The present disclosure pertains to switches and particularly to heatsinks associated with the switches. More particularly, the disclosure pertains to switches for thermostats.
The disclosure reveals a line voltage thermostat having a multiple heatsink switch. A total switch may have a semiconductor switch mounted on each heatsink of the multiple heatsink switch. The semiconductor switches of the respective heatsinks may be connected in parallel to represent the total switch. Each of the two or more heatsinks, having a semiconductor switch for switching, and in total conveying the same power as one equivalent switch with one total heatsink, may have higher maximum operating temperatures and higher thermal resistances than twice the thermal resistance of the one total heatsink. The two or more heatsinks may be situated within a housing of the line voltage thermostat, and be easier to distribute in the housing to achieve an efficient layout of a display and control buttons for the thermostat.
The present system and approach may incorporate one or more processors, computers, controllers, user interfaces, wireless and/or wire connections, and/or the like, in an implementation described and/or shown herein.
This description may provide one or more illustrative and specific examples or ways of implementing the present system and approach. There may be numerous other examples or ways of implementing the system and approach.
Line voltage thermostats may be used to direct control of an electrical heater. High electrical power going through the switching component in the thermostat produces excessive heat that may damage the component itself. A single heatsink may be traditionally used in order to cool down the switching component.
Often, a heat sink may take up to two-thirds of a thermostat envelope and create many integration constraints. Such thermostat arrangement may have a bulky size, a limited screen size, limited positions of the screen due to a heat source location, and limited positions for button locations.
The present arrangement may incorporate two separate switching components such as triacs or SCRs (e.g., thyristors) and have each component installed with its own heat sink in the envelope. The arrangement may permit each switching component to run at a higher tab temperature since it has half of the original power going through it while having the same junction temperature as the single component arrangement. The arrangement may incorporate more than two components and corresponding heat sinks.
The thermal performance of a heat sink may be a nonlinear function of the heat sink's overall size. Heat sinks of smaller size may be more efficient.
In order for the present arrangement operate at its best in an envelope, both heat sinks should be the furthest apart from each other. Advantages of the present arrangement compared to a single switching component envelope, for instance that of a thermostat, may incorporate a smaller overall product and better aesthetics, or (if envelope size is kept constant) a higher power rating. The arrangement may result in a better integration of screen such as a more favorable centering the screen and yet keeping it far from a heat source, a possibility of larger screen, and a centering of the buttons.
The present arrangement may be used to improve the aesthetics of a product such as the thermostat by reducing its size or increasing its power rating without reducing its size. The arrangement may provide more flexibility for human machine interface components integration such as a screen and buttons. A new thermostat look and/or higher power rating may create a significantly competitive advantage in the market.
RF/heatsink compatibility (RF mechanical specifications) and RF maximum temperature requirements (RF thermal specifications) may be a consideration with the present arrangement. A printed circuit board (PCB) thermal model may incorporate dissipated power from other electronic components other than the triac, thermal resistance of the power traces, a position of a compensation sensor, and ambient sensor thermal cooling and position.
Factors of concern may incorporate sizes and positions of electronic components, a position of compensation sensor, ambient sensor thermal cooling and position, high temperature LCD and backlight, and thermopheresis (black soot deposition).
Power in a room may be controlled by a duty cycle on the full power to the electric load or heater 73: time on/(time on+time off). For example, 7.5 seconds on and 7.5 seconds off every 15 seconds on a 1000 W baseboard heater may be 50 percent of 1000 W=500 W of power delivered.
Thermostat 71 may also incorporate additional electronics and interface components 78 that may be connected with one or more components inside and outside of the diagram in
Advantages of a two or more SCR/triac arrangement may incorporate that each SCR/triac may operate at a higher temperature and its heatsink may be smaller than a single triac arrangement. For instance, the triac maximum tab temperature may be indicated by the formula Tj−Rjc*P=104−0.97*17.5=87° C. The double triac/SCRs maximum tab temperature may be indicated by the formula Tj−Rjc*P=104−1*17.5/2=95° C. A smaller heatsink of a SCR or triac of a double arrangement may equate to a higher thermal resistance heatsink than twice the thermal resistance of a single triac.
Heatsink thermal resistance for a triac may be indicated by the formula Rth=(Tc−Ta)/P=(87−25)/17.5=3.54° C./W; twice that value is 7.08° C./W. The mass for the triac arrangement may be 90 g. Heatsink thermal resistance for a double triac/SCR arrangement may be indicated by the formula Rth=(Tc−Ta)/P=(95−25)/8.75=8° C./W. The mass for the double arrangement may be 30 g; twice that value is 60 g.
To recap, a thermostat for controlling an electric heater may incorporate an ambient temperature sensor, a temperature setpoint device, a comparator mechanism connected to the ambient temperature sensor and the temperature setpoint device, and a power switch having a control terminal connected to the comparator mechanism. The power switch may incorporate two or more separate heatsinks and a solid state switch situated on each heatsink. Each solid state switch may have a control input connected to the control terminal of the power switch.
The thermostat may further incorporate a housing. The temperature setpoint device, the comparator mechanism and the power switch may be situated in the housing.
The ambient temperature sensor may be for indicating a temperature of a space containing an electric heater connected to the power switch, and for providing an output signal to the control terminal of the power switch or no output signal to the control terminal of the power switch.
The comparator mechanism may compare a first temperature indication from the ambient temperature sensor and a second temperature indication from the temperature setpoint device and provide a first output signal, a second output signal or no output signal to the control terminal of the power switch. The first output signal may indicate that the second temperature indication is X degrees greater than the first temperature indication. The second output signal may indicate that the first temperature indication is Y degrees greater than the second temperature indication. X may be a predetermined number. Y may be a predetermined number.
The first output signal may turn on the power switch. The second output signal may turn off the power switch. When the power switch is turned off, the electric heater may be disconnected from electric power. When the power switch is turned on, the electric heater may be connected to electric power.
The solid state switch may be selected from a group consisting of an SCR and a triac.
Each heatsink and corresponding solid state switch may be placed in the housing at a distance from any other heatsink. The distance may be set at a maximum within the housing.
An approach, for controlling an electric load, may incorporate providing a thermostat having a power switch connectable to an electric load, determining how much power is to be delivered by an electric load, designating an amount of time the electric load is to be powered, and designing a power switch capable of turning on and off the power of an electric load, having two or more solid state switches connected in parallel and attached to separate heatsinks. Each of the two or more solid state switches may be capable of turning on and off the power of the electric load.
The approach may further incorporate measuring a temperature of a space having a temperature to be controlled, selecting a desired temperature to be provided to the space, and connecting the electric load to power with the power switch if the temperature of the space is less than the desired temperature. The electric load may provide heat in the space to raise the temperature in the space when the electric load is connected to the power.
The measuring the temperature in the space, selecting the desired temperature, and providing a signal to the power switch to connect the electric load to power may be performed by a temperature sensor, a temperature setpoint device, and a comparator mechanism, respectively.
The temperature setpoint device, the comparator mechanism and the power switch may be contained within a housing. The housing may have a thermostat that incorporates the temperature sensor, the temperature setpoint device, and the comparator mechanism.
A heatsink cooling system for a line voltage thermostat may incorporate a switching component and a thermostatic control. The switching component may incorporate two or more heatsinks, and a semiconductor switch situated on each of the two or more heatsinks. Each semiconductor switch may have an input connectable to a line voltage and an output connectable to an electric load, and have a control terminal. The thermostatic control may have an output connected to the control terminal of each semiconductor switch.
The thermostatic control may incorporate a housing, a temperature sensor, a temperature setpoint mechanism, and an electronics module connected to the temperature sensor, the temperature setpoint mechanism, and the output of the thermostatic control.
The temperature setpoint mechanism may be accessible on the housing or be remote from the housing. The electronic module may be situated in the housing. The switching component may be situated in the housing.
The two or more heatsinks may be situated in the housing at a maximum distance from one another within the housing.
Increasing a number of heatsinks with the switching component having a semiconductor switch situated on each heatsink of a number of heatsinks greater than one, may increase a maximum operating tab temperature for each semiconductor switch and result in each of the more than one heatsinks having a thermal resistance greater than a heatsink of a switching component if the switching component has a total of one semiconductor switch situated on just one heatsink for the same amount electric load carried by the switching component having two or more semiconductor switches with each semiconductor switch having at least one heatsink. The semiconductor switch may be selected from a group consisting of a SCR and a triac.
The electric load may incorporate an electric heater in a space having a temperature that can be measured by the temperature sensor.
The mass of the two or more heatsinks of the switching component having two or more semiconductor switches may be less than the mass of a heatsink of the switching component having just one semiconductor switch on one heatsink for the same electrical load.
In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.
Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.
This application is a Continuation of U.S. patent application Ser. No. 14/329,357, filed Jul. 11, 2014, and entitled, “Multiple Heatsink Cooling System for a Line Voltage Thermostat”. U.S. patent application Ser. No. 14/329,357, filed Jul. 11, 2014, is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3464673 | Cargo et al. | Sep 1969 | A |
3665159 | Becker et al. | May 1972 | A |
3899713 | Barkan et al. | Aug 1975 | A |
3942028 | Baker | Mar 1976 | A |
4078720 | Nurnberg | Mar 1978 | A |
4079366 | Wong | Mar 1978 | A |
4093943 | Knight | Jun 1978 | A |
4151387 | Peters, Jr. | Apr 1979 | A |
4174807 | Smith et al. | Nov 1979 | A |
4197571 | Grunert | Apr 1980 | A |
4206872 | Levine | Jun 1980 | A |
4224615 | Penz | Sep 1980 | A |
4232819 | Bost | Nov 1980 | A |
4257555 | Neel | Mar 1981 | A |
4264034 | Hyltin et al. | Apr 1981 | A |
4274045 | Goldstein | Jun 1981 | A |
4296334 | Wong | Oct 1981 | A |
4298946 | Hartsell et al. | Nov 1981 | A |
4300199 | Yoknis et al. | Nov 1981 | A |
4308991 | Peinetti et al. | Jan 1982 | A |
4316256 | Hendricks et al. | Feb 1982 | A |
4332352 | Jaeger | Jun 1982 | A |
4337822 | Hyltin et al. | Jul 1982 | A |
4337893 | Flanders et al. | Jul 1982 | A |
4373664 | Barker et al. | Feb 1983 | A |
4379483 | Farley | Apr 1983 | A |
4382544 | Stewart | May 1983 | A |
4384213 | Bogel | May 1983 | A |
4386649 | Hines et al. | Jun 1983 | A |
4388692 | Jones et al. | Jun 1983 | A |
4431134 | Hendricks et al. | Feb 1984 | A |
4446913 | Krocker | May 1984 | A |
4479604 | Didner | Oct 1984 | A |
4503471 | Hanajima et al. | Mar 1985 | A |
4504778 | Evans | Mar 1985 | A |
4506827 | Jamieson et al. | Mar 1985 | A |
4556169 | Zervos | Dec 1985 | A |
4585164 | Butkovich et al. | Apr 1986 | A |
4606401 | Levine et al. | Aug 1986 | A |
4621336 | Brown | Nov 1986 | A |
4622544 | Bially et al. | Nov 1986 | A |
4628201 | Schmitt | Dec 1986 | A |
4641013 | Dunnigan et al. | Feb 1987 | A |
4646964 | Parker et al. | Mar 1987 | A |
4692596 | Payne | Sep 1987 | A |
4706177 | Josephson | Nov 1987 | A |
4717333 | Carignan | Jan 1988 | A |
4725001 | Carney et al. | Feb 1988 | A |
4745300 | Kammerer et al. | May 1988 | A |
4745311 | Iwasaki | May 1988 | A |
4806843 | Mertens et al. | Feb 1989 | A |
4811163 | Fletcher | Mar 1989 | A |
4829779 | Munson et al. | May 1989 | A |
4881686 | Mehta | Nov 1989 | A |
4918439 | Wozniak et al. | Apr 1990 | A |
4939995 | Feinberg | Jul 1990 | A |
4942613 | Lynch | Jul 1990 | A |
4948040 | Kobayashi et al. | Aug 1990 | A |
4969508 | Tate et al. | Nov 1990 | A |
4992779 | Sugino et al. | Feb 1991 | A |
4997029 | Otsuka et al. | Mar 1991 | A |
5005365 | Lynch | Apr 1991 | A |
5012973 | Dick et al. | May 1991 | A |
5025134 | Bensoussan et al. | Jun 1991 | A |
5036698 | Conti | Aug 1991 | A |
5038851 | Mehta | Aug 1991 | A |
5053752 | Epstein et al. | Oct 1991 | A |
5065813 | Berkeley et al. | Nov 1991 | A |
5081411 | Walker | Jan 1992 | A |
5086385 | Launey et al. | Feb 1992 | A |
5088645 | Bell | Feb 1992 | A |
5118963 | Gesin | Jun 1992 | A |
5120983 | Samann | Jun 1992 | A |
5140310 | DeLuca et al. | Aug 1992 | A |
5161606 | Berkeley et al. | Nov 1992 | A |
5170935 | Federspiel et al. | Dec 1992 | A |
5172565 | Wruck et al. | Dec 1992 | A |
5181653 | Foster et al. | Jan 1993 | A |
5187797 | Nielsen et al. | Feb 1993 | A |
5192874 | Adams | Mar 1993 | A |
5210685 | Rosa | May 1993 | A |
5221877 | Falk | Jun 1993 | A |
5226591 | Ratz | Jul 1993 | A |
5230482 | Ratz et al. | Jul 1993 | A |
5238184 | Adams | Aug 1993 | A |
5251813 | Kniepkamp | Oct 1993 | A |
5259445 | Pratt et al. | Nov 1993 | A |
5272477 | Tashima et al. | Dec 1993 | A |
5277244 | Mehta | Jan 1994 | A |
5289047 | Broghammer | Feb 1994 | A |
5294849 | Potter | Mar 1994 | A |
5329991 | Mehta et al. | Jul 1994 | A |
5348078 | Dushane et al. | Sep 1994 | A |
5351035 | Chrisco | Sep 1994 | A |
5361009 | Lu | Nov 1994 | A |
5386577 | Zenda | Jan 1995 | A |
5390206 | Rein et al. | Feb 1995 | A |
5404934 | Carlson et al. | Apr 1995 | A |
5414618 | Mock et al. | May 1995 | A |
5429649 | Robin | Jul 1995 | A |
5439441 | Grimsley et al. | Aug 1995 | A |
5452197 | Rice | Sep 1995 | A |
5482209 | Cochran et al. | Jan 1996 | A |
5495887 | Kathnelson et al. | Mar 1996 | A |
5502618 | Chiou | Mar 1996 | A |
5506572 | Hills et al. | Apr 1996 | A |
5526422 | Keen | Jun 1996 | A |
5537026 | Estes | Jul 1996 | A |
5537106 | Mitsuhashi | Jul 1996 | A |
5544036 | Brown, Jr. et al. | Aug 1996 | A |
5566879 | Longtin | Oct 1996 | A |
5570837 | Brown et al. | Nov 1996 | A |
5579197 | Mengelt et al. | Nov 1996 | A |
5590831 | Manson et al. | Jan 1997 | A |
5603451 | Helander et al. | Feb 1997 | A |
5654813 | Whitworth | Aug 1997 | A |
5668535 | Hendrix et al. | Sep 1997 | A |
5671083 | Connor et al. | Sep 1997 | A |
5673850 | Uptegraph | Oct 1997 | A |
5679137 | Erdman et al. | Oct 1997 | A |
5682206 | Wehmeyer et al. | Oct 1997 | A |
5711785 | Maxwell | Jan 1998 | A |
5732691 | Maiello et al. | Mar 1998 | A |
5736795 | Zuehlke et al. | Apr 1998 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
5782296 | Mehta | Jul 1998 | A |
5801940 | Russ et al. | Sep 1998 | A |
5810908 | Gray et al. | Sep 1998 | A |
5818428 | Eisenbrandt et al. | Oct 1998 | A |
5833134 | Ho et al. | Nov 1998 | A |
5839654 | Weber | Nov 1998 | A |
5840094 | Osendorf et al. | Nov 1998 | A |
5862737 | Chin et al. | Jan 1999 | A |
5873519 | Beilfuss | Feb 1999 | A |
5886697 | Naughton et al. | Mar 1999 | A |
5899866 | Cyrus et al. | May 1999 | A |
5902183 | D'Souza | May 1999 | A |
5903139 | Kompelien | May 1999 | A |
5909429 | Satyanarayana et al. | Jun 1999 | A |
5915473 | Ganesh et al. | Jun 1999 | A |
5917141 | Naquin, Jr. | Jun 1999 | A |
5917416 | Read | Jun 1999 | A |
D413328 | Kazama | Aug 1999 | S |
5937942 | Bias et al. | Aug 1999 | A |
5947372 | Tiernan | Sep 1999 | A |
5950709 | Krueger et al. | Sep 1999 | A |
6009355 | Obradovich et al. | Dec 1999 | A |
6013121 | Chiu et al. | Jan 2000 | A |
6018700 | Edel | Jan 2000 | A |
6020881 | Naughton et al. | Feb 2000 | A |
6032867 | Dushane et al. | Mar 2000 | A |
D422594 | Henderson et al. | Apr 2000 | S |
6059195 | Adams et al. | May 2000 | A |
6081197 | Garrick et al. | Jun 2000 | A |
6084523 | Gelnovatch et al. | Jul 2000 | A |
6089221 | Mano et al. | Jul 2000 | A |
6101824 | Meyer et al. | Aug 2000 | A |
6104963 | Cebasek et al. | Aug 2000 | A |
6119125 | Gloudeman et al. | Sep 2000 | A |
6121875 | Hamm et al. | Sep 2000 | A |
6140987 | Stein et al. | Oct 2000 | A |
6141595 | Gloudeman et al. | Oct 2000 | A |
6145751 | Ahmed | Nov 2000 | A |
6149065 | White et al. | Nov 2000 | A |
6152375 | Robison | Nov 2000 | A |
6154081 | Pakkala et al. | Nov 2000 | A |
6167316 | Gloudeman et al. | Dec 2000 | A |
6190442 | Redner | Feb 2001 | B1 |
6192282 | Smith et al. | Feb 2001 | B1 |
6196467 | Dushane et al. | Mar 2001 | B1 |
6205041 | Baker | Mar 2001 | B1 |
6208331 | Singh et al. | Mar 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6236326 | Murphy | May 2001 | B1 |
6259074 | Brunner et al. | Jul 2001 | B1 |
6260765 | Natale et al. | Jul 2001 | B1 |
6285912 | Ellison et al. | Sep 2001 | B1 |
6288458 | Berndt | Sep 2001 | B1 |
6290140 | Pesko et al. | Sep 2001 | B1 |
D448757 | Okubo | Oct 2001 | S |
6315211 | Sartain et al. | Nov 2001 | B1 |
6318639 | Toth | Nov 2001 | B1 |
6321637 | Shanks et al. | Nov 2001 | B1 |
6330806 | Beaverson et al. | Dec 2001 | B1 |
6344861 | Naughton et al. | Feb 2002 | B1 |
6351693 | Monie et al. | Feb 2002 | B1 |
6356038 | Bishel | Mar 2002 | B2 |
6385510 | Hoog et al. | May 2002 | B1 |
6394359 | Morgan | May 2002 | B1 |
6397612 | Kernkamp et al. | Jun 2002 | B1 |
6398118 | Rosen et al. | Jun 2002 | B1 |
6448896 | Bankus et al. | Sep 2002 | B1 |
6449726 | Smith | Sep 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
D464948 | Vasquez et al. | Oct 2002 | S |
6460774 | Sumida et al. | Oct 2002 | B2 |
6466132 | Caronna et al. | Oct 2002 | B1 |
6478233 | Shah | Nov 2002 | B1 |
6490174 | Kompelien | Dec 2002 | B1 |
6502758 | Cottrell | Jan 2003 | B2 |
6507282 | Sherwood | Jan 2003 | B1 |
6512209 | Yano | Jan 2003 | B1 |
6518953 | Armstrong | Feb 2003 | B1 |
6518957 | Lehtinen et al. | Feb 2003 | B1 |
6546419 | Humpleman et al. | Apr 2003 | B1 |
6556899 | Harvey et al. | Apr 2003 | B1 |
6566768 | Zimmerman et al. | May 2003 | B2 |
6574537 | Kipersztok et al. | Jun 2003 | B2 |
6578770 | Rosen | Jun 2003 | B1 |
6580950 | Johnson et al. | Jun 2003 | B1 |
6581846 | Rosen | Jun 2003 | B1 |
6587739 | Abrams et al. | Jul 2003 | B1 |
6595430 | Shah | Jul 2003 | B1 |
6596059 | Greist et al. | Jul 2003 | B1 |
D478051 | Sagawa | Aug 2003 | S |
6608560 | Abrams | Aug 2003 | B2 |
6619055 | Addy | Sep 2003 | B1 |
6619555 | Rosen | Sep 2003 | B2 |
6621507 | Shah | Sep 2003 | B1 |
6622925 | Carner et al. | Sep 2003 | B2 |
6635054 | Fjield et al. | Oct 2003 | B2 |
6663010 | Chene et al. | Dec 2003 | B2 |
6685098 | Okano et al. | Feb 2004 | B2 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6726112 | Ho | Apr 2004 | B1 |
D492282 | Lachello et al. | Jun 2004 | S |
6771996 | Bowe et al. | Aug 2004 | B2 |
6783079 | Carey et al. | Aug 2004 | B2 |
6786421 | Rosen | Sep 2004 | B2 |
6789739 | Rosen | Sep 2004 | B2 |
6801849 | Szukala et al. | Oct 2004 | B2 |
6808524 | Lopath et al. | Oct 2004 | B2 |
6810307 | Addy | Oct 2004 | B1 |
6810397 | Qian et al. | Oct 2004 | B1 |
6824069 | Rosen | Nov 2004 | B2 |
6833990 | LaCroix et al. | Dec 2004 | B2 |
6842721 | Kim et al. | Jan 2005 | B2 |
6851621 | Wacker et al. | Feb 2005 | B1 |
6868293 | Schurr et al. | Mar 2005 | B1 |
6893438 | Hall et al. | May 2005 | B2 |
6934862 | Sharood et al. | Aug 2005 | B2 |
D512208 | Kubo et al. | Dec 2005 | S |
6973410 | Seigel | Dec 2005 | B2 |
7001495 | Essalik et al. | Feb 2006 | B2 |
D520989 | Miller | May 2006 | S |
7050026 | Rosen | May 2006 | B1 |
7055759 | Wacker et al. | Jun 2006 | B2 |
7080358 | Kuzmin | Jul 2006 | B2 |
7083109 | Pouchak | Aug 2006 | B2 |
7083189 | Ogata | Aug 2006 | B2 |
7084774 | Martinez | Aug 2006 | B2 |
7089088 | Terry et al. | Aug 2006 | B2 |
7108194 | Hankins, II | Sep 2006 | B1 |
7119431 | Hopper et al. | Oct 2006 | B1 |
7130719 | Ehlers et al. | Oct 2006 | B2 |
D531588 | Peh | Nov 2006 | S |
7133748 | Robinson | Nov 2006 | B2 |
D533515 | Klein et al. | Dec 2006 | S |
7146253 | Hoog et al. | Dec 2006 | B2 |
7152806 | Rosen | Dec 2006 | B1 |
7156318 | Rosen | Jan 2007 | B1 |
7163156 | Kates | Jan 2007 | B2 |
7188002 | Chapman, Jr. et al. | Mar 2007 | B2 |
D542236 | Klein et al. | May 2007 | S |
7212887 | Shah et al. | May 2007 | B2 |
7222800 | Wruck et al. | May 2007 | B2 |
7225054 | Amundson et al. | May 2007 | B2 |
7231605 | Ramakasavan | Jun 2007 | B1 |
7232075 | Rosen | Jun 2007 | B1 |
7240289 | Naughton et al. | Jul 2007 | B2 |
7244294 | Kates | Jul 2007 | B2 |
7261762 | Kang et al. | Aug 2007 | B2 |
7263283 | Knepler | Aug 2007 | B2 |
7274973 | Nichols et al. | Sep 2007 | B2 |
7302642 | Smith et al. | Nov 2007 | B2 |
7331187 | Kates | Feb 2008 | B2 |
7341201 | Stanimirovic | Mar 2008 | B2 |
7354005 | Carey et al. | Apr 2008 | B2 |
RE40437 | Rosen | Jul 2008 | E |
7419532 | Sellers et al. | Sep 2008 | B2 |
7435278 | Terlson | Oct 2008 | B2 |
7451606 | Harrod | Nov 2008 | B2 |
7452396 | Terlson et al. | Nov 2008 | B2 |
7476988 | Mulhouse et al. | Jan 2009 | B2 |
7489094 | Steiner et al. | Feb 2009 | B2 |
7496627 | Moorer et al. | Feb 2009 | B2 |
7500026 | Fukanaga et al. | Mar 2009 | B2 |
7505914 | McCall | Mar 2009 | B2 |
7542867 | Steger et al. | Jun 2009 | B2 |
7556207 | Mueller et al. | Jul 2009 | B2 |
7574283 | Wang et al. | Aug 2009 | B2 |
7584897 | Schultz et al. | Sep 2009 | B2 |
7594960 | Johansson | Sep 2009 | B2 |
7595613 | Thompson et al. | Sep 2009 | B2 |
7600694 | Helt et al. | Oct 2009 | B2 |
7604046 | Bergman et al. | Oct 2009 | B2 |
7617691 | Street et al. | Nov 2009 | B2 |
7642674 | Mulhouse et al. | Jan 2010 | B2 |
7644591 | Singh et al. | Jan 2010 | B2 |
7665019 | Jaeger | Feb 2010 | B2 |
7676282 | Bosley | Mar 2010 | B2 |
7692559 | Face et al. | Apr 2010 | B2 |
7707189 | Haselden et al. | Apr 2010 | B2 |
7713339 | Johansson | May 2010 | B2 |
7739282 | Smith et al. | Jun 2010 | B1 |
7755220 | Sorg et al. | Jul 2010 | B2 |
7770242 | Sell | Aug 2010 | B2 |
7793056 | Boggs et al. | Sep 2010 | B2 |
7814516 | Stecyk et al. | Oct 2010 | B2 |
7837676 | Sinelnikov et al. | Nov 2010 | B2 |
7838803 | Rosen | Nov 2010 | B1 |
7859815 | Black et al. | Dec 2010 | B2 |
7865252 | Clayton | Jan 2011 | B2 |
7941431 | Bluhm et al. | May 2011 | B2 |
7952485 | Schecter et al. | May 2011 | B2 |
7956719 | Anderson, Jr. et al. | Jun 2011 | B2 |
7957775 | Allen, Jr. et al. | Jun 2011 | B2 |
7984220 | Gerard et al. | Jul 2011 | B2 |
7992764 | Magnusson | Aug 2011 | B2 |
7992794 | Leen et al. | Aug 2011 | B2 |
8032254 | Amundson et al. | Oct 2011 | B2 |
8060470 | Davidson et al. | Nov 2011 | B2 |
8087593 | Leen | Jan 2012 | B2 |
8091796 | Amundson et al. | Jan 2012 | B2 |
8138634 | Ewing et al. | Mar 2012 | B2 |
8167216 | Schultz et al. | May 2012 | B2 |
8216216 | Warnking et al. | Jul 2012 | B2 |
8219249 | Harrod et al. | Jul 2012 | B2 |
8239066 | Jennings et al. | Aug 2012 | B2 |
8276829 | Stoner et al. | Oct 2012 | B2 |
8280556 | Besore et al. | Oct 2012 | B2 |
8314517 | Simard et al. | Nov 2012 | B2 |
8346396 | Amundson et al. | Jan 2013 | B2 |
8417091 | Kim et al. | Apr 2013 | B2 |
8437878 | Grohman et al. | May 2013 | B2 |
8511577 | Warren et al. | Aug 2013 | B2 |
8532190 | Shimizu et al. | Sep 2013 | B2 |
8554374 | Lunacek et al. | Oct 2013 | B2 |
8574343 | Bisson et al. | Nov 2013 | B2 |
8613792 | Ragland et al. | Dec 2013 | B2 |
8623117 | Zavodny et al. | Jan 2014 | B2 |
8629661 | Shimada et al. | Jan 2014 | B2 |
8680442 | Reusche et al. | Mar 2014 | B2 |
8704672 | Hoglund et al. | Apr 2014 | B2 |
8731723 | Boll et al. | May 2014 | B2 |
8734565 | Hoglund et al. | May 2014 | B2 |
8752771 | Warren et al. | Jun 2014 | B2 |
8768341 | Coutelou et al. | Jul 2014 | B2 |
8881172 | Schneider | Nov 2014 | B2 |
8886179 | Pathuri et al. | Nov 2014 | B2 |
8886314 | Crutchfield et al. | Nov 2014 | B2 |
8892223 | Leen et al. | Nov 2014 | B2 |
8902071 | Barton et al. | Dec 2014 | B2 |
9002523 | Erickson et al. | Apr 2015 | B2 |
9071145 | Simard et al. | Jun 2015 | B2 |
9080784 | Dean-Hendricks et al. | Jul 2015 | B2 |
9098279 | Mucignat et al. | Aug 2015 | B2 |
9206993 | Barton et al. | Dec 2015 | B2 |
9234677 | Clade | Jan 2016 | B2 |
9234877 | Hattersley et al. | Jan 2016 | B2 |
9261287 | Warren et al. | Feb 2016 | B2 |
9272647 | Gawade et al. | Mar 2016 | B2 |
9366448 | Dean-Hendricks et al. | Jun 2016 | B2 |
9374268 | Budde et al. | Jun 2016 | B2 |
9419602 | Tousignant et al. | Aug 2016 | B2 |
9628074 | Tousignant et al. | Apr 2017 | B2 |
9683749 | Bravard | Jun 2017 | B2 |
20010029585 | Simon et al. | Oct 2001 | A1 |
20010052459 | Essalik et al. | Dec 2001 | A1 |
20020011923 | Cunningham et al. | Jan 2002 | A1 |
20020022991 | Sharood et al. | Feb 2002 | A1 |
20020023916 | Geiger et al. | Feb 2002 | A1 |
20020082746 | Schubring et al. | Jun 2002 | A1 |
20020092779 | Essalik et al. | Jul 2002 | A1 |
20020181251 | Kompelien | Dec 2002 | A1 |
20030033230 | McCall | Feb 2003 | A1 |
20030034897 | Shamoon et al. | Feb 2003 | A1 |
20030034898 | Shamoon et al. | Feb 2003 | A1 |
20030040279 | Ballweg | Feb 2003 | A1 |
20030060821 | Hall et al. | Mar 2003 | A1 |
20030073891 | Chen et al. | Apr 2003 | A1 |
20030103075 | Rosselot | Jun 2003 | A1 |
20030177012 | Drennan | Sep 2003 | A1 |
20040262410 | Hull | Dec 2004 | A1 |
20050083168 | Breitenbach | Apr 2005 | A1 |
20050270151 | Winick | Dec 2005 | A1 |
20060052905 | Pfingsten et al. | Mar 2006 | A1 |
20060112700 | Choi et al. | Jun 2006 | A1 |
20060196953 | Simon et al. | Sep 2006 | A1 |
20060242591 | Van Dok et al. | Oct 2006 | A1 |
20070013534 | DiMaggio | Jan 2007 | A1 |
20070045429 | Chapman, Jr. et al. | Mar 2007 | A1 |
20070114293 | Gugenheim | May 2007 | A1 |
20070114295 | Jenkins et al. | May 2007 | A1 |
20070114848 | Mulhouse et al. | May 2007 | A1 |
20070115135 | Mulhouse et al. | May 2007 | A1 |
20070119961 | Kaiser | May 2007 | A1 |
20070163844 | Jahkonen | Jul 2007 | A1 |
20070241203 | Wagner et al. | Oct 2007 | A1 |
20070277061 | Ashe | Nov 2007 | A1 |
20070289731 | Deligiannis et al. | Dec 2007 | A1 |
20070290924 | McCoy | Dec 2007 | A1 |
20070296260 | Stossel | Dec 2007 | A1 |
20080015740 | Osann | Jan 2008 | A1 |
20090143880 | Amundson et al. | Jun 2009 | A1 |
20090154206 | Fouquet et al. | Jun 2009 | A1 |
20090165644 | Campbell | Jul 2009 | A1 |
20090167265 | Vanderzon | Jul 2009 | A1 |
20090206657 | Vuk et al. | Aug 2009 | A1 |
20100026379 | Simard et al. | Feb 2010 | A1 |
20100084482 | Kennedy et al. | Apr 2010 | A1 |
20100204834 | Comerford et al. | Aug 2010 | A1 |
20100225267 | Elhalis | Sep 2010 | A1 |
20100314458 | Votaw et al. | Dec 2010 | A1 |
20110073101 | Lau et al. | Mar 2011 | A1 |
20110185895 | Freen | Aug 2011 | A1 |
20120235490 | Lee et al. | Sep 2012 | A1 |
20120323377 | Hoglund et al. | Dec 2012 | A1 |
20130158714 | Barton et al. | Jun 2013 | A1 |
20130158715 | Barton et al. | Jun 2013 | A1 |
20130158717 | Zywicki et al. | Jun 2013 | A1 |
20130158718 | Barton et al. | Jun 2013 | A1 |
20130158720 | Zywicki et al. | Jun 2013 | A1 |
20130213952 | Boutin et al. | Aug 2013 | A1 |
20130238142 | Nichols et al. | Sep 2013 | A1 |
20130245838 | Zywicki et al. | Sep 2013 | A1 |
20130261807 | Zywicki et al. | Oct 2013 | A1 |
20130308362 | Karlsson et al. | Nov 2013 | A1 |
20140062672 | Gudan et al. | Mar 2014 | A1 |
20140312131 | Tousignant et al. | Oct 2014 | A1 |
20140312696 | Tousignant et al. | Oct 2014 | A1 |
20140312697 | Landry et al. | Oct 2014 | A1 |
20150001929 | Juntunen et al. | Jan 2015 | A1 |
20150001930 | Juntunen et al. | Jan 2015 | A1 |
20150002165 | Juntunen | Jan 2015 | A1 |
20150115045 | Tu et al. | Apr 2015 | A1 |
20150144706 | Robideau et al. | May 2015 | A1 |
20150145347 | Kim et al. | May 2015 | A1 |
20150370265 | Ren et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
1035448 | Jul 1978 | CA |
3334117 | Apr 1985 | DE |
0070414 | Jan 1983 | EP |
0434926 | Aug 1995 | EP |
0678204 | Mar 2000 | EP |
0985994 | Mar 2000 | EP |
1033641 | Sep 2000 | EP |
1143232 | Oct 2001 | EP |
1074009 | Mar 2002 | EP |
2138919 | Dec 2009 | EP |
2491692 | Apr 1982 | FR |
2711230 | Apr 1995 | FR |
9711448 | Mar 1997 | WO |
9739392 | Oct 1997 | WO |
0043870 | Jul 2000 | WO |
0152515 | Jul 2001 | WO |
0179952 | Oct 2001 | WO |
0223744 | Mar 2002 | WO |
2010021700 | Feb 2010 | WO |
Entry |
---|
Gentex Corporation, 9000 Series, Photoelectric Type Single Station/Multi-Station Smoke Alarms AC Powered With Battery Backup, Installation Instructions—Owner's Information, pp. 9-1 to 9-6, Jan. 1, 1993. |
Harris et al., “Optimizing Memory Transactions,” Microsoft Research Havard University, 12 pages, May 25, 2012. |
Honeywell Brivis Deluxe Programmable Thermostat, pp. 1-20, 2002. |
Honeywell Brivis T8602C Chronotherm IV Deluxe Programmable Thermostats, Installation Instructions, pp. 1-12, 2002. |
Honeywell CT8602C Professional Fuel Saver Thermostat, pp. 1-6, 1995. |
Honeywell Electronic Programmable Thermostat, Owner's Guide, pp. 1-20, 2003. |
Honeywell Electronic Programmable Thermostats, Installation Instructions, pp. 1-8, 2003. |
Honeywell News Release, “Honeywell's New Sysnet Facilities Integration System for Boiler Plant and Combustion Safety Processes,” 4 pages, Dec. 15, 1995. |
Honeywell T8002 Programmable Thermostat, Installation Instructions, pp. 1-8, 2002. |
Honeywell T8602A,B,C,D and TS8602A,C Chronotherm III Fuel Saver Thermostats, Installation Instructions, pp. 1-12, 1995. |
Honeywell T8602D Chronotherm IV Deluxe Programmable Thermostats, Installation Instructions, pp. 1-12, 2002. |
Honeywell TH8000 Series Programmable Thermostats, Owner's Guide, pp. 1-44, 2004. |
Honeywell, “Excel Building Supervisor-Integrated R7044 and FS90 Ver. 2.0,” Operator Manual, 70 pages, Apr. 1995. |
Honeywell, “Installation Guide: Wireless Entry/Exit Remote,” 12 pages, 2011. |
Honeywell, “Introduction of the S7350A Honeywell WebPAD Information Appliance,” Home and Building Control Bulletin, 2 pages, Aug. 29, 2000; Picture of WebPad Device with touch screen, 1 Page; and screen shots of WebPad Device, 4 pages. |
Honeywell, “RedLINK™ Wireless Comfort Systems,” RedLINK Wireless Technology, 8 pages, Aug. 2011. |
Honeywell, “Total Connect Online Help Guide,” Revision A, 800-02577-TC, Mar. 2010. |
Honeywell, “Total Connect User Guide,” Revision B, 34 pages, May 15, 2012. |
Honeywell, “VisionPRO® 8000 Thermostats,” downloaded from http://yourhome.honeywell.com, 2 pages, May 24, 2012. |
Honeywell, “W7006A Home Controller Gateway User Guide,” 31 pages, Jul. 2001. |
Honeywell, MagicStat® CT3200 Programmable Thermostat, Installation and Programming Instructions, pp. 1-24, 2001. |
Honeywell, Wireless Entry/Exit Remote, Operating Manual, 9 pages, 2011. |
http://hunter-thermostats.com/hunter_programmable_thermostats.html, Hunter Thermostat 44668 Specifications, and 44758 Specifications, 2 pages, Printed Jul. 13, 2011. |
http://www.cc.gatech.edu/computing/classes/cs6751_94_fall/groupc/climate-2/node1.html, “Contents,” 53 pages, printed Sep. 20, 2004. |
http://www.ritetemp.info/rtMenu_13.html, Rite Temp 8082, 6 page, printed Jun. 20, 2003. |
http://www.thermostatsales.com, Robertshaw, “9610 Digital Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robertshaw, “9700 Deluxe Programmable Thermostat” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robertshaw, “9710 Deluxe Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robertshaw, “9720 Deluxe Programmable Thermostat,”3 pages, printed Jun. 17, 2004. |
Hunter, “44200/44250,” Owner's Manual, 32 pages, prior to Jul. 7, 2004. |
Hunter, “44300/44350,”Owner's Manual, 35 pages, prior to Jul. 7, 2004. |
Hunter, “Auto Saver 550”, Owner's Manual Model 44550, 44 pages, prior to Jul. 7, 2004. |
Hunter, “Model 44758 Remote Sensor,”Owner's Manual, 2 pages, Revision Sep. 4, 2008. |
Install Guide for Ritetemp Thermostat 8082, 6 pages, 2002. |
Invensys™, “9700i 9701i 9715i 9720i Deluxe Programmable Thermostats,”User's Manual, pp.1-28, prior to Jul. 7, 2004. |
Inventek, “Inventek Systems, ISM4319-M3X-L44-X Embedded Serial-to-Wi-Fi Module eS-WiFi 802.11 b/g/n Data Sheet”, ,Inventek, “Inventek Systems, ISM4319-M3X-L44-X Embedded Serial-to-Wi-Fi Module eS-WiFi 802.11 b/g/n Data Sheet”, accessed from http://www.inventeksys.com/wp-content/uplo . . . Feb. 6, 2012. |
Larsson, “Battery Supervision in Telephone Exchanges,”Ericsson Components AB Sweden, 5 pages, Downloaded May 5, 2012. |
Lennox, “Network Control Panel (NCP),” User's Manual, 18 pages, Nov. 1999. |
Lennox, “Prodigy Control System,” Lennox Industries, 4 pages, May 25, 2012. |
Logitech, “Harmony 880 Remote User Manual,” v. 1, pp. 1-15, prior to Nov. 30, 2007. |
Lux ELV1 Programmable Line Voltage Thermostat, Installation Instructions, 3 pages, prior to Jul. 7, 2004. |
Lux TX500 Series Smart Temp Electronic Thermostat, 3 pages, prior to Jul. 7, 2004. |
Lux TX9000 Installation, 3 pages, prior to Apr. 21, 2005. |
Lux, “9000RF Remote Instructions,” 2 pages, prior to Nov. 30, 2007. |
Lux, “511 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
Lux, “600 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
Lux, “602 Series Multi-Stage Programmable Thermostat,” Owner's Manual, 2 pages, prior to Jul. 7, 2004. |
Lux, “605/2110 Series Programmable Heat Pump Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
Lux, “700/9000 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
Lux, “PSPH521 Series Programmable Heat Pump Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
White-Rodgers, Comfort-Set 90 Series Premium, 4 pages, prior to Apr. 21, 2005. |
www.icmcontrols.com, Simplecomfort, SC3000 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004. |
www.icmcontrols.com, Simplecomfort, SC3001 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004. |
www.icmcontrols.com, Simplecomfort, SC3006 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004. |
www.icmcontrols.com, Simplecomfort, SC3201 2 Stage Heat Pump Manual Changeover, 1 page, prior to Jul. 7, 2004. |
www.icmcontrols.com, Simplecomfort, SC3801 2 Stage Heat/2 Stage Cool 2 Stage Heat Pump/Audio Changeover, 1 page, prior to Jul. 7, 2004. |
Cirrus Logic, Inc., “CS1501 Digital Power Factor Correction Control IC,” 16 pages, 2012. |
International Search Report for Corresponding Application No. PCT/US2014/044229, dated Oct. 13, 2014. |
U.S. Appl. No. 14/300,232, filed Jun. 9, 2014. |
Hendon Semiconductors, “OM1894 Dual Sensing Precision Triac Control,” Product Specification, Rev. 2.0, 21 pages, Apr. 19, 2007. |
Honeywell, “System Installation Guide: Important Instructions,” Honeywell International Inc., 25 pages, 2011. |
http://www.dimplex.com/en/home_heating/linear_convector_baseboards/products/lpc_series/linear_proportional_convector, Dimplex Coporation, “Linear Convector LPC Series,” 2 pages, May 2011. |
http://www.enernetcorp.com/, Enernet Corporation, “Wireless Temperature Control” 1 page, 2011. |
http://www.enernetcorp.com/t9000-wireless-thermostat.html, Enernet Corporation, “T9000 Series Wireless Fan Coil Thermostat,” Product Brochure, 2 pages, 2011. |
http://www.enocean-alliance.org/en/products/regulvar_rw-ssr347-15a/, Regulvar Corporation, “RW-SSR347-15A, Relais sans fil à semi-conducteurs” 3 pages, Aug. 8, 2009. |
http://www.enocean-alliance.org/en/products/regulvar_rw-tp01/, Regulvar Corporation, “RW-TP01, Capteur de température sans fil” 3 pages, Aug. 9, 2009. |
http://www.forwardthinking.honeywell.com/products/wireless/focus_pro/focus_pro_feature_html, Honeywell corporation, “Wireless FocusPRO® pages”, 2 pages, 2011. |
Signetics Linear Products, “TDA1024 Zero Crossing Triac Trigger,” Product Specification, 14 pages, Sep. 1985. |
“RCS X10 Thermostat Plug-in for HomeSeer Beta Version 2.0.105,” 25 pages, prior to Sep. 7, 2011. |
“CorAccess Systems/In Home,” http://web.archive.org/web20011212084427/www.coraccess.com/home.html, 1 pages, copyright 2001, printed Aug. 19, 2004. |
“HAI Company Background,” http://www.homeauto.com/AboutHAI/abouthai_main.htm, 2 pages, printed Aug. 19, 2004. |
“High-tech options take hold in new homes—200-08-28—Dallas Business Journal,” http://bizjournals.com/dallas/stories/2000/08/28/focus4, 3 pages, dated Aug. 28, 2000, printed Aug. 19, 2004. |
“Home Toys Review—Touch Linc”, http://www.hometoys.com/htinews/aug99/reviews/touchlinc/touchlinc.htm, 3 pages, dated Aug. 1999, printed Aug. 20, 2004. |
“HTI News Release,” http://www.hometoys.com/htinews/apr99/releases/ha101.htm, 3 pages, Apr. 1999. |
“Mark of Excellence Award Finalist Announced,” http://64.233.167.104/search?Q=cache:ciOA2YtYaBIJ:www.hometoys.com/releases/mar. . . , 6 pages, Leopard Touchscreen on p. 2, dated prior to Mar. 4, 2000, printed Aug. 20, 2004. |
“Product Review—Philips Pronto Remote Control,” http://hometheaterhifi.com/volume_6_2/philipsprontoremotecontrol.html, 5 pages, dated May 1999, printed Aug. 20, 2004. |
“RC X10 Automation Forum: Control your Heating and Cooling System with Pronto(1/1),” http://www.remotecentral.com/cgi-bin/mboard/rc-x10/thread.cgi?12, 2 pages, dated Apr. 23, 1999, printed Aug. 20, 2004. |
“Spotlight on integrated systems,” Custom Builder, vol. 8, No. 2, p. 66(6), Mar.-Apr. 1993. |
“Vantage Expands Controls for Audio/Video, HVAC and Security,” http://www.hometoys.com/htinews/aug99/releases/vantage03.htm, 2 pages, dated Aug. 3, 1999, printed Aug. 20, 2004. |
ADI, “Leopard User Manual,” 93 pages, 2001. |
Adicon 2500, “The Automator,” 4 pages, Oct.-Dec. 2000. |
ADT Security Services, “iCenter Advanced User Interface 8142ADT,” Installation and Setup Guide, 4 pages, May 2001; First Sale Feb. 2001. |
AED Electronics, Inc., “Presenting Climatouch the Most Innovative Thermostat in the World!,” 2 pages, prior to Nov. 30, 2007. |
Andrews et al., “Clicky: User-Centric Input for Active Spaces,” 17 pages, Aug. 2004. |
Aprilaire Electronic Thermostats Models 8344, 8346, 8348, 8363, 8365, 8366 Operating Instructions, 8 pages, 2003. |
Aube Technologies, Electronic Thermostat for Heating System Model TH135-01, 5 pages, Aug. 14, 2001. |
Aube Technologies, TH140-28 Electronic Programmable Thermostat, Installation Instructions and User Guide, pp. 1-4, Jan. 22, 2004. |
AutomatedBuildings.com Article—“Thin Client” Solutions, “Pressure, Air Flow, Temperature, Humidity & Valves,” Dwyer Instruments, Inc., 5 pages, printed Sep. 20, 2004. |
Blake et al., “Seng 310 Final Project Demo Program” Illustration, 3 pages, Apr. 6, 2001. |
Blake et al., “Seng 310 Final Project” Report, dated Apr. 6, 2001. |
Blister Pack Insert from a Ritetemp 8082 Touch Screen Thermostat Product, 2 pages, 2002. |
Braeburn Model 3000 Owner's Manual, pp. 1-13, 2001. |
Braeburn Model 5000 Owner's Manual, pp. 1-17, 2001. |
BRK Electronics Maximum Protection Plus Ultimate Convenience Smoke Alarm, 24 pages, Sep. 2000. |
BRK First Alert, User's Manual, Smoke and Fire Alarms, pp. 1-7, Nov. 2002. |
Business Wire, “MicroTouch Specialty Products Group to Capitalize on Growing Market for Low-Cost Digital Matrix Touchscreens,” p. 1174 (2 pages), Jan. 6, 1999. |
Cardio Manual, available at http://www.secant.ca/En/Documentation/Cardio2é-Manual.pdf, Cardio Home Automation Inc., 55 pages, printed Sep. 28, 2004. |
Cardio, by Secant; http://www.hometoys.com/htinews/apr98/reviews/cardio.htm, “HTINews Review,” Feb. 1998, 5 pages, printed Sep. 14, 2004. |
Carrier Microelectronic Programmable Thermostat Owner's Manual, pp. 1-24, May 1994. |
Carrier TSTATCCRF01 Programmable Digital Thermostat, pp. 1-21, prior to Apr. 21, 2005. |
Carrier, “Edge Performance Programmable Owner's Manual,” 64 pages, 2007. |
Carrier, “Programmable Dual Fuel Thermostats,” Installation, Start-Up & Operating Instructions, pp. 1-12, Oct. 1998. |
Carrier, “Programmable Thermostats,” Installation, Start-Up & Operating Instructions, pp. 1-16, Sep. 1998. |
Carrier, “Standard Programmable Thermostat,” Homeowner's Manual, pp. 1-8 pages, 1998. |
Carrier, “Thermidistat Control,” Installation, Start-Up, and Operating Instructions, pp. 1-12, Aug. 1999. |
Carrier, “Comfort Programmable Owner's Manual,” Carrier Touch-N-Go, Catalog No. 0M-TCPHP-4CA 60 pages, 2010. |
Climatouch, User Manual, Climatouch CT03TSB Thermostat, Climatouch CT03TSHB Thermostat with Humidity Control, Outdoor UHF Temperature Transmitter 217S31, 19 pages, Printed Sep. 15, 2004. |
CorAccess, “Companion 6,” User Guide, pp. 1-20, Jun. 17, 2002. |
Danfoss RT51/51RF & RT52/52RF User Instructions, 2 pages, Jun. 2004. |
DeKoven et al., “Designing Collaboration in Consumer Products,” 2 pages, 2001. |
DeKoven et al., “Measuring Task Models in Designing Intelligent Products,” 2 pages, Jan. 13-16, 2002. |
DESA Heating Products, “Wireless Hand-Held Remote Control Sets Models (C) GHRCB and (C)GHRCTB, Operating Instructions,” 4 pages, May 2003. |
Domotique Secant Home Automation—Web Page, available at http://www.secant.ca/En/Company/Default.asp, 1 page, printed Sep. 28, 2004. |
Emme Core User Guide, Version 1.1, 47 pages, Jan. 2011. |
Firex Smoke Alarm, Ionization Models AD, ADC Photoelectric Model Pad, 4 pages, prior to Apr. 21, 2005. |
Fluke, “561 HVAC Pro” Infrared Thermometer User's Manual, 22 pages, Downloaded May 24, 2012, Jan. 23, 2018. |
Freudenthal et al., “Communicating Extensive Smart Home Functionality to Users of All Ages: the Design of a Mixed-Initiative Multimodal Thermostat-Interface,” pp. 34-39, Mar. 12-13, 2001. |
Gentex Corporation, HD135, 135° Fixed Temperature Heat Detector AC Pwered, 120V, 60Hz With Battery Backup, Installation Instructions—Owner's Information, pp. 1-5, Jun. 1, 1998. |
Lux, “TX1500 Series Smart Temp Electronic Thermostat,” Owner's Manual, 6 pages, prior to Jul. 7, 2004. |
Metasys, “HVAC Pro for Windows User's Manual,” 308 pages, 1998. |
Mounting Template for Ritetemp Thermostat 8082, 1 page, 2002. |
OMRON Electronic Components, LLC, “Micro Tilt Sensor D6B,” Cat. No. B02WAD1, 2 pages, Jun. 2002. |
OMRON Electronic Components, LLC, “Micro Tilt Sensor D6B,” Cat. No. JB301-E3-01, 6 pages, Mar. 2005. |
Operation Manual for Ritetemp Touch Screen Thermostat 8082, 8 pages, 2002. |
PG&E, “SmartAC Thermostat Programming Web Site Guide,” 2 pages, prior to Sep. 7, 2011. |
Proliphix, “Web Enabled IP Thermostats, Intelligent HVAC Control,” Proliphix Inc., 2 pages, on or before Aug. 28, 2004. |
Proliphix, “Web Enabled IP Thermostats, Ultimate in Energy Efficiency!” Proliphix Inc., 2 pages, on or before Aug. 28, 2004. |
Proliphix, Inc., “NT10e & NT20e,” 54 pages, on or before Aug. 30, 2005. |
Quick Start Guide for Ritetemp Thermostat 8082, 1 page, 2002. |
Remote Control Power Requirement for Ritetemp Thermostat 8082, 1 page, 2002. |
Ritetemp Operation 8029, 3 pages, Jun. 19, 2002. |
Ritetemp Operation 8050, 5 pages, Jun. 26, 2002. |
Ritetemp Operation 8085, pp. 1-6, prior to Apr. 21, 2005. |
Saravanan et al, “Recontigurable Wireless Interface for Networking Sensors,” IJCSNS International Journal of Computer Science and Network Security, vol. 8 No. 7, pp. 270-276. Revised Jul. 20, 2008. |
Screenshot of http://lagotek.com/index.html?currentSection=TouchIt, Lagotek, 1 page, prior to Mar. 29, 2012. |
Sealed Unit Parts Co., Inc., Supco & CTC Thermostats . . . loaded with features, designed for value!, 6 pages, prior to Apr. 21, 2005. |
Sharp Corporation, “GP1S036HEZ Phototransistor Output, Transmissive Photointerrupter with Tilt Direction (4-Direction) Detecting,” pp. 1-11, Oct. 3, 2005. |
Totaline Model P474-1035 Owner's Manual Programmable 5-2 Day Digital Thermostat, pp. 1-21, Apr. 2003. |
Totaline Star CPE230RF, Commercial Programmable Thermostat Wireless Transmitter, Owner's Manual, pp. 1-16, Oct. 1998. |
Totaline Star P/N P474-0130 Non-Programmable Digital Thermostat Owner's Manual, pp. 1-22, prior to Apr. 21, 2005. |
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P374-1100, 24 pages, Apr. 2001. |
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P374-1100FM, 23 pages, Nov. 1998. |
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P474-1050, 21 pages, Nov. 1998. |
Totaline, 2001. “Intellistat Combination Temperature and Humidity Control,” Owner's Manual P/N P374-1600, 25 pages, Jun. 2001. |
Totaline, “P/N P374-0431 Thermostat Remote Control and Receiver,” Owner's Manual, 11 pages, prior to Nov. 30, 2007. |
Totaline, “P474-1100RF, P474-1100REC Wireless Thermostat,” 1 page, prior to Nov. 30, 2007. |
Totaline, “Programmable Thermostat Configurable for Advanced Heat Pump or Dual Fuel Operation,” Owner's Manual P/N P374-1500, 24 pages, Jun. 1999. |
Totaline, “Wireless Remote Sensor, Model P474-0401-1RF/REC,” 2 pages, prior to Nov. 30, 2007. |
Totaline, “Instructions P/N P474-1010”, Manual, 2 pages, Dec. 1998. |
Totaline, “Programmable Thermostat”, Homeowner's Guide, 27 pages, Dec. 1998. |
Totaline, “Wireless Programmable Digital Thermostat,” Owner's Manual 474-1100RF, 22 pages, 2000. |
Trane, “System Programming, Tracer Summit Version 14, BMTW-SVP01D-EN,” 623 pages, 2002. |
Trane, “Wireless Zone Sensor. Where Will Wireless Technology Take You?,” 4 pages, Feb. 2006. |
Travis Industries, Remote Fireplace Thermostat, Part #99300651, 6 pages, printed Feb. 3, 2003. |
Trouble Shooting Guide for Ritetemp Thermostat 8082, 1 page, 2002. |
Visor Handheld User Guide, 280 pages, Copyright 1999-2000. |
Warmly Yours, “Model TH111GFCI-P (120 VAC),” Manual, pp. 1-4, prior to Jul. 7, 2004. |
White-Rodgers 1F80-224 Programmable Electronic Digital Thermostat, Installation and Operation Instructions, 8 pages, prior to Apr. 21, 2005. |
White-Rodgers Comfort-Set III Thermostat, pp. 1-44, prior to Jul. 7, 2004. |
White-Rodgers Installation Instructions for Heating & Air Conditioning IF78 5/2 Day Programmable Thermostat, 7 pages, prior to Jul. 7, 2004. |
White-Rodgers Installation Instructions for Heating & Air Conditioning IF78 Non-Programmable Thermostat, 6 pages, prior to Apr. 21, 2005. |
White-Rodgers, “Installation Instructions for Heating & Air Conditioning IF72 5/2 Day Programmable Heat Pump Thermostat,” 8 pages, prior to Jul. 7, 2004. |
White-Rodgers, “Comfort-Set 90 Series Thermostat,” Manual, pp. 1-24, prior to Jul. 7, 2004. |
White-Rodgers, 1F80-240 “(for Heating Only systems) Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004. |
White-Rodgers, 1F80-241 “Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 6 pages, prior to Jul. 7, 2004. |
White-Rodgers, 1F80-261 “Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004. |
White-Rodgers, 1F81-261 “Programmable Electronic Digital Multi-Stage Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004. |
White-Rodgers, 1F82-261 “Programmable Electronic Digital Heat Pump Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004. |
Number | Date | Country | |
---|---|---|---|
20170307231 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14329357 | Jul 2014 | US |
Child | 15624673 | US |