Lighting devices are increasing employing light emitting diodes (LEDs) to generate light. The lighting devices may be used for warning lights, flood lights, spotlights, or the like. Such lighting devices may be mounted on structures or vehicles. Or, such lighting devices may be hand held.
LEDs may be fabricated so as to emit visible light, such as white light or colored light. Some LEDs may be configured to emit non-visible light, such as infrared (IR), ultra-violet (UV) or the like.
Light emitted by the LEDs may be directed in a desired direction using reflectors. Additionally, or alternatively, the light emitted by the LEDs may be conditioned and/or focused using a lens or the like.
Some lighting devices may use different types of LEDs at different times such that different light may be separately emitted. For example, a plurality of red colored LEDs and yellow colored LEDs may be disposed in a single lighting device. When the red colored LEDs are on, then red colored light is emitted from the lighting device. At other times, when the yellow colored LEDs are on (and the red colored LEDs are off), then yellow colored light is emitted from the lighting device.
Size of the lighting device is, in some applications, very important. Accordingly, it is desirable to have a relatively smaller LED-based lighting device that is configured to emit different types of light. However, the reflectors and/or lens for each individual LED are typically larger than the LED itself. Accordingly, overall size of the lighting device is, to some extent, limited by the reflectors and/or lens associated with individual LEDs.
Accordingly, there is a continuing need to reduce size of lighting devices that emit different types of light from different types of LEDs.
An exemplary embodiment emits different types of light from a plurality of first LEDs and a plurality of second LEDs. An exemplary embodiment has a LED portion with the plurality of first LEDs and plurality of second LEDs arranged in a first ring centered about a central axis, and a rotatable portion with a plurality of light conditioning elements arranged in a second ring centered about the central axis. Each light conditioning element receives and conditions light from one of the plurality of first LEDs when the light conditioning element is in a first position. Each light conditioning element receives and conditions light from one of the plurality of second LEDs when the light conditioning element is in a second position. The light conditioning elements may be reflector cups or may be lens.
Preferred and alternative embodiments are described in detail below with reference to the following drawings:
Embodiments of the multiple mode light emitting device 100 may be implemented using different types of LED devices, or other types of relatively small light emitting devices, that are configured to emit different types of light. Each type of LEDs (or other light emitting devices) emit light of different frequencies in the visible or non-visible spectrum. Thus, when the different types of LEDs (or other light emitting devices) emit visible light, the emitted light will be of a different color. As another example, infrared (IR) or ultraviolet (UV) light may be emitted from the multiple mode light emitting device 100.
A LED portion holds a plurality of LEDs arranged in one or more concentric circles about a central axis of the multiple mode light emitting device 100. At least one rotatable portion is included with a plurality of light conditioning elements also arranged in corresponding rings centered about the central axis of the multiple mode light emitting device 100. The ring of the plurality of light conditioning elements have the same diameter as the ring of alternating LEDs. When the rotatable portion is in a first position, each light conditioning element receives and conditions light from one of a plurality of first LEDs of the same type. When the rotatable portion is in rotated to a second position, each light conditioning element receives and conditions light from one of a plurality of second LEDs of a different type.
The LED portion 104 comprises a plurality of first LEDs 110 operating in an “on” state (conceptually illustrated as black shaded circles) and a plurality of second LEDs 112 operating in an “off” state (conceptually illustrated as grey shaded circles). The plurality of first LEDs 110 emit a first type of light. The plurality of second LEDs 112 emit a second type of light that is different from the type of light emitted by the plurality of first LEDs 110. The emitted light may be visible light that is white or is colored. The emitted light may be non-visible, such as IR or UV light.
In the exemplary embodiment illustrated in
The reflector portion 106 comprises a plurality of reflector cups 116 that receive and condition the light by reflecting light is a desired direction and/or focusing the light. The number of reflector cups 116 corresponds to the number of the plurality of first LEDs 110 (and consequently, corresponds to the number of plurality of second LEDs 112). The plurality of reflector cups 116 are arranged in concentric rings having the same diameter as the concentric rings, 114a, 114b and 114c such that when the reflector portion 106 is in a first position, each of the reflector cups 116 are oriented behind a corresponding one of the plurality of first LEDs 110. When the reflector portion 106 is rotated about a central axis 120 to a second position, each of the reflector cups 116 are oriented behind a corresponding one of the plurality of second LEDs 112.
In the example embodiment illustrated in
The optional lens portion 108 comprises a plurality of lens 118 that receive and condition the light. For example, the lens 118 may focus light, filter the light, modify a polarity of the light, or the like. The number of lens 118 corresponds to the number of the plurality of first LEDs 110 (and consequently, corresponds to the number of plurality of second LEDs 112). The plurality of lens 118 are arranged in concentric rings having the same diameter as the concentric rings, 114a, 114b and 114c such that when the lens portion 108 is in a first position, each of the lens 118 are oriented in front of a corresponding one of the plurality of first LEDs 110. When the lens portion 108 is rotated about the central axis 120 to a second position, each of the lens 118 are oriented in front of a corresponding one of the plurality of second LEDs 112.
For clarity of conceptually describing and illustrating the example embodiment of the multiple mode light emitting device 100, the reflector cups 116 are illustrated as having a larger diameter than the diameter of the lens 118. The diameters of the reflector cups 116 and the lens 118 may be of any suitable size. Further, the reflector cups 116 and or lens 118 may have any suitable shape and/or orientation. In the example embodiment, the plurality of first LEDs 110, the plurality of second LEDs 112, the reflector cups 116 and the lens 118 are illustrated in a planar orientation (flat) orthogonal to a horizontal axis 122 of the multiple mode light emitting device 100.
When operating in a first mode, all of the plurality of first LEDs 110 are powered (“on”) and emit a first type of light 124. If the optional reflector portion 106 is included, the reflector portion 106 is oriented in the first position so that each of the reflector cups 116 are disposed below the powered plurality of first LEDs 110. Similarly, if the optional lens portion 108 is included, the lens portion 108 is oriented in the first position so that each of the lens 118 are disposed in front of the powered plurality of first LEDs 110. For example, the reflector cup 116a and the lens 118a condition the output light 124a emitted by the LED 110a.
In
In
The plurality of first LEDs 110 and the plurality of second LEDs 112 are arranged in an alternating fashion along the concentric rings 114a, 114b, 114c. In the exemplary embodiment with three concentric rings, the plurality of first LEDs 110 are arranged along a series of radial lines 302, wherein each one of the plurality of first LEDs 110 are located at the intersection of its respective concentric ring and its respective radial line 302. Similarly, the plurality of second LEDs 112 are arranged along a series of radial lines 304, wherein each one of the plurality of second LEDs 112 are located at the intersection of its respective concentric ring and its respective radial line 304. Each of the radial lines 302, extending outward from and orthogonal to the central axis 120, are separated from a corresponding adjacent radial line 304 by an angular displacement, shown as Ø°.
When the plurality of first LEDs 110 are operating in the “on” state, the reflector cups 116 and/or the lens 118 are oriented along the radial lines 304 associated with the plurality of first LEDs 110, as illustrated in
In operation, when the plurality of second LEDs 112 are powered on (and the plurality of first LEDs 110 are powered off), the reflector portion 106 is rotated about the central axis 120 of the multiple mode light emitting device 100 by the angular displacement Ø° to move from its first position to its second position. Similarly, the lens portion 108 is rotated about the central axis 120 of the multiple mode light emitting device 100 by the angular displacement Ø° to move from its first position to its second position. For clarity, the reflector portion 106 and/or the lens portion 108 are illustrated as being rotated in a clockwise direction. Alternatively, or additionally, the reflector portion 106 and/or the lens portion 108 are illustrated as being rotated in a counterclockwise direction.
When the plurality of first LEDs 110 are next powered on (and the plurality of second LEDs 112 are powered off), the reflector portion 106 is rotated about the central axis 120 of the multiple mode light emitting device 100 by the angular displacement Ø° to move from its second position back to its first position. Similarly, the lens portion 108 is rotated about the central axis 120 of the multiple mode light emitting device 100 by the angular displacement Ø° to move from its second position back to its first position.
In some embodiments, the angular displacement (Ø°) between all adjacent radial lines are the same. In such embodiments, rotation of the reflector portion 106 and/or the lens portion 108 may continue each time in the clockwise direction (or in the counterclockwise direction) where the amount of angular rotation at each increment equals the angular displacement (Ø°).
In some embodiments, the reflector portion 106 and/or the lens portion 108 is a servomotor-based device. Accordingly, the controller and actuator unit 502 may adjust position of the reflector portion 106 and/or the lens portion 108 to any desired position. In some embodiments, a spring or other mechanism may be used to set the reflector portion 106 and/or the lens portion 108 to the first position, and a solenoid or the like may be used to rotate the reflector portion 106 and/or the lens portion 108 to the second position. In yet other embodiments, a solenoid or the like may be used to move a lever arm or the like to rotate the reflector portion 106 and/or the lens portion 108.
The example controller and actuator unit 502 comprises a controller 704 and a motor 706. The controller 704 determines the operating mode of the multiple mode light emitting device 100 based on whether the plurality of first LEDs 110 or the plurality of second LEDs 112 are receiving power from the LED power source 702. Some embodiments may sense the current and/or voltage state on the connectors 708 to determine which of the plurality of first LEDs 110 or the plurality of second LEDs 112 are powered on. Other embodiments may receive a control signal from one or more devices on the connectors 708, from one or more devices in the LED power source 702, or from other components or systems.
In this example embodiment, the controller 704 provides a control signal, power signal, or the like to the motor 706. The motor then operates to rotate the reflector portion 106 and/or the lens portion 108 to the first position when the plurality of first LEDs 110 are powered, and to rotate the reflector portion 106 and/or the lens portion 108 to the second position when the plurality of second LEDs 112 are powered.
The controller 704, in an example embodiment, is implemented as firm ware. In other embodiments, a processor system (not shown) executes logic retrieved from a memory (not shown). In other embodiments, the controller 704 may operate other devices that control the position of the reflector portion 106 and/or the lens portion 108.
In an alternative embodiment, the position of the reflector portion 106 and/or the lens portion 108 may be manually adjustable by a user. An outer edge 802 of the reflector portion 106 and/or the lens portion 108 may be accessible by the user. Alternatively, or additionally, a frictional surface 804 may be accessible thereon that may then be griped or otherwise frictionally engaged by the user's hand or fingers to manually rotate the reflector portion 106 and/or the lens portion 108. Such configurations may be particularly desirable when the multiple mode light emitting device 100 is a hand held type of device
Some embodiments of the multiple mode light emitting device 100 comprise more than two types of LED lights or other suitable light emitting devices (visible or non-visible light). Any suitable number of different types of LEDs (or other light emitting devices) may be used by such embodiments. Each of the different types of LEDs (or other light emitting devices) are aligned along an associated radial line at the intersection of their respective concentric ring. An angular displacement Ø°, separates each radial line. The angular displacement Ø°, may be constant between radial lines, or may vary. In some embodiments, varying the angular displacement Ø°, permits different sizes of LEDs (or other light emitting devices).
For example, but not limited to, three types of light may be emitted by arranging three different plurality of LEDs (or other light emitting devices) in the housing 102. Each plurality of LEDs (or other light emitting devices) would be oriented in along one or more concentric rings and along one or more radial lines. In this embodiment, the reflector portion 106 and/or the lens portion 108 would be rotated to a first position to condition light emitted by a plurality of first LEDs, rotated to a second position to condition light emitted by a plurality of second LEDs, and rotated to a third position to condition light emitted by a third plurality of LEDs. Radial lines between the first and second types of LEDs (or other light emitting devices) would be separated by a first angular displacement Ø°1. Radial lines between the second and third types of LEDs (or other light emitting devices) would be separated by a second angular displacement Ø°2. Accordingly, when the position of the reflector portion 106 and/or the lens portion 108 is adjusted from the first to the second type of LEDs (or other light emitting devices), the amount of rotation corresponds to the first angular displacement Ø°1. When the position of the reflector portion 106 and/or the lens portion 108 is adjusted from the second to the third type of LEDs (or other light emitting devices), the amount of rotation corresponds to the second angular displacement Ø°2. When the position of the reflector portion 106 and/or the lens portion 108 is adjusted from the first to the third type of LEDs (or other light emitting devices), the magnitude of rotation corresponds to the sum of the first angular displacement Ø°1 and the second angular displacement Ø°2.
In some embodiments, the magnitude of emitted light may be adjustable by omitting selected LEDs (or other light emitting devices). That is, if the magnitude of light emitted by the plurality of second LEDs may be less if there are fewer of the plurality of second LEDs.
In an alternative embodiment, the LED portion 104 is rotated about the central axis while the reflector portion 106 and/or the lens portion 108 remain stationary.
While the preferred embodiment of the multiple mode light emitting device 100 has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment. Instead, the invention should be determined entirely by reference to the claims that follow.