The present invention relates generally to chemical analysis, and more particularly to an electrospray probe interface for mass spectrometry.
Automated systems for measuring the concentration of analytes in a sample have been developed using a number of analytical techniques such as chromatography or mass spectrometry. In particular, mass spectrometry is often the technique of choice to achieve sensitivity of parts per billion (ppb) or sub-ppb such as parts per trillion (ppt). For example, co-assigned U.S. Ser. No. 10/004,627 (the '627 application) discloses an automated analytical apparatus measuring contaminants which may be present in trace concentrations or constituents which may be present in substantial concentrations using a form of In-Process Mass Spectrometry (IPMS).
In an IPMS technique, a sample of interest is spiked, i.e., has added to it a known amount of the appropriate isotopic species or an internal standard. After the spike and sample have equilibrated, the mixture is ionized using an atmospheric pressure ionization (API) technique such as electrospray and processed in a mass spectrometer to determine a ratio measurement. Depending upon the composition of the spike, the ratio will either be an altered isotopic ratio as used in isotope dilution mass spectrometer (IDMS) or the ratio of an internal standard to the analyte of interest. Unlike the harsh ionization using in inductively coupled mass spectrometry (ICP-MS), the mild ionization provided by the use of API enables the characterization of complex molecules rather than just elemental species. Because a ratio measurement is used, the analysis is immune to drift and other such inaccuracies that plague conventional mass spectrometry analyses.
The IPMS technique represents a dramatic improvement over conventional mass spectrometry methods. Whereas conventional mass spectrometry methods require considerable hands-on intervention from highly-trained analytical chemists, IPMS is completely automated. Because of this automation, IPMS may be used to characterize analytes in fields such as semiconductor clean rooms where the use of mass spectrometry would traditionally be inappropriate. Moreover, this automation may be used to characterize virtually any type of analyte one may be interested in—from elemental species (which may be mono-isotopic) to complex molecular species. However, this automation faces a bottleneck at an electrospray probe used for electrospray ionization. Before a new analysis may be completed, the electrospray probe must be rinsed and then conditioned with the newly-equilibrated spike/sample solution. Having been conditioned, the probe may be used in the characterization of an analyte of interested in the newly-equilibrated spike/sample solution. This delay complicates the analysis of, for example, a copper plating solution in a semiconductor bath in which a user may desire to know the concentrations of a number of plating accelerants, retardants, constituents, and contaminants. To measure each one of these analytes thus entails an appreciable amount of delay because of the associated rinse and conditioning cycles.
Accordingly, there is another need in the art for an improved IPMS apparatus that reduces the delay associated with repetitive rinse and conditioning cycles.
In accordance with the present invention, an analytical apparatus includes: a carriage; and a plurality of electrospray probes pivotably mounted on the carriage, wherein movement of the carriage engages a feature with a selected one of the electrospray probes whereby movement of the feature pivots the selected one of the electrospray probes with respect to the carriage.
In accordance with another aspect of the invention, a method of using an electrospray assembly including a plurality of electrospray probes mounted on a carriage includes the acts of: conditioning a selected one of the electrospray probes; moving the carriage such that a feature engages the selected one of the electrospray probes; and moving the feature such that the selected one of the electrospray probes pivots into a mass spectrometer bore.
In accordance with another aspect of the invention, an analytical apparatus is provided that includes: a plurality of electrospray probes; means for moving the plurality of electrospray probes such that a selected one of the electrospray probes is positioned with respect to an mass spectrometer bore; and means for moving the selected one of the electrospray probes into the mass spectrometer bore.
a is a perspective rear view of an assembly of electrospray probes in accordance with an embodiment of the invention.
b is a close-up view, partially cutaway, of the needle portion of the electrospray probes of
a is a perspective view of a single electrospray probe in accordance with an embodiment of the invention.
b is a cross-sectional view of a portion of the probe of
Use of the same reference symbols in different figures indicates similar or identical items.
The present invention provides an electrospray probe assembly that eliminates the delay associated with rinsing and conditioning an electrospray probe used for repetitive analyses. Turning now to the Figures, a rear isometric view of an exemplary electrospray assembly 50 is illustrated in
An isolated electrospray probe 100 is shown in
As seen in
Each probe 100 may be grounded through a corresponding ground contact 440, which should be resilient to accommodate pivoting of the corresponding probe. It will be appreciated that another potential besides ground may be achieved through appropriate biasing of ground contact 440. As seen in
Although the electrospray assembly described with respect to
Interface 510 may be constructed as discussed with respect to
Mass spectrometer measure a response for both the sample and the spike. By forming a ratio of these responses, the concentration of the analyte in the sample may be characterized. Advantageously, this ratio will cancel out instrument drift and other inaccuracies, thereby providing precision and accuracy. Moreover, the ratio method just described is independent of whether an internal standard or IDMS method is utilized. Should an internal standard be used as the spike, it need merely have a sufficiently similar chemical behavior through assembly 510 and mass spectrometer 520.
Processor 530 controls the configuration of module 500 and electroprobe interface 510 to maintain an automated operation. For example, processor 530 would control actuators 220 and 230 of
The above-described embodiments of the present invention are merely meant to be illustrative and not limiting. For example, rather than linearly displace probes 100 with respect to shaft 420 so that key 400 engages a conditioned probe 100a, these probes may be arranged on a wheel in a semi-circular arrangement. By rotating the wheel, a selected probe may be engaged with a feature that pivots the selected probe into a mass spectrometer entry orifice. It will thus be obvious to those skilled in the art that various changes and modifications may be made without departing from this invention in its broader aspects. Accordingly, the appended claims encompass all such changes and modifications as fall within the true spirit and scope of this invention.
This application claims priority to International Application PCT/US05/058303, filed Feb. 23, 2005, which in turn claims the benefit of U.S. Provisional Application No. 60/547,281, filed Feb. 23, 2004, the contents of both of which are incorporated by reference.