Multiple use memory chip

Information

  • Patent Grant
  • 7738304
  • Patent Number
    7,738,304
  • Date Filed
    Tuesday, October 11, 2005
    19 years ago
  • Date Issued
    Tuesday, June 15, 2010
    14 years ago
Abstract
A die for a memory array may store Flash and EEPROM bits in at least one Nitride Read Only Memory (NROM) array. Each array may store Flash, EEPROM or both types of bits.
Description
FIELD OF THE INVENTION

This invention relates generally to devices including embedded nonvolatile memories.


BACKGROUND OF THE INVENTION

Nonvolatile memory cells are advantageous since they retain recorded information even when the power to the memory is turned off. There are several different types of non-volatile memories, including electrically programmable read only memories (EPROMs), electrically eraseable and programmable read only memories (EEPROMs) and flash EEPROM memories. EPROMs are electrically programmable, usually by channel hot electron injection into a floating gate, but are erasable through UV light exposure. Conventional EEPROMs have the same programming functionality, but instead of being light erasable they can be both erased and programmed electrically, for example, by electron tunneling into or out of the trapping media. Thus, information may be stored in these memories, retained when the power is off, and the memories may be erased for reprogramming, as necessary, using appropriate techniques. Flash EEPROMs have the same or similar read and programming functionality as EEPROMs. However, in contrast to EEPROMs where single bits, single bytes, or small amount of bytes may be selectively erased, in Flash EEPROMs, the erase is performed on a large number of bytes, typically referred to as a “sector” or a “block”. As an example, an erase sector in a Flash EEPROM may be 1K Bytes, or 1 M Bytes, or some other large number of Bytes. Thus, EEPROMS differ from Flash EEPROMs in the erase granularity.


In order to achieve the erase granularity, select transistors are used to isolate the bits to be erased from the other bits in the memory array. In Flash EEPROMs, this means that select transistors are required per each erase sector, i.e. per a large number of bits. On the other hand, in EEPROM devices, many more select transistors are required due to the finer erase granularity. As an example, for a true byte EEPROM device, one select transistor per cell may be required Thus, for the same number of bits in an array, a Flash EEPROM array will usually be much smaller than a respective EEPROM array due to the much smaller overhead of select transistors. This makes Flash EEPROM devices more cost effective since the array area directly affects the total die size. Furthermore, the yield is also positively affected.


Nonvolatile memory cells differ in certain aspects from the transistors, typically called logic devices, that are generally utilized in electronic components, such as microcontrollers, that work with the memory cells. Logic devices are formed of transistors that use a single gate electrode while nonvolatile memories usually include two gate electrodes, known as the control and the floating gate electrodes, situated one over the other. Furthermore, the doping profiles of the source and drain junctions, and sometimes even the local substrate doping profile of logic and non-volatile memory transistors, differ. Because of these structural differences, nonvolatile memories and logic devices may be manufactured by some common and some different process steps. In addition, the non-volatile memory transistors used in Flash EEPROM and in EEPROM devices may differ as well, and in each case, the non-volatile cell structure is optimized for the specific application (Flash EEPROM vs. EEPROM) and the specific program and erase mechanisms being used. All these facts may contribute to a substantial increase in process complexity and manufacturing cost when integrating logic devices and non-volatile memory devices of one or more types onto the same die.


Conventionally, three approaches have been utilized to integrate FLASH and EEPROM onto a single integrated circuit die. One technique is to build both the EEPROM and FLASH devices using appropriate process technologies to create the two different types of devices on the same die. However, this results in a dramatic increase in the number of process steps involved and therefore greatly increases the cost of the resulting device. Therefore, such techniques have not met with considerable acceptance in the industry.


Alternatively, a basic FLASH memory may be created and an additional FLASH portion may be adapted to emulate EEPROM memory. The software may be stored in a boot block which may also be a FLASH memory. Thus, the system needs a first FLASH memory to act as FLASH, a second FLASH memory to store the software needed to emulate EEPROM operation and additional FLASH memory to actually implement the FLASH-like capabilities. This results in a very costly structure whose operation is complicated. Thus, this technique has also not met with considerable administrative acceptance.


The third technique is to use an EEPROM memory to emulate a FLASH memory. However, EEPROM memories are generally large and therefore tend to be much more expensive In fact, EEPROM memories may be three to four times larger than FLASH memories. Therefore, this approach is generally not considered to be commercially viable and has similarly failed to meet with considerable commercial acceptance.


Exemplary combination flash and EEPROM devices are described in U.S. Pat. Nos. 6,252,799, 6,074,916 and 6,326,265.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the appended drawings in which:



FIGS. 1A and 1B are schematic illustrations of multiple array dies;



FIG. 2A is a schematic illustration of a single bit NROM cell;



FIG. 2B is a schematic illustration of a dual bit NROM cell;



FIG. 3 is a schematic illustration of an exemplary embodiment of a flash array and its programming and erase operations when implemented with NROM memory cells;



FIG. 4 is a schematic illustration of an exemplary EEPROM array and its programming and erase operations, when implemented with NROM memory cells;



FIGS. 5A, 5B and 5C are schematic illustrations of multiple use arrays within a virtual ground array;



FIG. 6 is a schematic illustration of a multiple use array within a NOR array; and



FIGS. 7 and 7A are schematic illustrations of dies with multiple arrays thereon of different types.





DETAILED DESCRIPTION OF THE PRESENT INVENTION

Reference is now made to FIGS. 1A and 1B, which illustrate two alternate embodiments of a single integrated circuit die, constructed and operative in accordance with the present invention. The present invention includes a die storing Flash and EEPROM bits. The bits may be stored together in the same array (as in FIG. 1A) or in separate sections of the die (as in FIG. 1B).



FIG. 1A shows a die 8 with a combined Flash and EEPROM array 10 and separate EEPROM and Flash peripheries 12 and 14, respectively. EEPROM periphery 12 may access and operate the EEPROM bits of array 10 while Flash periphery 14 may access and operate the Flash bits. Since some operations may be similar or the same for both EEPROM and Flash operation, there may exist a joint periphery 16 which may be used to access or to operate on both types of bits.



FIG. 1B shows a die 20 with separate arrays 22 and 24 for Flash bits and EEPROM bits, respectively. Similar to die 8 of FIG. 1A, there may be three kinds of peripheries: an EEPROM periphery 26, a Flash periphery 28 and a joint periphery 30. Charge pump circuits, used to generate voltages higher than the supply level, may be an example of peripheral circuits used to operate both the Flash and the EEPROM arrays. Sense amplifiers, used to read out the array data, may be another example of joint peripheral circuits. In general, the ability to use common circuits to operate both types of arrays depends also on the specifications of the device. For example, if both arrays are allowed to be read at the same time, then the sense amplifiers can not be shared.


It will be appreciated that FIGS. 1A and 1B are exemplary in nature, the relative size and locations of the array(s) and peripheries will depend on the specific design and application of the chip. Furthermore, there may be more than one array of any type. Still further, the Flash bits may be block erased or page-mode erased, and similarly the EEPROM bits may be Byte or page erased.


One exemplary embodiment of the present invention may utilize nitride read only memory (NROM) cells, described in U.S. Pat. Nos. 5,768,192, 6,011,725 and Ser. No. 09/211,981, filed Dec. 14, 1998, assigned to the common assignee of the present invention. The disclosure of these patents and applications are incorporated herein by reference.


NROM cells, shown in FIGS. 2A and 2B to which reference is now made, may store data and may operate in arrays of either Flash or EEPROM types without any modification in the cell structure or in the operating mechanisms, as described hereinbelow. The NROM cell may have a channel 100 between two diffusion areas 102 and 104. Over the channel may be an oxide-nitride-oxide (ONO) sandwich (layers 109, 110 and 111), wherein each layer is 100 or less thick, over which lies a gate 112.


For a single bit cell 30 (FIG. 2A), charge may be stored in a charge storage area 106 of nitride layer 110 near one of the diffusion areas 102 or 104. For a dual bit cell 40 (FIG. 2B), there may be two separated and separately chargeable areas 106 and 108 within nitride layer 110, near each of diffusion areas 102 and 104


Each chargeable area may define one bit or multiple bits. For the former, each bit may have only two distinct states, a ‘1’ and a ‘0’. For the latter, each bit may have multiple states. For example, for two bits per storage area, the four states are ‘11’, ‘00’, ‘10’ and ‘01’.


In the following discussion, the terms ‘single bit’ and ‘dual bit’ will be used to indicate storing charge in one or both of the charge storage areas 106 and 108, irrespective of the number of threshold voltage levels defined for the storage area.


The single and dual bit cells 30 and 40 may be operated similarly, where the operations which occur to access the bit in charge area 106 in single bit cell 30 may also occur to access the bit in charge area 106 in dual bit cell 40. Therefore, the presentation below will describe the dual bit operation; it being understood that the single bit operation may be similar but operative only on one of the bits, such as left bit 106.


To program the left bit in area 106, gate 112 may receive a high programming voltage Vg, left diffusion area 102 may act as the drain and may receive a drain programming voltage VD and right diffusion area 104 may be grounded (i.e. area 104 acts as the source). Hence the electrons may flow from area 104 to area 102 (as indicated by arrow 114). The channel hot electrons may then be injected into the nitride layer, in area 106. The negative charge in area 106 may raise the threshold voltage of the cell, if read in the reverse direction.


The opposite is true for programming area 108 (for dual bit cell 40 only); the left diffusion area 102 may be the source (i.e. grounded) and right diffusion area 104 may be the drain (i e. receives the drain programming voltage VD). The cell may therefore be programmed in the opposite direction (as indicated by arrow 113 (FIG. 2B)), and the electrons may then jump up into chargeable area 108.


For NROM cells (single and dual), a bit may be read in the direction opposite (a “reverse read”) to that of its programming direction An explanation of the reverse read process is described in U.S. Pat. No. 6,011,725, mentioned above. Thus, to read the left bit stored in area 106, right diffusion area 104 may be the drain and left diffusion area 102 may be the source. This is known as the “read through” direction (indicated by arrow 113). To read the right bit stored in area 108 of dual bit cell 40, the cell may be read in the opposite direction (as indicated by arrow 114). Thus, left diffusion area 102 may be the drain and right diffusion area 104 may be the source.


To erase the left bit in area 106, the gate may receive a negative erase gate voltage Vge, the left diffusion area 102 may receive an erase voltage Ve and right diffusion area 104 may be left floating. To erase the right bit in area 104, the gate may receive negative erase gate voltage Vge, the right diffusion area 104 may receive erase voltage Ve and left diffusion area 102 may be left floating


Applicants have realized that, unlike for floating gate devices, the difference between an NROM EEPROM and an NROM flash device may not be in the structure of the cell nor much in the architecture of the array (particularly, there is no need for per cell select transistors as in floating gate EEPROM devices), but in the access operations (i.e. read, write and erase). Thus, the NROM cell may be particularly suitable for multiple use chips.


Reference is now made to FIG. 3, which illustrates an exemplary embodiment of independent flash array 22 and its programming and erase operations when implemented with NROM memory cells.


In this example, the array may be a virtual ground array in which cells 116 are formed into a matrix. An exemplary architecture for such an array may be described in U.S. Ser. No. 09/727,781, filed Dec. 4, 2000, assigned to the common assignee of the present invention, whose disclosure is incorporated herein by reference. Alternative architectures are also incorporated in the present invention.


Flash array 22 may be segmented by select transistors 118 to implement blocks (sometimes also referred as “sectors” or “erase sectors”). Select transistors 118 may connect metal lines 120 to bit lines BL of a block.


The Flash array 22 may be further segmented by isolation zones 120 into isolated virtual ground slices. The isolation zones 122 may be necessary to prevent interaction of two bits on the same WL that are accessed at the same time Isolation zones 122 may be manufactured as a thick oxide region, as a shallow trech isolation, as an unused column of memory cells or with any other suitable isolation technique.


As a Flash array, the bits of flash array 22 may be individually read and programmed while blocks of the array may be erased together. In FIG. 3, two exemplary cells P and Q are noted. The gates of cells 116 of a row may be connected to a word line WL, such as WLA, and the diffusions of two columns of neighboring cells 116 may be connected together as a bit line BL, such as BLB. For example, the right diffusion of cell P and the left diffusion of cell Q are connected to bit line BLB while their gates are connected to word line WLB


It is noted that the voltage levels to be provided to the word and bitlines during the read/program/erase operations may be listed on the figures in that order. Thus, the label Vr/0/F may indicate that the line may receive a read voltage Vr during reading, a 0 (or ground) voltage during programming and may be left floating (F), or driven to a low voltage, during erasure.


To read the right-side bit 108 of memory cell P, a reading gate voltage Vgr (typically in the range of 2-5V, e.g. 3V) may be applied to word line WLB, a read source voltage Vsr (typically in the range of approximately 1-2V, e.g. 1.5V) may be applied to bit line BLA, and bit line BLB may be grounded (0V). All other bit lines may preferably be floated (FL) near ground prior to any operation (reading, programming or erasing). All other word lines may be grounded.


If it is desired to program right-side bit 108 of memory cell P, a programming gate voltage Vgp (typically in the range of approximately 7-10V, e.g., 9V) may be applied to word line WLB, a programming drain voltage Vdp (typically in the range of approximately 3-6V, e.g. 4.5V) may be applied to bit line BLB, and bit line BLA may be grounded (0V). All other bit lines may preferably be floated (FL) near ground prior to any operation (programming or erasing). All other word lines may be grounded.


For erasing, a block of flash cells are erased together, typically by erasing a column, some columns, or all columns of bits at a time. For each column, a negative erase gate voltage Vge (such as approximately in the range of −2 to −7V) may be applied to all word lines WL and a positive erase drain voltage Vde (typically in the range of approximately 3-6V, e.g. 4V) may be applied to the bit line whose bits need to be erased. For example, bit lines BLB and BLD may receive the positive erase drain voltage Vde The other bit lines of the array may be floating.


The bits on both sides of bit line BLB may be erased since both bits receive the exact same gate and bit line voltages. Thus, left-side bit 106 of cell Q may also be erased together with right-side bit 108 of cell P and similarly for the other bits along bit line BLB By changing which bit lines BLs receive the drain voltage Vd, different columns of bits in array 22 may be erased. The considerations of how many bit lines may be erased together include erase time, erase characteristics, and erase currents.


Reference is now made to FIG. 4, which illustrates an exemplary embodiment of independent EEPROM array 24 and its programming and erase operations, when implemented with NROM memory cells. Such an exemplary array may be described in U.S. Ser. No. 09/761,818, filed Jan. 18, 2001 and Ser. No. 09/841,052, filed Apr. 25, 2001, assigned to the common assignee of the present invention, whose disclosure is incorporated herein by reference.


EEPROM array 24 may be implemented in blocks or not. The considerations for EEPROM array segmentation include operation performance and characteristics, disturbs, etc., as can be understood by those skilled in the art. The bits of EEPROM array 24 may be individually read, programmed and erased using the relevant read, program and erase voltages.


In this example, EEPROM array 24 may be similar to flash array 22 of FIG. 3, with the addition of extra isolation zones 122 which define therebetween a slice of word lines and bit lines. Isolation zones 122 may serve to stop voltage propagation which may occur during programming and erasure and which may cause partial erasure of non-accessed cells. Depending on the array design and voltages used, the isolation zones 122 may divide the array into slices of a plurality of columns or of just one column.


If it is desired to program right-side bit 108 of memory cell P, a programming gate voltage Vgp (typically in the range of approximately 7-10V, e.g., 9V) may be applied to word line WLB, a programming drain voltage Vdp (typically in the range of approximately 3-6V, e.g. 4.5V) may be applied to bit line BLB, and bit line BLA may be grounded (0V). All other bit lines may preferably be floated (FL) near ground prior to any operation (programming or erasing). All other word lines are either grounded or receive a programming inhibit voltage Vip, as described in U.S. Ser. No. 09/761,818, which may inhibit the undesired partial erasure of non-accessed cells which may occur during programming and erasing of an accessed cell. For example, the programming inhibit voltage Vip may be 1V, although other inhibit voltages may be appropriate, as described in U.S. Ser. No. 09/761,818.


If it is desired to erase right-side bit 108 of memory cell P, a negative erase gate voltage Vge (such as approximately in the range of −2V to −7V) may be applied to word line WLB, a positive erase drain voltage Vde (typically in the range of approximately 3-5V, e.g. 4V) may be applied to bit line BLB, and the remaining bit lines are floated near ground before erasing. All other word lines receive an erase inhibit voltage Vie, as described in U.S. Ser. No. 09/761,818. For example, erase inhibit voltage Vie may be 3V, although other inhibit voltages may be appropriate, as described in U.S. Ser. No. 09/761,818.


It is noted that left-side bit 106 of cell Q may receive the same gate, drain and source voltages. This means that left-side bit 106 of cell Q may also be erased together with right-side bit 108 of cell P. Accordingly, after an erasure of right-side bit 108 of cell P, left-side bit 106 of cell Q may be re-programmed to its original value. This is the case for a two-bit NROM cell. For single bit operation, it is preferable to arrange the bits so that they do not share a common bit line. In such an arrangement, no neighboring bit would be erased upon erasure of right-side bit 108 of cell P, for example.


It is noted that EEPROM array 24 is not an emulated array as in the prior art but a proper EEPROM array. Each bit of the array is erasable directly and there is no need to copy the contents of a block to another storage area, modify them, erase the whole block and then rewrite the modified stored contents back into the array. Furthermore, it is also noted that the NROM based EEPROM array does not require a select transistor per cell as encountered in EEPROM arrays based on floating gate devices.


As can be seen from the above, the array architectures of NROM based EEPROM array 24 and Flash array 22 may be identical or very similar. If desired, both arrays 22 and 24 may be implemented in slices. Alternatively, only EEPROM array 24 may be implemented in slices. A slice may be at least one column of NROM cells wide and the slices of the arrays may be of unequal widths.


Moreover, the operations of the two arrays may also be very similar with the exception of the voltage levels that may vary between EEPROM and Flash operations in order to obtain different program and erase performance and characteristics. Also, the access to the arrays may differ in order to achieve the individual vs. group erasure. Since the NROM cell in the Flash and EEPROM arrays may be the same, and due to the identical or similar array architectures, the same array may be operated in either Flash or EEPROM modes


Since the EEPROM cell and flash cell may be identical in structure, the manufacturing processes to produce flash array 22 and EEPROM array 24 (of FIG. 1B) may be identical or, at least, very similar. Moreover, the process to manufacture combined array 10 (FIG. 1A) may also be the same. An exemplary manufacturing process that may be used to manufacture both flash array 22 and EEPROM array 24 is described in U.S. Pat. No. 6,297,096, assigned to the common assignee of the present invention, whose disclosure is incorporated herein by reference.


Reference is now made to FIG. 5A, which illustrates an exemplary multiple use array 10 which may contain multiple physical sectors 130, where each physical sector 130 may contain isolated virtual ground slices 132. The physical sectors 130 may be accessed by a single row decoder 134 and the data may be read with a sense amplifier 136, one per set of isolated slices 132. In FIG. 5A, there are 8 isolated slices 132 per sense amplifier 136.


In FIG. 5A, each physical sector 130 may operate as a Flash or as an EEPROM type of array. The functionality of each physical sector 130 may be predetermined, e g. by a pre-determined address mapping, or may be configurable. For example, the configuration may be performed through the decoding of the word line addresses


In FIG. 5A, there are N physical sectors 130 of which K are Flash physical sectors and N-K are EEPROM physical sectors. K may be a predetermined number or a configurable number. If K is a configurable number, then additional peripheral circuits may need to be configured accordingly, e.g. the decoding circuitry, the address mapping generator, etc.


Each physical sector 130 may comprise multiple word lines WL while the global bit lines GBL may extend through multiple physical sectors 130 to the appropriate sense amplifier 136. Thus, each sense amplifier 136 may read data from Flash and EEPROM cells, depending on which word line, one part of a Flash or one part of an EEPROM physical sector, may be activated.


Reference is now made to FIGS. 5B and 5C, which illustrate two embodiments of the array of FIG. 5A, using the array architecture of FIGS. 3 and 4.



FIG. 5B shows two physical sectors 130A and 130B, where physical sector 130A may be a Flash physical sector, with X word lines WL, and physical sector 130B may be an EEPROM physical sector, with Y word lines WL. The two types of physical sectors may be generally identical with the only difference being their mode of operation.



FIG. 5C also shows two physical sectors, here labeled 130C and 130D, where physical sector 130C may be a Flash physical sector, with X word lines WL, and physical sector 130D may be an EEPROM physical sector, with Y word lines WL. However, in this embodiment, the widths of the two types of slices 132 may be different. For example, Flash isolated slice 132A has Q NROM cells while EEPROM isolated slices 132B and 132C have P NROM cells.


It is also contemplated that different isolated virtual ground slices within a physical sector may operate as Flash or EEPROM. In this case the predetermined or configurable functionality of each slice is controlled also by the BL decoder addresses.


The present invention is not only applicable for virtual ground arrays and the partitioning of the arrays into Flash and EEPROM functionalities is not necessarily on a per block, per sector or per slice basis As a different example of a multiple use die 8 (FIG. 1A), array 10 may be a combined NROM based NOR Flash and EEPROM array. Such an array is described in U.S. Ser. No. 10/023,469, filed Dec. 20, 2001, assigned to the common assignee of the present invention, whose disclosure is incorporated herein by reference.


In this array, shown in FIG. 6 to which reference is now made and labeled 10′ therein, the architecture may be that of a NOR array, with one bit line BLj per column and a common line CLj per one or more word lines. Nor array 10′ may be segmented by common line select transistors 140 and bit line select transistors 142 to implement blocks and to connect metal lines to bit lines BL and common lines CL of a block. It will be appreciated that the segmentation may be not required to practice the present invention, nor may the particular segmentation shown in FIG. 6 be the only segmentation possible.


Each NROM cell 144 may be connected between one bit line BLj and one column line CLj. In this embodiment, each cell may have two storage areas, a Flash storage area and an EEPROM storage area. The Flash storage area, shown as a solid circle, may be the bit on the side of the cell connected to the common line CLj while the EEPROM storage area, shown as an open circle, may be on the side of the cell connected to the bit line BLj. In other words, a group of the Flash storage areas 144 (such as those connected to a common line or all of the storage areas of a block) may be erased together while the EEPROM storage areas 142 may be individually erasable. A YMUX 150 may include switching elements to connect the relevant power supplies to the relevant bit line BL and/or common lines CL.


The voltages used for reading, programming and erasing may be those described above with respect to FIGS. 3 and 4, where those for FIG. 3 may be appropriate for the Flash storage area and those for FIG. 4 may be appropriate for the EEPROM storage area.


In reading, the terminal close to the storage area being read may be grounded. Each type of bit may be read differently. The Flash storage area may be read with a CL sense amplifier 146, which may perform a close to ground sensing, while the EEPROM storage area may be read with a BL sense amplifier 148, which may perform a standard, precharge sensing. More details about implementing close to ground reading can be found in U.S. Pat. No. 6,128,226, whose disclosure is incorporated herein by reference. YMUX 150 may connect the relevant sense amplifier to be line BL depending on which type of bit is to be read at a given time.


During programming or erasing, the terminal close to the storage area being programmed or erased may be at programming or erasing voltages Vdp or Vde.


Finally, all of the Flash storage areas of a block may be erased together. To do so, the common lines CL of the block may be driven to the erase voltage Ve, all of the bit lines BL of the block may be set to float and the word lines WL of the block may be driven to their erase voltage. For example, a −7V erase voltage can be used. Positive erase voltages can be utilized as well.


In an alternative embodiment of the present invention, the NOR array may be utilized for multiple die 20 (FIG. 1B). For flash array 22, the NROM cells may be utilized as single or as dual bit cells, where the bits may be flash bits. The storage areas connected to one common line may be erased together and the storage areas connected to one bit line may be erased together.


For EEPROM array 24, the NROM cells may be single bit cells which may use the EEPROM storage areas (i.e. those connected to bit lines BLj). The bits stored therein may be EEPROM bits that are accessed as described hereinabove.


Reference is now made to FIGS. 7 and 7A, which illustrate a multiple use die with more than one array of at least one type. The general case may be shown in FIG. 7 which a specific case may be shown in FIG. 7A.


In general, the present invention may be used for N arrays on a single die, where some of the N arrays may be Flash type arrays and some of the arrays may be EEPROM type arrays. There may be a general periphery 160 and specific peripheries 162 for the arrays, where the general periphery 160 provides circuits that can be used by more than array



FIG. 7A shows one embodiment with two Flash arrays 164 and 166 and one EEPROM array 168. Flash array 164 may be a word mode array, in which words of a fixed length may be erased at a time, useful for storing program code which changes rarely and may be read and programmed in small chunks but erased in large chunks. Flash array 164 may have a fast access time. Flash array 166 may be a page mode array, in which entire pages or blocks may be erased at a time, useful for storing large amounts of data, such as a video sequence. Such an array may have long first byte latency and fast burst access. EEPROM array 168 may have individual byte or word erasure, useful for storing small chunks of data that may be frequently modified (e.g. phone numbers on a cellular telephone).


The methods and apparatus disclosed herein have been described without reference to specific hardware or software Rather, the methods and apparatus have been described in a manner sufficient to enable persons of ordinary skill in the art to readily adapt commercially available hardware and software as may be needed to reduce any of the embodiments of the present invention to practice without undue experimentation and using conventional techniques.


It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the invention is defined by the claims that follow:

Claims
  • 1. A non-volatile memory (“NVM”) die comprising: a first set of charge trapping type NVM cells adapted to be operated as a first type of flash memory;a second set of NVM cells adapted to be operated as a second type of flash memory; anda controller adapted to operate said first set as a first type of flash memory and to operate said second set of cells as a second type of flash memory.
  • 2. The die according to claim 1, wherein at least one of said sets is adapted to be operated as NAND type Flash memory.
  • 3. The die according to claim 1, wherein at least one of said sets is adapted to be operated as NOR type Flash memory.
  • 4. The die according to claim 1, wherein at least one set of cells comprises at least one multi-bit-per-cell cell.
  • 5. The die according to claim 4, wherein at least one set of cells comprises both single-bit-per-cell and multi-bit-per-cell cells.
  • 6. The die according to claim 1, wherein at least one set of cells is adapted to be operated as multi-bit-per-cell cells.
  • 7. The die according to claim 1, wherein at least one set of cells is adapted to be operated as single-bit-per-cell cells.
  • 8. The die according to claim 1, wherein at least one set of cells is adapted to be operated as multi-bit-per-cell cells, and wherein at least one cells from the at least one set of cells stores one of its bits in multi level made.
  • 9. The die according to claim 1, wherein at least one set of cells is adapted to be operated as multi-bit-per-cell cells, and wherein at least one cell of the at least one set of cells stores one of its bits in single level mode.
  • 10. A method of operating a non-volatile memory (“NVM”) device comprising: operating a first set of charge rapping type NVM cells as a first type of flash memory and operating a said second set of charge trapping type NVM cells as a second type of flash memory.
  • 11. The method according to claim 10, wherein at least one of said sets is operated as NAND type memory.
  • 12. The method according to claim 10, wherein at least one of said sets is operated as NOR type memory.
  • 13. The method according to claim 10, wherein at least one set of cells is operated as code flash.
  • 14. The method according to claim 10, wherein at least one set of cells is operated as data flash.
  • 15. The method according to claim 10, wherein at least one set of cells is operated as multi-bit-per-cell cells.
  • 16. The method according to claim 10, wherein at least one set of cells is operated as single-bit-per-cell cells.
  • 17. A non-volatile memory (“NVM”) die comprising: a first set of charge trapping type NVM cells adapted to be operated as NOR type memory; anda second set of charge trapping type NVM cells adapted to be operated as NAND type memory.
  • 18. The die according to claim 17, wherein said charge trapping region is comprised of a dielectric.
  • 19. The die according to claim 18, wherein said dielectric is comprised of a nitride material.
  • 20. The die according to claim 19, wherein said dielectric is silicon nitride.
CROSS REFERENCED TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 11/024,750, filed on Dec. 3, 2004 and now issued as U.S. Pat. No. 6,954,382, which patent application was a continuation of U.S. patent application Ser. No. 10/191,451, filed on Jul. 10, 2002 and now issued as U.S. Pat. No. 6,917,544. Priority is claimed from both applications.

US Referenced Citations (552)
Number Name Date Kind
3881180 Gosney, Jr. Apr 1975 A
3895360 Cricchi et al. Jul 1975 A
3952325 Beale et al. Apr 1976 A
4016588 Ohya et al. Apr 1977 A
4017888 Christie et al. Apr 1977 A
4145703 Blanchard et al. Mar 1979 A
4151021 McElroy Apr 1979 A
4173766 Hayes Nov 1979 A
4173791 Bell Nov 1979 A
4247861 Hsu et al. Jan 1981 A
4257832 Schwabe et al. Mar 1981 A
4281397 Neal et al. Jul 1981 A
4306353 Jacobs et al. Dec 1981 A
4342102 Puar Jul 1982 A
4342149 Jacobs et al. Aug 1982 A
4360900 Bate Nov 1982 A
4373248 McElroy Feb 1983 A
4380057 Kotecha et al. Apr 1983 A
4388705 Sheppard Jun 1983 A
4389705 Sheppard Jun 1983 A
4404747 Collins Sep 1983 A
4435786 Tickle Mar 1984 A
4448400 Harari May 1984 A
4471373 Shimizu et al. Sep 1984 A
4494016 Ransom et al. Jan 1985 A
4507673 Aoyama Mar 1985 A
4521796 Rajkanan et al. Jun 1985 A
4527257 Cricchi Jul 1985 A
4586163 Koike Apr 1986 A
4613956 Paterson et al. Sep 1986 A
4630085 Koyama Dec 1986 A
4663645 Komori et al. May 1987 A
4665426 Allen et al. May 1987 A
4667217 Janning May 1987 A
4672409 Takei et al. Jun 1987 A
4725984 Ip et al. Feb 1988 A
4733105 Shin et al. Mar 1988 A
4742491 Liang et al. May 1988 A
4758869 Eitan et al. Jul 1988 A
4760555 Gelsomini et al. Jul 1988 A
4761764 Watanabe Aug 1988 A
4769340 Chang et al. Sep 1988 A
4780424 Holler et al. Oct 1988 A
4839705 Tigelaar et al. Jun 1989 A
4847808 Kobatake Jul 1989 A
4857770 Partovi et al. Aug 1989 A
4870470 Bass, Jr. et al. Sep 1989 A
4888735 Lee et al. Dec 1989 A
4916671 Ichiguchi Apr 1990 A
4941028 Chen et al. Jul 1990 A
4961010 Davis Oct 1990 A
4992391 Wang Feb 1991 A
5021999 Kohda et al. Jun 1991 A
5027321 Park Jun 1991 A
5029063 Lingstaedt et al. Jul 1991 A
5042009 Kazerounian et al. Aug 1991 A
5075245 Woo et al. Dec 1991 A
5081371 Wong Jan 1992 A
5086325 Schumann et al. Feb 1992 A
5094968 Schumann et al. Mar 1992 A
5104819 Freiberger et al. Apr 1992 A
5117389 Yiu May 1992 A
5120672 Mitchell et al. Jun 1992 A
5142495 Canepa Aug 1992 A
5142496 Van Buskirk Aug 1992 A
5159570 Mitchell et al. Oct 1992 A
5168334 Mitchell et al. Dec 1992 A
5172338 Mehrotra et al. Dec 1992 A
5175120 Lee Dec 1992 A
5204835 Eitan Apr 1993 A
5214303 Aoki May 1993 A
5237213 Tanoi Aug 1993 A
5241497 Komarek Aug 1993 A
5260593 Lee Nov 1993 A
5268861 Hotta Dec 1993 A
5276646 Kim et al. Jan 1994 A
5280420 Rapp Jan 1994 A
5289412 Frary et al. Feb 1994 A
5293563 Ohta Mar 1994 A
5295092 Hotta et al. Mar 1994 A
5295108 Higa Mar 1994 A
5305262 Yoneda Apr 1994 A
5311049 Tsuruta May 1994 A
5315541 Harari et al. May 1994 A
5324675 Hayabuchi Jun 1994 A
5334555 Sugiyama et al. Aug 1994 A
5335198 Van Buskirk et al. Aug 1994 A
5338954 Shimoji Aug 1994 A
5345425 Shikatani Sep 1994 A
5349221 Shimoji Sep 1994 A
5350710 Hong et al. Sep 1994 A
5352620 Komori et al. Oct 1994 A
5357134 Shimoji Oct 1994 A
5359554 Odake et al. Oct 1994 A
5361343 Kosonocky et al. Nov 1994 A
5366915 Kodama Nov 1994 A
5375094 Naruke Dec 1994 A
5381374 Shiraishi et al. Jan 1995 A
5393701 Ko et al. Feb 1995 A
5394355 Uramoto et al. Feb 1995 A
5399891 Yiu et al. Mar 1995 A
5400286 Chu et al. Mar 1995 A
5402374 Tsuruta et al. Mar 1995 A
5412601 Sawada et al. May 1995 A
5414693 Ma et al. May 1995 A
5418176 Yang et al. May 1995 A
5418743 Tomioka et al. May 1995 A
5422844 Wolstenholme et al. Jun 1995 A
5424567 Chen Jun 1995 A
5424978 Wada et al. Jun 1995 A
5426605 Van Berkel et al. Jun 1995 A
5434825 Harari et al. Jul 1995 A
5436478 Bergemont et al. Jul 1995 A
5436481 Egawa et al. Jul 1995 A
5440505 Fazio et al. Aug 1995 A
5450341 Sawada et al. Sep 1995 A
5450354 Sawada et al. Sep 1995 A
5455793 Amin et al. Oct 1995 A
5467308 Chang et al. Nov 1995 A
5477499 Van Buskirk et al. Dec 1995 A
5495440 Asakura Feb 1996 A
5496753 Sakurai et al. Mar 1996 A
5508968 Collins et al. Apr 1996 A
5518942 Shrivastava May 1996 A
5521870 Ishikawa May 1996 A
5523251 Hong Jun 1996 A
5523972 Rashid et al. Jun 1996 A
5530803 Chang et al. Jun 1996 A
5534804 Woo Jul 1996 A
5537358 Fong Jul 1996 A
5544116 Chao et al. Aug 1996 A
5553018 Wang et al. Sep 1996 A
5553030 Tedrow et al. Sep 1996 A
5557221 Taguchi et al. Sep 1996 A
5557570 Iwahashi Sep 1996 A
5559687 Nicollini et al. Sep 1996 A
5563823 Yiu et al. Oct 1996 A
5568085 Eitan et al. Oct 1996 A
5579199 Kawamura et al. Nov 1996 A
5581252 Thomas Dec 1996 A
5583808 Brahmbhatt Dec 1996 A
5590068 Bergemont Dec 1996 A
5590074 Akaogi et al. Dec 1996 A
5592417 Mirabel Jan 1997 A
5596527 Tomioka et al. Jan 1997 A
5599727 Hakozaki et al. Feb 1997 A
5600586 Lee et al. Feb 1997 A
5606523 Mirabel Feb 1997 A
5608679 Mi et al. Mar 1997 A
5612642 McClinyock Mar 1997 A
5617357 Haddad et al. Apr 1997 A
5623438 Guritz et al. Apr 1997 A
5627790 Golla et al. May 1997 A
5633603 Lee May 1997 A
5636288 Bonneville et al. Jun 1997 A
5644531 Kuo et al. Jul 1997 A
5654568 Nakao Aug 1997 A
5656513 Wang et al. Aug 1997 A
5657332 Auclair et al. Aug 1997 A
5661060 Gill et al. Aug 1997 A
5663907 Frayer et al. Sep 1997 A
5672959 Der Sep 1997 A
5675280 Nomura Oct 1997 A
5677867 Hazani Oct 1997 A
5677869 Fazio et al. Oct 1997 A
5683925 Irani et al. Nov 1997 A
5689459 Chang et al. Nov 1997 A
5694356 Wong et al. Dec 1997 A
5696929 Hasbun et al. Dec 1997 A
5708608 Park et al. Jan 1998 A
5712814 Fratin et al. Jan 1998 A
5712815 Bill et al. Jan 1998 A
5715193 Norman Feb 1998 A
5717581 Canclini Feb 1998 A
5717632 Richart et al. Feb 1998 A
5717635 Akatsu Feb 1998 A
5726946 Yamagata et al. Mar 1998 A
5748534 Dunlap et al. May 1998 A
5751037 Aozasa et al. May 1998 A
5751637 Chen et al. May 1998 A
5754475 Bill et al. May 1998 A
5760445 Diaz Jun 1998 A
5760634 Fu Jun 1998 A
5768192 Eitan Jun 1998 A
5768193 Lee et al. Jun 1998 A
5771197 Kim Jun 1998 A
5774395 Richart et al. Jun 1998 A
5777919 Chi-Yung et al. Jul 1998 A
5781476 Seki et al. Jul 1998 A
5781478 Takeuchi et al. Jul 1998 A
5784314 Sali et al. Jul 1998 A
5787036 Okazawa Jul 1998 A
5793079 Georgescu et al. Aug 1998 A
5801076 Ghneim et al. Sep 1998 A
5805500 Campardo et al. Sep 1998 A
5808506 Tran Sep 1998 A
5812449 Song Sep 1998 A
5812456 Hull et al. Sep 1998 A
5812457 Arase Sep 1998 A
5815435 Van Tran Sep 1998 A
5822256 Bauer et al. Oct 1998 A
5825683 Chang et al. Oct 1998 A
5825686 Schmitt-Landsiedel et al. Oct 1998 A
5828601 Hollmer et al. Oct 1998 A
5834851 Ikeda et al. Nov 1998 A
5835935 Estakhri et al. Nov 1998 A
5836772 Chang et al. Nov 1998 A
5841700 Chang Nov 1998 A
5847441 Cutter et al. Dec 1998 A
5861771 Matsuda et al. Jan 1999 A
5862076 Eitan Jan 1999 A
5864164 Wen Jan 1999 A
5867429 Chen et al. Feb 1999 A
5870334 Hemink et al. Feb 1999 A
5870335 Khan et al. Feb 1999 A
5875128 Ishizuka et al. Feb 1999 A
5877537 Aoki Mar 1999 A
5880620 Gitlin et al. Mar 1999 A
5886927 Takeuchi Mar 1999 A
RE36179 Shimoda Apr 1999 E
5892710 Fazio et al. Apr 1999 A
5903031 Yamada et al. May 1999 A
5910924 Tanaka et al. Jun 1999 A
5920503 Lee et al. Jul 1999 A
5920507 Takeuchi et al. Jul 1999 A
5926409 Engh et al. Jul 1999 A
5930195 Komatsu et al. Jul 1999 A
5933366 Yoshikawa Aug 1999 A
5933367 Matsuo et al. Aug 1999 A
5936888 Sugawara Aug 1999 A
5940332 Artieri Aug 1999 A
5946258 Evertt et al. Aug 1999 A
5946558 Hsu Aug 1999 A
5949714 Hemink et al. Sep 1999 A
5949728 Liu et al. Sep 1999 A
5963412 En Oct 1999 A
5963465 Eitan Oct 1999 A
5966603 Eitan Oct 1999 A
5969989 Iwahashi Oct 1999 A
5969993 Takeshima Oct 1999 A
5973373 Krautschneider et al. Oct 1999 A
5982666 Campardo Nov 1999 A
5986940 Atsumi et al. Nov 1999 A
5990526 Bez et al. Nov 1999 A
5991202 Derhacobian et al. Nov 1999 A
5999444 Fujiwara et al. Dec 1999 A
5999494 Holzrichter Dec 1999 A
6000006 Bruce et al. Dec 1999 A
6005423 Schultz Dec 1999 A
6011725 Eitan Jan 2000 A
6018186 Hsu Jan 2000 A
6020241 You et al. Feb 2000 A
6028324 Su et al. Feb 2000 A
6030871 Eitan Feb 2000 A
6034403 Wu Mar 2000 A
6034896 Ranaweera et al. Mar 2000 A
6037627 Kitamura et al. Mar 2000 A
6040610 Noguchi et al. Mar 2000 A
6044019 Cernea et al. Mar 2000 A
6044022 Nachumovsky Mar 2000 A
6063666 Chang et al. May 2000 A
6064226 Earl May 2000 A
6064251 Park May 2000 A
6064591 Takeuchi et al. May 2000 A
6074916 Cappelletti Jun 2000 A
6075402 Ghilardelli Jun 2000 A
6075724 Li et al. Jun 2000 A
6078518 Chevallier Jun 2000 A
6081456 Dadashev Jun 2000 A
6084794 Lu et al. Jul 2000 A
6091640 Kawahara et al. Jul 2000 A
6094095 Murray et al. Jul 2000 A
6097639 Choi et al. Aug 2000 A
6107862 Mukainakano et al. Aug 2000 A
6108240 Lavi et al. Aug 2000 A
6108241 Chevallier Aug 2000 A
6117714 Beatty Sep 2000 A
6118207 Ormerod et al. Sep 2000 A
6118692 Banks Sep 2000 A
6122198 Haddad et al. Sep 2000 A
6128226 Eitan et al. Oct 2000 A
6128227 Kim Oct 2000 A
6130572 Ghilardelli et al. Oct 2000 A
6130574 Bloch et al. Oct 2000 A
6133095 Eitan et al. Oct 2000 A
6134156 Eitan Oct 2000 A
6137718 Reisinger Oct 2000 A
6147904 Liron Nov 2000 A
6150800 Kinoshita et al. Nov 2000 A
6154081 Pakkala et al. Nov 2000 A
6156149 Cheung et al. Dec 2000 A
6157242 Fukui Dec 2000 A
6157570 Nachumovsky Dec 2000 A
6163048 Hirose et al. Dec 2000 A
6163484 Uekubo Dec 2000 A
6169691 Pasotti et al. Jan 2001 B1
6175523 Yang et al. Jan 2001 B1
6181597 Nachumovsky Jan 2001 B1
6181605 Hollmer et al. Jan 2001 B1
6185143 Perner et al. Feb 2001 B1
6188211 Rincon-Mora et al. Feb 2001 B1
6190966 Ngo et al. Feb 2001 B1
6192445 Rezvani Feb 2001 B1
6195196 Kimura et al. Feb 2001 B1
6198342 Kawai Mar 2001 B1
6201282 Eitan Mar 2001 B1
6201737 Hollmer et al. Mar 2001 B1
6205056 Pan et al. Mar 2001 B1
6205059 Gutala et al. Mar 2001 B1
6208200 Arakawa Mar 2001 B1
6208557 Bergemont et al. Mar 2001 B1
6214666 Mehta Apr 2001 B1
6215148 Eitan Apr 2001 B1
6215697 Lu et al. Apr 2001 B1
6215702 Derhacobian et al. Apr 2001 B1
6218695 Nachumovsky Apr 2001 B1
6219277 Devin et al. Apr 2001 B1
6219290 Chang et al. Apr 2001 B1
6222762 Guterman et al. Apr 2001 B1
6222768 Hollmer et al. Apr 2001 B1
6233180 Eitan et al. May 2001 B1
6240032 Fukumoto May 2001 B1
6240040 Akaogi et al. May 2001 B1
6246555 Tham Jun 2001 B1
6252442 Malherbe Jun 2001 B1
6252799 Liu et al. Jun 2001 B1
6256231 Lavi et al. Jul 2001 B1
6261904 Pham et al. Jul 2001 B1
6265268 Halliyal et al. Jul 2001 B1
6266281 Derhacobian et al. Jul 2001 B1
6272047 Mihnea et al. Aug 2001 B1
6275414 Randolph et al. Aug 2001 B1
6281545 Liang et al. Aug 2001 B1
6282133 Nakagawa et al. Aug 2001 B1
6282145 Tran et al. Aug 2001 B1
6285246 Basu Sep 2001 B1
6285574 Eitan Sep 2001 B1
6285589 Kajitani Sep 2001 B1
6285614 Mulatti et al. Sep 2001 B1
6287917 Park et al. Sep 2001 B1
6292394 Cohen et al. Sep 2001 B1
6297096 Boaz Oct 2001 B1
6297143 Foote et al. Oct 2001 B1
6297974 Ganesan et al. Oct 2001 B1
6304485 Harari et al. Oct 2001 B1
6307784 Hamilton et al. Oct 2001 B1
6307807 Sakui et al. Oct 2001 B1
6308485 Blumenthal Oct 2001 B1
6320786 Chang et al. Nov 2001 B1
6324094 Chevallier Nov 2001 B1
6326265 Liu et al. Dec 2001 B1
6330192 Ohba et al. Dec 2001 B1
6331950 Kuo et al. Dec 2001 B1
6335874 Eitan Jan 2002 B1
6337502 Eitan et al. Jan 2002 B1
6339556 Watanabe Jan 2002 B1
6343033 Parker Jan 2002 B1
6346442 Aloni et al. Feb 2002 B1
6348381 Jong Feb 2002 B1
6348711 Eitan Feb 2002 B1
6351415 Kushnarenko Feb 2002 B1
6353356 Liu Mar 2002 B1
6353554 Banks Mar 2002 B1
6353555 Jeong Mar 2002 B1
6356469 Roohparvar et al. Mar 2002 B1
6359501 Lin et al. Mar 2002 B2
6374337 Estakhri Apr 2002 B1
6385086 Mihara et al. May 2002 B1
6396741 Bloom et al. May 2002 B1
6400209 Matsuyama et al. Jun 2002 B1
6400607 Pasotti et al. Jun 2002 B1
6407537 Antheunis Jun 2002 B2
6410388 Kluth et al. Jun 2002 B1
6417081 Thurgate Jul 2002 B1
6418506 Pashley et al. Jul 2002 B1
6426898 Mihnea et al. Jul 2002 B1
6429063 Eitan Aug 2002 B1
6433624 Grossnickle et al. Aug 2002 B1
6436766 Rangarajan et al. Aug 2002 B1
6436768 Yang et al. Aug 2002 B1
6438031 Fastow Aug 2002 B1
6438035 Yamamoto et al. Aug 2002 B2
6440797 Wu et al. Aug 2002 B1
6442074 Hamilton et al. Aug 2002 B1
6445030 Wu et al. Sep 2002 B1
6449188 Fastow Sep 2002 B1
6449190 Bill Sep 2002 B1
6452438 Li Sep 2002 B1
6456528 Chen Sep 2002 B1
6456533 Hamilton et al. Sep 2002 B1
6458656 Park et al. Oct 2002 B1
6458677 Hopper et al. Oct 2002 B1
6469929 Kushnarenko et al. Oct 2002 B1
6469935 Hayashi Oct 2002 B2
6472706 Widdershoven et al. Oct 2002 B2
6677805 Shor et al. Oct 2002 B2
6477085 Kuo Nov 2002 B1
6490204 Bloom et al. Dec 2002 B2
6496414 Kasa et al. Dec 2002 B2
6504756 Gonzalez et al. Jan 2003 B2
6510082 Le et al. Jan 2003 B1
6512701 Hamilton et al. Jan 2003 B1
6519180 Tran et al. Feb 2003 B2
6519182 Derhacobian et al. Feb 2003 B1
6522585 Pasternak Feb 2003 B2
6525696 Powell et al. Feb 2003 B2
6525969 Kurihara et al. Feb 2003 B1
6528390 Komori et al. Mar 2003 B2
6529412 Chen et al. Mar 2003 B1
6532173 Lioka et al. Mar 2003 B2
6535020 Yin Mar 2003 B1
6535434 Maayan et al. Mar 2003 B2
6537881 Rangarjan et al. Mar 2003 B1
6538270 Randolph et al. Mar 2003 B1
6541816 Ramsbey et al. Apr 2003 B2
6552387 Eitan Apr 2003 B1
6555436 Ramsbey et al. Apr 2003 B2
6559500 Torii May 2003 B2
6562683 Wang et al. May 2003 B1
6566194 Ramsbey et al. May 2003 B1
6566699 Eitan May 2003 B2
6567303 Hamilton et al. May 2003 B1
6567312 Torii et al. May 2003 B1
6570211 He et al. May 2003 B1
6574139 Kurihara Jun 2003 B2
6577514 Shor et al. Jun 2003 B2
6577532 Chevallier Jun 2003 B1
6577547 Ukon Jun 2003 B2
6583005 Hashimoto et al. Jun 2003 B2
6583479 Fastow et al. Jun 2003 B1
6584017 Maayan et al. Jun 2003 B2
6590811 Hamilton et al. Jul 2003 B1
6593606 Randolph et al. Jul 2003 B1
6594181 Yamada Jul 2003 B1
6608526 Sauer Aug 2003 B1
6614052 Zhang Sep 2003 B1
6614295 Tsuchi Sep 2003 B2
6614686 Kawamura Sep 2003 B1
6614692 Maayan et al. Sep 2003 B2
6617179 Kim Sep 2003 B1
6617215 Halliyal et al. Sep 2003 B1
6618290 Wang et al. Sep 2003 B1
6624672 Confaloneri et al. Sep 2003 B2
6627555 Eitan et al. Sep 2003 B2
6630384 Sun et al. Oct 2003 B1
6633496 Maayan et al. Oct 2003 B2
6633499 Eitan et al. Oct 2003 B1
6633956 Mitani Oct 2003 B1
6636440 Maayan et al. Oct 2003 B2
6639271 Zheng et al. Oct 2003 B1
6639837 Takano et al. Oct 2003 B2
6639844 Liu et al. Oct 2003 B1
6639849 Takahashi et al. Oct 2003 B2
6642148 Ghandehari et al. Nov 2003 B1
6642573 Halliyal et al. Nov 2003 B1
6642586 Takahashi Nov 2003 B2
6643170 Huang et al. Nov 2003 B2
6643177 Le et al. Nov 2003 B1
6643178 Kurihara Nov 2003 B2
6643181 Sofer et al. Nov 2003 B2
6645801 Ramsbey et al. Nov 2003 B1
6649972 Eitan Nov 2003 B2
6650568 Iijima Nov 2003 B2
6653190 Yang et al. Nov 2003 B1
6653191 Yang et al. Nov 2003 B1
6654296 Jang et al. Nov 2003 B2
6664588 Eitan Dec 2003 B2
6665769 Cohen et al. Dec 2003 B2
6670241 Kamal et al. Dec 2003 B1
6670669 Kawamura Dec 2003 B1
6674138 Halliyal et al. Jan 2004 B1
6680509 Wu et al. Jan 2004 B1
6686242 Willer et al. Feb 2004 B2
6690602 Le et al. Feb 2004 B1
6700818 Shappir et al. Mar 2004 B2
6717207 Kato Apr 2004 B2
6723518 Papsidero et al. Apr 2004 B2
6731542 Le et al. May 2004 B1
6738289 Gongwer et al. May 2004 B2
6744692 Shiota et al. Jun 2004 B2
6765259 Kim Jul 2004 B2
6768165 Eitan Jul 2004 B1
6781876 Forbes et al. Aug 2004 B2
6788579 Gregori et al. Sep 2004 B2
6791396 Shor et al. Sep 2004 B2
6794249 Palm et al. Sep 2004 B2
6831872 Matsuoka Dec 2004 B2
6836431 Chang Dec 2004 B2
6871258 Micheloni et al. Mar 2005 B2
6885585 Maayan et al. Apr 2005 B2
6912160 Yamada Jun 2005 B2
6917544 Maayan et al. Jul 2005 B2
6928001 Avni et al. Aug 2005 B2
6937523 Eshel Aug 2005 B2
6967872 Quader et al. Nov 2005 B2
6996692 Kouno Feb 2006 B2
7079420 Shappir et al. Jul 2006 B2
7158411 Yeh et al. Jan 2007 B2
7489562 Maayan et al. Feb 2009 B2
7573745 Maayan et al. Aug 2009 B2
20010006477 Banks Jul 2001 A1
20020004878 Norman Jan 2002 A1
20020004921 Muranaka et al. Jan 2002 A1
20020034097 Banks Mar 2002 A1
20020064911 Eitan May 2002 A1
20020071313 Takano et al. Jun 2002 A1
20020076710 Papsidero et al. Jun 2002 A1
20020132436 Eliyahu et al. Sep 2002 A1
20020140109 Keshavarzi et al. Oct 2002 A1
20020145465 Shor et al. Oct 2002 A1
20020191465 Maayan et al. Dec 2002 A1
20020199065 Subramoney et al. Dec 2002 A1
20030001213 Lai Jan 2003 A1
20030021155 Yachareni et al. Jan 2003 A1
20030072192 Bloom et al. Apr 2003 A1
20030076710 Sofer et al. Apr 2003 A1
20030117841 Yamashita Jun 2003 A1
20030117861 Maayan et al. Jun 2003 A1
20030131186 Buhr Jul 2003 A1
20030134476 Roizin et al. Jul 2003 A1
20030142544 Maayan et al. Jul 2003 A1
20030145176 Dvir et al. Jul 2003 A1
20030145188 Cohen et al. Jul 2003 A1
20030155659 Verma et al. Aug 2003 A1
20030156456 Shappir et al. Aug 2003 A1
20030190786 Ramsbey et al. Oct 2003 A1
20030197221 Shinozaki et al. Oct 2003 A1
20030202411 Yamada Oct 2003 A1
20030206435 Takahashi Nov 2003 A1
20030208663 Van Buskirk et al. Nov 2003 A1
20030209767 Takahashi et al. Nov 2003 A1
20030214844 Iijima Nov 2003 A1
20030218207 Hashimoto et al. Nov 2003 A1
20030218913 Le et al. Nov 2003 A1
20030222303 Fukuda et al. Dec 2003 A1
20030227796 Miki et al. Dec 2003 A1
20040008541 Maayan et al. Jan 2004 A1
20040012993 Kurihara Jan 2004 A1
20040013000 Torii Jan 2004 A1
20040014290 Yang et al. Jan 2004 A1
20040021172 Zheng et al. Feb 2004 A1
20040027858 Takahashi et al. Feb 2004 A1
20040151034 Shor et al. Aug 2004 A1
20040153621 Polansky et al. Aug 2004 A1
20040157393 Hwang Aug 2004 A1
20040222437 Avni et al. Nov 2004 A1
20050117395 Maayan et al. Jun 2005 A1
20050140405 Do et al. Jun 2005 A1
20070103991 Yeh et al. May 2007 A1
20080123413 Maayan et al. May 2008 A1
20090279360 Lee et al. Nov 2009 A1
20090316491 Park et al. Dec 2009 A1
Foreign Referenced Citations (82)
Number Date Country
0 656 628 Jun 1995 EP
0751560 Jun 1995 EP
0693781 Jan 1996 EP
0704851 Mar 1996 EP
0 822 557 Feb 1998 EP
0 843 398 May 1998 EP
0580467 Sep 1998 EP
0461764 Jul 2000 EP
1032034 Aug 2000 EP
1 071 096 Jan 2001 EP
1067557 Jan 2001 EP
1073120 Jan 2001 EP
1 091 418 Apr 2001 EP
1126468 Aug 2001 EP
0 822 557 Sep 2001 EP
0740307 Dec 2001 EP
1164597 Dec 2001 EP
1 207 552 May 2002 EP
1 223 586 Jul 2002 EP
0 656 628 Apr 2003 EP
1 365 452 Nov 2003 EP
001217744 Mar 2004 EP
1297899 Nov 1972 GB
2157489 Mar 1985 GB
54-053929 Apr 1979 JP
60-200566 Oct 1985 JP
60201594 Oct 1985 JP
63-249375 Oct 1988 JP
3-285358 Dec 1991 JP
04-226071 Aug 1992 JP
04-291962 Oct 1992 JP
05021758 Jan 1993 JP
06151833 May 1994 JP
06-232416 Aug 1994 JP
07193151 Jul 1995 JP
08-106791 Apr 1996 JP
408106791 Apr 1996 JP
08-297988 Nov 1996 JP
408297988 Nov 1996 JP
09-017981 Jan 1997 JP
409017981 Jan 1997 JP
09162314 Jun 1997 JP
10-106276 Apr 1998 JP
08258215 Apr 1998 JP
10 334676 Dec 1998 JP
11-162182 Jun 1999 JP
11-354758 Dec 1999 JP
411354758 Dec 1999 JP
2000 021183 Jan 2000 JP
2001-085646 Mar 2001 JP
02001085646 Mar 2001 JP
2001-118392 Apr 2001 JP
02001118392 Apr 2001 JP
2001-156189 Jun 2001 JP
2002-216488 Aug 2002 JP
02002216488 Aug 2002 JP
3358663 Oct 2002 JP
WO 8100790 Mar 1981 WO
WO 9615553 May 1996 WO
WO 9625741 Aug 1996 WO
WO 9803977 Jan 1998 WO
WO 9931670 Jun 1999 WO
WO 9957728 Nov 1999 WO
WO 0046808 Aug 2000 WO
WO 0165566 Sep 2001 WO
WO 0165567 Sep 2001 WO
WO 0184552 Nov 2001 WO
WO 0243073 May 2002 WO
WO 03032393 Apr 2003 WO
WO 03036651 May 2003 WO
WO 03054964 Jul 2003 WO
WO 03063167 Jul 2003 WO
WO 03063168 Jul 2003 WO
WO 03079370 Sep 2003 WO
WO 03079446 Sep 2003 WO
WO 03083916 Oct 2003 WO
WO 03088258 Oct 2003 WO
WO 03088259 Oct 2003 WO
WO 03088260 Oct 2003 WO
WO 03088261 Oct 2003 WO
WO 03088353 Oct 2003 WO
WO 03100790 Dec 2003 WO
Related Publications (1)
Number Date Country
20060152975 A1 Jul 2006 US
Continuations (2)
Number Date Country
Parent 11024750 Dec 2004 US
Child 11246193 US
Parent 10191451 Jul 2002 US
Child 11024750 US