1. Field of the Invention
This invention relates generally to continuous hot rolling mills of the type designed to produce long products.
2. Description of the Prior Art
Conventional rolling mills designed to produce long products typically comprise an initial mill section including a furnace for reheating billets, followed by roughing and intermediate mill stands which roll the thus heated billets into intermediate products having reduced cross-sectional areas. Differently configured outlet mill sections are then employed, selectively and individually, to additionally roll the intermediate products into finished products that are processed into packages according to customer requirements.
The initial mill section has an elevated “first” production rate that in most cases exceeds lower “second” production rates of the individual outlet mill sections. Thus, for the majority of the mill's finished products, the higher first production rate of the initial mill section cannot be realized because the entire mill must be slowed to match the lower second production rate of the outlet mill sections currently in use. The resulting reduced production rate, when coupled with the capital investment in the outlet mill sections that are not currently in use (referred to as “dead money”), amounts to a significant loss to the mill operator.
The objective of the present invention is to provide a means for simultaneously operating multiple different mill outlet sections at a combined production rate that exceeds the second production rates of the individual outlets, and that ideally equals and thus takes maximum advantage of the elevated first production rate of the initial mill section.
In accordance with the present invention, accumulators are interposed between the initial mill section and each of the outlet mill sections. Each accumulator is constructed and arranged to receive intermediate products from the initial mill section at its elevated first production rate, and to deliver the intermediate products to the associated outlet mill section at its respective lower second production rate. The excess intermediate product resulting from the differential between the first and second production rates is stored temporarily in the accumulator. Switches direct successive intermediate product lengths from the initial mill section to selected outlet mill sections via their respective accumulators for simultaneous processing into packaged finished products.
The foregoing, and related objectives and additional advantages, will now be described with reference to the accompanying drawings, wherein:
As shown in
A switch 18 serves to selectively direct intermediate products 16 to one of several outlet mill sections OMS1, OMS2, and OMS3. Outlet mill section OMS1 has a processing line with prefinishing roll stands 20 that roll the intermediate product 16 into a round 22 having a reduced diameter of 16-28 mm, and a finishing block 24 which produces a finished product 26 having a diameter of 5-22 mm. The finished product 26 is then subjected to further processing, including formation into rings 28 by a laying head 30, with the rings being received in Spencerian form on a cooling conveyor 32 which conveys the rings to a reforming chamber 34 where they are gathered into upstanding coils. The outlet mill section OMS1 will typically operate at a maximum second production rate of about 70-150 tons per hour.
Outlet mill section OMS2 has a processing line that includes prefinishing roll stands 20 which roll the intermediate product into a so-called “dog bone” section which is then slit into rounds 38 having a reduced diameter of 16-28 mm, and two finishing blocks 24 which roll the rounds 38 into the same 8.0 mm finished products 26. Those finished products are directed to a cooling bed 40 on which lengths are cooled before being collected and strapped into bundles at a bundling station 42. The outlet mill section OMS2 will typically operate at a maximum second production rate of 25-150 tons per hour.
Outlet mill section OMS3 includes a processing line with prefinishing roll stands 20 and a finishing block 24. Here, the finished product, again an 8.0 mm round 26, is directed to a switch 44 which alternately feeds two spoolers 46a, 46b. The maximum second production rate of outlet mill section OMS3 is also 25-150 tons per hour.
In this conventional mill layout, the outlet mill sections OMS1, OMS2, and OMS3 must be operated individually at their respective second production rates, and cannot be operated simultaneously. Thus, if the initial mill section has a production rate of, say, 300 tons per hour and switch 18 is set to direct an intermediate product length to outlet mill section OMS1, the entire mill must be slowed to the second production rate of that outlet mill section, while the other outlet mill sections OMS2 and OMS3 remain idle. Use of one or the other of outlet mill sections OMS2 and OMS3 will also result in reductions in the mill's production rate below the maximum of the initial mill section.
In accordance with one embodiment of the present invention, and as shown in
Each accumulator 48 is constructed and arranged to receive intermediate products at the production rate of the initial mill section IMS, and to simultaneously deliver the intermediate products to the associated outlet mill section at its reduced production rate, with the excess intermediate product resulting from the differential production rates being stored temporarily in the accumulator.
By way of example, assume that in the mill layout shown in
As soon as a full intermediate product length is received on the accumulator of OMS1, the next product length is directed to the accumulator of OMS2. This stepped process is continued to OMS3. By the time that the accumulator of OMS3 has received a full intermediate product length, the accumulator of OMS1 is empty and ready to receive the next product length. It thus will be seen that by sequentially employing multiple outlet mill sections, made possible by the interposition of accumulators 48, the mill can be operated continuously at its maximum production rate of 275 tons per hour.
Number | Name | Date | Kind |
---|---|---|---|
351840 | Lenox | Nov 1886 | A |
1935048 | Gassen | Nov 1933 | A |
3486359 | Hein | Dec 1969 | A |
3729972 | Kocks | May 1973 | A |
3774433 | Pauels | Nov 1973 | A |
3942350 | Brauer et al. | Mar 1976 | A |
4028920 | Zander | Jun 1977 | A |
4310031 | Appel et al. | Jan 1982 | A |
4457154 | Ohba | Jul 1984 | A |
4528834 | Aoyagi et al. | Jul 1985 | A |
5307663 | Shore et al. | May 1994 | A |
5312065 | Shore et al. | May 1994 | A |
5595354 | Josoff | Jan 1997 | A |
5893288 | Shore | Apr 1999 | A |
7021103 | Shore | Apr 2006 | B2 |
7093472 | Shore et al. | Aug 2006 | B1 |
Number | Date | Country |
---|---|---|
0815973 | Mar 2002 | EP |
02-2355181 | Sep 1990 | JP |
5-116845 | May 1993 | JP |
2002-126817 | May 2002 | JP |