The present invention relates to a multiple nozzle system that is molded as multiple parts and used by assembling in various combinations with various components. The multiple nozzle system, in a non-limiting example, comprises nozzles, flow controls, nozzle base, flare, and various elbows that are arranged in a generally vertical orientation with each tilting slightly outwardly from the centerline, and with nozzles and flow controls attached to create a wide variety of possible spray patterns.
Currently, there are several devices in the market that are designed to create multiple patterns. These devices are simplistic in that the user drills multiple holes in the device to create the nozzles and then plugs or blocks certain holes for the desired pattern. As a result, these types of devices are limited to just a few patterns. Also, the additional problems with this approach is that (a) it is very difficult to create good quality streams with this crude approach, and (b) the limitation in number of possible patterns automatically excludes all other patterns and thwarts further creative designs. Applicant's invention, however, solves these problems.
Thus, there is a need, therefore, and there has never been disclosed Applicant's invention.
The present invention is a multiple nozzle system and device that provides flow control, a nozzle base, the inclusion of a flare or a reversible flare, or a twister attachment, along with various desired directional arm(s) formed from nozzles or the combination of nozzles and elbows, for creating any desired directional angle(s) for each of the directional arm(s). Based on this invention, the water (or angled streams) exiting from the combination of the various directional arm(s) creates an unlimited number of possible resulting fountains or other visual water displays, spray patterns, or designs.
The Description of the Preferred Embodiment will be better understood with reference to the following figures:
Applicant's multiple nozzle system is used in fountain or aeration devices for creating attractive water displays in a pond or lake. In use, water comes up from the bottom through Applicant's multiple nozzle system and the various nozzle designs and out the top. Depending upon the flow control, nozzle flare, elbow extensions and angles created, and nozzle tips and length, the water exits from the various nozzles, which in combination, creates a resulting fountain or other visual water displays, spray patterns, or designs.
As a result and to accomplish this, as illustrated in
The nozzle base 32 is a hollow body 44 designed, at one end, with an inlet 40 and, at the other end, with an outlet 42. In this manner, the nozzle base 32 facilitates or allows for attachment, at the inlet 40, of a flow control device that controls and/or reduces pattern height for a resulting stream from the device 30 and the attachment, at the outlet 42, of elbows 36 and nozzles 38 that collectively control and/or create, using the resulting stream, any desired resulting visual water display, fountain, spray pattern, and/or design through the device 30. In the preferred embodiment, the visual water display, fountain, spray pattern, and/or design are comprised of water. Alternatively, the visual water display, fountain, spray pattern, and/or design may be comprised of any other substance as known to those skilled in the art.
Also, situated and extending within the hollow body 44 of the nozzle base 32 are channels 46. Each channel 46 has a channel hollow center 47, a channel inlet 48, and a channel outlet 50. The channels 46 are integrally molded within the nozzle base 32.
The elbow 36 likewise has an elbow hollow center 53, an elbow inlet 52, and an elbow outlet 54. In the preferred embodiment, the elbow inlet 52 of the elbow 36 is releaseably attached to the channel outlet 50 of the channel 46. In this manner, when connected, the elbow hollow center 53 of the elbow 36 and the channel hollow center 47 form a single hollow passageway 56.
The nozzle 38 also has a nozzle hollow center 58, a nozzle inlet 60, and a nozzle outlet 62. In the preferred embodiment, the nozzle inlet 60 of the nozzle 38 is releaseably attached to the elbow outlet 54 of the elbow 36. In this manner, when connected, the nozzle hollow center 58 of the nozzle 38 and the elbow hollow center 53 and the channel hollow center 47 collectively then form the single hollow passageway 56. Alternatively, the nozzle inlet 60 of the nozzle 38 could be releaseably attached directly to the channel outlet 50 of the channel 46 (i.e., eliminating the elbow 36, if desired). In this manner, when connected, the nozzle hollow center 58 of the nozzle 38 and the channel hollow center 47 would then collectively form the single hollow passageway 56.
In a non-limiting example, the device 30 is shown having twelve (12) nozzles 38. Alternatively, the number or plurality of nozzles 38 may be more or less, as desired, provided that the number of nozzles 38 used accomplishes the invention as described herein. In this manner, each of the nozzles 38 could be releaseably attached or connected to a corresponding elbow 36 or a corresponding channel 46, and then, for each elbow 36 used, the elbow 36 could then be releaseably attached or connected to a corresponding channel 46. Each individual combination of the nozzle 38, the elbow 36, and the channel 46, or combination of the nozzle 38 and the corresponding channel 46, collectively forms a directional arm 64. If, using the non-limiting example as illustrated in
Also, to accomplish this mating and interaction of parts, the nozzle base 32, the channel 46, the elbows 36, and the nozzles 38 all have the same mating parts so they can be easily connected, interchanged, as needed or desired.
Turning to
As illustrated in
The elbow 36 is designed to accommodate an angle 66, as measured from a vertical plane 68. In the non-limiting example, as illustrated in
The elbow 36 is also provided with upper opposed holes 70 and lower opposed holes 72 (see
Preferably, the elbow 36, by itself, or stacked in combination with another elbow 36, can create or form the desired angle of the directional arms 64. For example, and as illustrated in
Alternatively, if the first angle 80 of the first elbow 76 is ten degrees (10°) and only this first elbow 76, individually, is releaseably attached or secured to the nozzle 38, this would result in a total directional angle 84 of the directional arm 64 to be ten degrees (10°) (e.g., which is the total of just the first angle 80).
In another non-limiting alternative, if the first angle 80 of the first elbow 76 is twenty-five degrees (25°) (i.e., using the angle 66 of the elbow 36 as illustrated in
Likewise, the combination and angles of the elbows can be reversed to achieve an increase (i.e., albeit smaller increase), as desired. In another non-limiting alternative example, if the first angle 80 of the first elbow 76 is twenty-five degrees (25°) and the second angle 82 of the second elbow 78 is a reversed ten degrees (10°) (i.e., the second elbow 78 is releaseably attached or secured to the first elbow 76 in a reversed orientation), this would result in the total directional angle 84 of the directional arm 64 to be fifteen degrees (15°) (e.g., which is the combined total of both the first angle 80 of twenty-five degrees (25°) minus the second angle 82 of ten degrees (10°) resulting in the total directional angle 84 of fifteen degrees (15°).
In this manner, multiple elbows can be stacked one on top of another to increase the directional angle 84 of the directional arm 64 to create or form streams emanating from the device 30 in a preferred range of substantially five degrees (5°) up to sixty degrees (60°) to the vertical in any of the desired nozzles 38. Alternatively, the range of the directional angle 84 may be higher or lower depending upon the spray pattern desired.
Additionally, based on the various combination(s), Applicant's device 30 allows any of the nozzles 38 and/or directional arms 64 to be designed to accommodate any angle in five degree (5°) increments such as (5°, 10°, 15°, 20°, 25°, etc.) where the five degree (5°) angle is created by using the combination of a first angle 80 of the first elbow 76 to be twenty-five degree (25°) and the second angle 82 of the second elbow 78 in a ten degree (10°) angle reversed orientation to the first elbow 76 along with a third angle of a third elbow in likewise another ten degree (10°) angle reversed orientation to the first elbow 76 (e.g., which is the combined total of the first angle 80 of twenty-five degrees (25°) minus the second angle 82 of ten degrees (10°) minus the third angle of ten degrees (10°) resulting in the total directional angle 84 of five degrees (5°).
Thus, in the present non-limiting example of twelve (12) nozzles 38, as illustrated in
And, the nozzle base 32 and all of the various elbow(s) 36 and/or nozzle(s) 38 are designed to accommodate high volumes of water to flow through these well engineered parts, thus, producing heavy, clean, and attractive streams—this is likewise another capability not achieved by other prior art devices.
Turning to
In the preferred embodiment, there is also a flare stream 92 produced from the flare 34. This is preferably produced by the flare stream 92 flowing up through the nozzle base 32 and into an outflow transition 94 (see
The flare 34 is releasably attached or connected to the nozzle base 32 using a fastening means 100. Preferably, the fastening means comprises threaded screws or bolts 102 inserted through correspondingly aligned receiving holes 104 to thereby secure the flare 34 to the nozzle base 32, as illustrated in
Additionally, a reversible flare 106 can be attached to the nozzle base 32. In the preferred embodiment, the reversible flare 106 is the exact same as the flare 34 except flipped or upside down. In this manner, the flare stream 92 flowing up through the nozzle base 32 and into and exiting out of the outflow transition 94 (see
As illustrated in
The twister or twister attachment 108, the attachment of the twister attachment 108 to the nozzle base 32, and the components that accomplish the rotation are further illustrated in
The twister or twister attachment 108 comprises a twister body 134, sealed bearings 136, and a thru id threaded shaft 138. In the preferred embodiment, the twister body 134 is connected to the sealed bearings 136, and the sealed bearings 136 are connected to the thru id threaded shaft 138. The thru id threaded shaft 138 is threaded around the threaded rod 126. In this manner, the thru id threaded shaft 138 can be situated anywhere along the threaded rod 126 and therefore this allows the location of the twister body 134 to be specifically placed at any location, as desired. This desired location of the twister body 136 in relation to the threaded rod 126, as described in more detail below, provides for a first gap or first spacing 140 between the nozzle base 32 and the labyrinth seal 142 and/or the outflow transition 130 and a second gap or second spacing 141 between the nozzle base 32 and the threaded rod 126 such that the nozzle base 32 is freely available to rotate. Once the location of the twister body 134 is at the desired location, retaining rings 144 are used at the locations above and below the sealed bearings 136 to hold the twister body 134, the sealed bearings 136, and the thru id threaded shaft 138 together to make a unified twister assembly, with the thru id threaded shaft 138 being threaded onto the threaded rod 126 and locked together with a second locking nut 146. In this manner, the sealed bearings 136 press onto the thru id threaded shaft 138 so that twister assembly rotates on that thru id threaded shaft 138.
The twister body 134 is then fixedly secured to the nozzle base 32, as illustrated in
Thus, by attaching some or all of the surrounding nozzles 38 and elbows 36 forming a slight angle in relation to the vertical orientation (e.g., not parallel to the threaded rod 126), the force of the water at this angle produces a tangential force that then causes rotation of the nozzle base assembly 150 to freely, and continuously, rotate three hundred and sixty degrees (360°) on and around the thru id threaded shaft 138 within the outflow transition 130 for as long as the water is forced through the system. A resulting example of a visual water display, fountain, spray patter, and/or design using this twister means is illustrated in
In addition, referring to
Internally, as illustrated in
In Section A, as illustrated in
In Section B, as illustrated in
Depending upon the flow control, the nozzle base 32, whether the flare 34 or reversible flare 106 is used, whether the twister attachment 108 is used, each of the desired directional arm(s) 64 from the combination of the nozzles 38 and elbows 36 used, and the resulting directional angle(s) 84 created for each of the directional arm(s) 64, and possibly the nozzle tips 112 (see
Based on the description of the device 30 above, Applicant's multiple nozzle system also provides additional benefits and advantages which include without limitation.
(i) Allows for up to at least forty (40) standard nozzle configurations to be designed or built within Applicant's inventive multiple nozzle system using the same or one set of parts, and these parts create thick, high quality, attractive and coherent streams.
(ii) Applicant's inventive multiple nozzle system and component parts can be prebuilt in-house;
(iii) Applicant's component parts can be built or rebuilt by the customer and assembly and dis-assembly of the multiple nozzle system requires only a screwdriver;
(iv) Allows customer the flexibility to change and/or create new patterns, at any time, to whatever pattern they desire or feel like;
(v) And, with Applicant's multiple nozzle system being an additive system (components are added as required to make any specific pattern), the user can create many more possible patterns because Applicant's nozzles, elbows, nozzle tips, and flow controls can be attached in many different ways and are not limited to the initial set of drilled holes; and
(vi) Further, in Applicant's system, the flow control component(s) can be releaseably attached to any nozzle to efficiently reduce the height of the stream so that multi-tiered patterns can be produced—which is something that the other systems cannot do.
Thus, there has been provided Applicant's unique inventive multiple nozzle system. While the invention has been described in conjunction with a specific embodiment, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications and variations as fall within the spirit and scope of the appended claims.
This patent application is a continuation-in-part of U.S. patent application Ser. No. 16/688,038, filed on Nov. 19, 2019, which claims the benefit of U.S. Provisional patent application Ser. No. 62/769,904, filed on Nov. 20, 2018, each of which is fully incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62769904 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16688038 | Nov 2019 | US |
Child | 16863922 | US |