional array type choke coil with leads. The above manufacturing method is basically the same as embodiment 1.
Incidentally, magnetic material 7 is preferably in a rectangular prism form, which is similar to the case of embodiment 1. This facilitates sucking for automated bonding, alignment onto a printed board, and the like. Mounting direction and terminal polarity may be shown, and chamfer may be performed. Furthermore, there is no especial restriction on the form of the magnetic material provided that the top surface thereof is in a planer form and polygonal or circular cylindrical form will do.
Explanation is made below on the arrangement structure of a plurality of coils to be buried within magnetic material 7. The present embodiment arranges two coils same in coil size and the number of turns on a same plane as shown in
Explanation is made concerning what form a magnetic field to occur becomes in the case of providing the above structure.
Meanwhile, there is an array type choke coil structure in that two coils same in coil size and the number of turns are arranged on the same plane similarly to
As described in the above, different characteristics are available in the arrangements of positive coupling and negative coupling. Explanation is made on the result obtained by determining a relationship between distance R between the center points of two coils in positive coupling and inductance value L, and a relationship between distance R between the center points of two coils in negative coupling arrangement and inductance value L.
When distance R between center points of two coils 50, 50 is assumed 10 mm, inductance value L in a positive coupled structure was 0.579 μH while inductance value L in a negative coupled structure was 0.571 μH that is −1.4% smaller than inductance value L in the positive coupled structure. Likewise, when distance R between center points was set to be 9.2 mm, inductance value L in a positive coupled structure was 0.583 μH while inductance value L in a negative coupled structure was 0.567 μH that is −2.7% smaller than the same.
Namely, in a positive coupled structure, as distance R between center points is decreased, inductance value L increases. Meanwhile, in a negative coupled structure, as distance R between center points is decreased, inductance value L also decreases. Namely, in a positive coupled structure, in case distance R between center points is decreased, inductance value L can be increased. Without increasing the number of turns of the coils, a great inductance value can be obtained. Furthermore, the smaller distance R between center points is, the greater inductance value L can be taken, which is preferred in achieving size reduction of the array type choke coil.
Meanwhile, in a negative coupled structure, the smaller distance R between center points is, inductance value L also decreases. In a negative coupled structure, because there is a mutual cancellation of the direct-current magnetic field components caused on the respective coils, the magnetic field is readily prevented from saturating even if flowing a large current. Namely, in a negative coupled structure, by providing a choke coil incorporating a plurality of coils, size reduction is possible rather than the case of using a plurality of choke coils comprising one coil in combination. Besides, direct-current superimposition characteristic can be greatly improved.
Next explained is an array type choke coil arranging three terminal-integrated type coils within magnetic material 7 (hereinafter, referred to as a three-array type choke coil).
Table 1 shows a result of inductance value L of each coil depending upon a difference between positive coupled structure and negative coupled structure of the coils in the present embodiment.
As understood from Table 1, the mean inductance value over the three coils is greater in a positive coupled structure than in a negative coupled structure arrangement. When attention is paid to center coil 502 only, it is 0.5704 μH in a negative coupled structure which is smaller by −2.8% than 0.5870 μH in the case of a positive coupled structure.
As described in the above, also in the three-array type choke coil using three terminal-integrated type coils 501, 502, 503, inductance value L can be arbitrarily adjusted by a positive coupled structure, a negative coupled structure or distance R between coil center points, similarly to the case using two terminal-integrated type coils 50. Thus, optimal design can be easily done because inductance value L can be set according to the use purpose of an array type choke coil.
Although the present embodiment explained two-array type and three-array type structures, the present invention is not limited thereto. The terminal-integrated type coils are ganged four or more into an in-line arrangement. Alternatively, arrangement may be on two rows or more by arranging a plurality of in-lined terminal-integrated type coils.
Moreover, at least one terminal-integrated type coil may be arranged in a position departing from a plurality of terminal-integrated type coils arranged in line.
Meanwhile, in an array type choke coil structured as shown in
According to the present embodiment, regardless of the number of turns or size, by making a plurality of coils into a positive coupled structure or negative coupled structure or by adjusting the distances between center points of the respective coils to thereby bury them in magnetic material 7, inductance value can be accurately controlled coping with design and, besides, a small-sized short structured array type choke coil can be realized.
In case an array type choke coil thus structured as a choke coil of a power supply circuit explained in
Meanwhile, in an array type choke coil incorporating a plurality of terminal-integrated type coils in a negative coupled structure arrangement for example, it is easy to decrease the inductance value. Hence, a power supply circuit can be realized which corresponds to the greater current. Such a power supply circuit is preferably used as a power supply circuit of a personal computer, a cellular telephone or the like.
Meanwhile, arrangement is such that the center axis of first coil 601 and the center axis of second coil 604 are parallel and wherein two turns of first coil 601 are in mesh with one turn of second coil 604. First coil 601 and second coil 604 are buried within magnetic material 607. Magnetic material 607 is formed in a rectangular prism form. By such an arrangement, first coil 601 and second coil 604 are allowed for being magnetically coupled.
In this manner, because the array type choke coil of the present embodiment is a rectangular prism form, it is easy to handle the array type choke coil during automated mounting.
Here, explanation is made on a manufacturing method and concrete structure of a terminal-integrated type coil to be made into first coil 601 and second coil 604, by using
At first, as shown in
Insulation film 632 is formed on a surface of two arcuate parts 631. This prevents a short circuit between arcuate parts 631 to be made into a coil, in coil part 634 structured by folding and vertically superimposing two arcuate parts 631 of the blanked plate. Incidentally, no insulation film 632 is formed on a surface of connection 633. In this manner, because insulation film 632 is provided in the region excepting connection 633, there is no occurrence of breakage, stripping or the like in insulation film 632 even if connection 633 is bent. It is possible to suppress the coil characteristic deterioration resulting from insulation film 632.
The blanked sheet is bent at connection 633 of two arcuate parts 631 in a manner so as to overlap center points with each other, as shown in
By using such a blanked sheet, coil part 634 where arcuate parts 631 are stacked is insulation-treated with insulation film 632. Stacking is possible without providing a gap between arcuate parts 631, enabling to realize an array type choke coil high in occupation area ratio.
Although
Incidentally, explanation is omitted concerning magnetic material 607 because it can be fabricated of the material and by the method explained in embodiment 1.
As for a manufacturing method of an array type choke coil shown in
Due to this, because first input terminal 602, second input terminal 605, first output terminal 603 and second output terminal 606 are formed, for example, with solder layers as uppermost layer 53, in the respective regions bent over the bottom of magnetic material 607, the array type choke coil can be mounted more positively onto a printed board or the like. Meanwhile, this provides a leadless structure, hence mounting with high density can be achieved.
In the array type choke coil of the present embodiment, first coil 601 and second coil 604 are structured by blanking and bending of a metal sheet. Accordingly, as compared to the conventional coil structured by winding a conductor wire and attaching a terminal at a tip of the conductor wire, it is easy to secure an inductance value and low direct-current resistance value required in a high-frequency region with a result that it becomes easy to cope with a large current.
Meanwhile, because a required inductance value can be secured without increasing the number of turns of the coil, it is possible to realize a small-sized short array type choke coil.
First coil 601 and second coil 604 are buried within magnetic material 607. Magnetic material 607 is excellent in insulatability and capable of preventing a short circuit trouble between coils and at coil parts 634 from occurring and realizing a reliable array type choke coil. Particularly, by providing magnetic material 607 containing one or more selected from iron (Fe), nickel (Ni) and cobalt (Co) as a main component of its metal magnetic powder, it is possible to obtain magnetic material 607 having a high saturation magnetic flux density capable of coping with large current and a magnetic characteristic of high magnetic permeability, thus realizing an array type choke coil great in inductance value.
The array type choke coil of the above structure is explained of its operation in the below.
First coil 601 and second coil 604 are equal in the number of turns but opposite in winding direction. Accordingly, in case flowing currents through first input terminal 602 and second input terminal 605, the magnetic fluxes extending through the respective coils are opposite in direction due to the generated magnetic field.
The array type choke coil in the above structure is explained in its operation in the below.
As shown in
At this time, because first coil 601 and second coil 604 are arranged in a manner partly meshed, there exists a superimposed magnetic flux of among the magnetic fluxes of magnetic circuits caused by flow of currents to first coil 601 and second coil 604. Particularly, the magnetic superimpositions are intensified at around the centers of the respective coils.
Namely, in the magnetic flux caused by flow of a current to first coil 601, there is a magnetic flux extending through a coil inside of second coil 604. Likewise, in the magnetic flux caused by flow of a current to second coil 604, there is a magnetic flux extending through the inside of first coil 601. Because the direction of the magnetic flux extending through the coil inside of first coil 601 and the direction of the magnetic flux extending through the coil inside of first coil 601 upon flow of a current to second coil 604 are the same, these are superimposed together to increase the magnetic flux extending through the coil inside of first coil 601. Because there is a similar superimposition concerning second coil 604, there is an increase of the magnetic flux extending through a coil inside of first coil 601.
This causes a great magnetic field through the array type choke coil, thereby increasing the inductance value furthermore. Accordingly, in case an array type choke coil in positive coupled structure is used as a power supply circuit choke coil 63 shown in
Meanwhile, on the array type choke coil structured shown in
As shown in
Because opposite are the direction of the magnetic flux extending through the inside of the coil caused by flow of a current to second coil 604 and the direction of the magnetic flux extending through the inside of second coil 604 caused by flow of a current to first coil 601, there is a decrease in the magnetic flux extending through a coil inside of second coil 604. Similarly, because opposite are the direction of the magnetic flux extending through the inside of coil 601 caused by flow of a current to first coil 601 and the direction of the magnetic flux extending through the coil inside of first coil 601 caused upon flow of a current to second coil 604, there is a decrease in the magnetic flux extending through inside of second coil 604. This can reduce the magnetic field caused through the array type choke coil, thus suppressing the magnetic field from saturating.
Accordingly, in case the negative-coupled array type choke coil is used similarly as a power supply circuit choke coil 63 shown in
The inductance value of the array type choke coil is influenced by the coupling state of first coil 601 and second coil 604. The coupling of first coil 601 and second coil 604 changes depending upon the superimposition degree of magnetic-circuit magnetic flux caused by flowing currents to first coil 601 and second coil 604. The superimposition can be changed by the arrangement of first coil 601 and second coil 604.
Accordingly, in case the distance is changed between a coil center point of first coil 601 and a coil center point of second coil 604, the degree of magnetic flux superimposition can be changed. As a result, the inductance value of the array type choke coil can be varied without changing the number of turns of first coil 601 and second coil 604. This can easily obtain the inductance value required in a design.
Hereunder, explanation is made on the relationship between distance between center points and coupling when changing the distance between a coil center point of first coil 601 and a coil center point of second coil 604, on the basis of a concrete example. In the below, first coil 601 and second coil 604 is given an outer diameter of 8.0 mm, an inner diameter of 4.0 mm and a sheet thickness of 0.5 mm while magnetic material 607 is given a size of 10 mm vertically, 16 mm horizontally and 3.5 mm in height.
In the array type choke coil in a structure shown in
In the array type choke coil in a structure shown in
In the array type choke coil in a structure shown in
In the array type choke coil in a structure shown in
In the case of the structure of an array type choke coil shown in
The array type choke coil of this structure is achieved not only in the case the coils in mesh are quite equal in outer diameter and inner diameter but also in the case the respective differences between outer and inner diameters of the coils in mesh are equal. For example, if the coil part of first coil 601 has an outer diameter of 9 mm and an inner diameter of 7 mm while the coil part of second coil 604 has an outer diameter of 8 mm and an inner diameter of 6 mm, the distance between a coil center point of first coil 601 and a coil center point of second coil 604, if made 6.5 mm, can realize a highly-coupled array type choke coil as above.
Incidentally, in the array type choke coil shown in
In the structure of the array type choke coil structure shown in
In the structure of the array type choke coil structure shown in
In the structure of the array type choke coil structure shown in
As described above, by changing the distance R between the coil center point of first coil 601 and the coil center point of second coil 604, the effective cross-sectional area of coupling in the coil can be adjusted as well as the coupling degree. Accordingly, it is possible to adjust the total coupling of the array type choke coil more freely. This can easily realize an array type choke coil having the inductance value required in a design.
The array type choke coil in the structure shown in
Incidentally, similar effect is obtainable on three or more terminal-integrated type coils if arranged similarly and inputted by currents through terminals in a similar manner such that in-coil magnetic fields caused upon flow of a current are in the same direction.
An array type choke coil in a structure shown in
Incidentally, similar effect is obtainable on three or more terminal-integrated type coils if arranged similarly and currents are inputted through terminals in a similar manner, such that in-coil magnetic fields caused upon flow of a current are alternate in direction.
Concerning an array type choke coil in such a positive coupled structure and negative coupled structure, explanation is made on a relationship between distance S between center points of two terminal-integrated type coils 711, 712 and an inductance value.
In the case of distance S between center points of S=3.5 mm, the array type choke coil in a positive coupled structure had inductance value L of L=0.747 μH while the array type choke coil in a negative coupled structure had inductance value L of L=0.560 μH smaller by 24.9% than the case of the positive coupled structure.
Similarly, in the case that distance S between center points was given S=2.7 mm, the array type choke coil in a positive coupled structure had inductance value L of L=0.794 μH while the array type choke coil in a negative coupled structure had inductance value L of L=0.468 μH smaller by 41.0% than the case of the positive coupled structure.
From the above result, it was found that, if distance S between center points is equal, inductance value L is greater on the array type choke coil in a positive coupled structure than on the array type choke coil in a negative coupled structure.
Meanwhile, in the case of changing distance S between center points in a positive coupled structure, L=0.747 μH was obtained at S=3.5 mm for example while L=0.794 μH was obtained at S=2.7 mm. This value is 6.3% greater than inductance value L at S=3.5 mm. Likewise, in the case of changing distance S between center points in a negative coupled structure, L=0.560 μH was obtained at S=3.5 mm for example while L=0.468 μH was obtained at S=2.7 mm. This value is 16.6% smaller than inductance value L at S=3.5 mm.
From the above result, in the case of a positive coupled structure, inductance value L can be increased by arranging the coils in a manner so as to shorten distance S between center points. Meanwhile, in the case of a negative coupled structure, inductance value can be decreased by arranging the coils in a manner so as to shorten distance S between center points. Accordingly, without changing the number of turns of the terminal-integrated type coil 711, 712, inductance value L of an array type choke coil can be arbitrarily set to a certain extent by adjusting distance S between center points.
Although explanation was made on the case with two terminal-integrated type coils 711, 712, the inductance value of an array type choke coil can be comparatively easily changed by adjusting the respective distances between center points in the case where three or more terminal-integrated type coils are used.
In the below, explanation is made on the coil arrangement and the direction of exposing input and output terminals of the array type choke coil in the present embodiment like this.
As understood from
This arrangement can allow each of input terminals 733, 735 and output terminals 734, 736 to be exposed at of the same surface. Accordingly, when mounting an array type choke coil onto a printed board, arrangement is facilitated in a circuit structure with a semiconductor integrated circuit, etc, thus improving mounting density.
Meanwhile, it is easy to provide an indication, such as IN at input side and OUT at output side. Although this modification had the number of turns of 1.5 turns on two coils 731, 732, the similar effect is obtainable with the number of turns of 2.5 turns, 3.5 turns or the like.
Note that there is not always a need to expose all the input or output terminals out of one surface, i.e., at least two of the input and output terminals maybe exposed at one surface. Meanwhile, when exposing all the input and output terminals at the same surface, the input and output terminals may be exposed alternately.
In this structure, the coils are not limited to two in the number but three or more coils may be stacked similarly.
This structure prevents the terminals from contacting one with another even if the input and output terminals are increased in area. Accordingly, the mounting on or heat dissipation to a printed board can be improved furthermore, and further the terminals can be lowered in resistance value, hence realizing an array type choke coil coping with current increase.
Meanwhile, because this structure can evenly disperse the terminal soldering points, mounting strength can be increased.
In the array type choke coil of this structure, the coils are not limited to two in the number but three or more coils may be stacked in a similar way. In such a case, arrangement is possible to allow a plurality of terminals to be exposed at the same surface.
Although the magnetic material was explained as in a rectangular prism form, chamfering may be made to facilitate directional determination or indications may be provided indicating input and output terminals.
As described above, the array type choke coil of the present embodiment can secure a required inductance value in a high-frequency band, hold a small direct-current resistance value, and cope with large current, thus being reduced in size. Accordingly, the use on a power supply circuit as explained in
An array type choke coil in embodiment 7 of the present invention is explained while referring to
The array type choke coil shown in
Incidentally, structure may be that input and output terminals are all exposed out of one surface. For example, input terminals 161 and output terminals 162 may be alternately arranged and exposed as shown in
There is not necessarily a need to expose all input terminals 161 and output terminals 162 out of one surface. At least two terminals selected from two or more input and output terminals may be exposed out of one surface.
In the case of a terminal-integrated type coil having the number of turns of N turns (N is an integer equal to or greater than 1), the structure is that the input and output terminals project at the upper and lower positions in the same direction. The input and output terminals, in upper-and-lower sets as they are, may respectively be arranged on one surface.
Furthermore, coil arrangement is possible such that at least two terminals are exposed in respective different directions. For example, the array type choke coil shown in
Although the above structure explains the case using terminal-integrated type coils three in the number, there is no limitation in the number of terminal integrated type coils. There is no limitation also in the direction in which terminals are to be taken out. It is satisfactory if exposure is done in the plane in the direction in which terminals are to be exposed.
In this manner, in the case of a terminal-integrated type coil arrangement having terminals exposed an arbitrary plane, it is possible to increase the distance between terminals. This can increase terminal area and hence improve heat dissipation characteristic furthermore. Because the terminal can be reduced in resistance value, it is possible to realize an array type choke coil that is suited to current increase. Because the terminal soldering points are dispersed in the bottom and its vicinity by such a structure, mounting strength can be increased against force in each direction. Incidentally, although the magnetic material was in a rectangular prism form in the present embodiment, a corner may be removed from a side in a part or indications may be further provided on the respective terminals.
The array type choke coil of the present invention is structured by fabricating terminal-integrated type coils through bending a blanked sheet formed by etching, blanking or the like a metal sheet, and burying within a magnetic material the terminal-integrated type coils in plurality so as to have a predetermined positional relationship. Because it can be used in a high-frequency band and a required inductance value can be secured and a small direct-current resistance value can be held, it is useful for various electronic apparatuses, particularly in the area of portable apparatuses such as cellular telephone.
Number | Date | Country | Kind |
---|---|---|---|
2002-362033 | Dec 2002 | JP | national |
2002-362034 | Dec 2002 | JP | national |
2002-362035 | Dec 2002 | JP | national |
2003-091172 | Mar 2003 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP03/15858 | 12/11/2003 | WO | 00 | 12/6/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/055841 | 7/1/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6946944 | Shafer et al. | Sep 2005 | B2 |
6950006 | Shikama et al. | Sep 2005 | B1 |
Number | Date | Country |
---|---|---|
1-266705 | Oct 1989 | JP |
5-121255 | May 1993 | JP |
6-77077 | Mar 1994 | JP |
6-26221 | Apr 1994 | JP |
6-275438 | Sep 1994 | JP |
9-22824 | Jan 1997 | JP |
11-102816 | Apr 1999 | JP |
11-144957 | May 1999 | JP |
11-214229 | Aug 1999 | JP |
11-273975 | Oct 1999 | JP |
11-297543 | Oct 1999 | JP |
2000-150269 | May 2000 | JP |
2002-246242 | Aug 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20060145804 A1 | Jul 2006 | US |