This invention relates to spring coiling machines and, more particularly, to a multiple wire feed apparatus for a spring coiling machine.
A continuing effort to more cost efficiently manufacture furniture of different kinds has led to continuous improvements in the production of spring coils. Further, there is a continuing effort to improve the quality and comfort of furniture in which spring coils are used, for example, seating cushions and mattresses. In particular, in order to support a human body in the proper posture when lying on a mattress, in many mattresses, it is desired to provide a mattress with spring coils at different locations having differing stiffness or spring constants to conform with the loading imposed by a human body.
In order to change the stiffness of a spring coil, a different diameter or gage wire is sometimes used to form the coil, for example, a thicker wire is used to make a stiffer coil and a thinner wire is used to make a less stiff coil. The tooling of known spring coiling machines is made to handle a specific wire diameter. Therefore, if it is desired to use a wire of a different diameter, the wire specific tooling of the spring coiling machine must be replaced with tooling made to handle wire of the different diameter. Obviously, the requirement of physically switching the tooling on a spring coiling machine so that it can work with a different size of wire is time consuming and expensive. Not only is there the added cost of skilled labor required to modify the spring coiling machine, but there is a significant cost in the production lost from the spring coiling machine while it is shut down for the tooling changeover. In addition, the further cost to manufacture and store different sets of wire specific tooling is also burdensome.
It is known to be able to automatically and continuously manufacture spring coils of different diameter and pitch from the same wire, thereby providing spring coils of differing stiffness or spring constants. However, the limitation of making spring coils from only a single wire severely limits the range of spring coil stiffness that can be provided. Further, the end product, for example, a mattress, is a fixed size and is normally designed to use a predetermined number of spring coils. Changing the diameter of selected spring coils to change the coil stiffness causes the number of spring coils used in the mattress to also change. Adding another variable, that is, the number of spring coils, substantially complicates the mattress design and manufacturing processes; and therefore, in the production of mattresses and other seating furniture, it is not practical to change spring coil stiffness by changing the spring coil diameter.
Consequently, there is a need for a spring coiling machine having a wire feed that permits coil springs to be automatically and continuously manufactured from different sizes of wire.
The present invention provides a simple and reliable apparatus for automatically and rapidly changing wires and tool settings to an input of a spring coiling machine. The apparatus of the present invention uses the same tooling on a spring coiling machine to make spring coils using different diameters of wires. Further, the apparatus of the present invention is able to automatically selectively feed wires of different diameters sizes to a spring coiling machine, thereby saving on the need for manual labor to change tooling. The apparatus of the present invention is especially useful in making spring coils for furniture, such as mattresses and seating furniture, in which spring coils of a common diameter but differing stiffnesses are often used. By providing for the automatic and continuous manufacture of constant diameter spring coils from wires of different sizes, the multiple wire feed apparatus permits such furniture to be made more quickly and at a substantially reduced cost.
According to the principles of the present invention and in accordance with the preferred embodiments, the invention provides an apparatus for making mattress and upholstery spring coils. The apparatus has a powered wire feeding device and a wire guide adapted to support first and second wires of different diameters. The wire guide is located on an input side of the wire feeding device and is movable to first and second positions to align the first and second wires, respectively, with the wire feeding device. A spring coiling machine is positioned adjacent an output side of the wire feeding device. When the wire guide is in the first position, the spring coiling machine receives the first wire of one diameter from the wire feeding device; and the spring coiling machine bends the first wire into a spring coil of a desired diameter and pitch and having a first stiffness. When the wire guide is in the second position, the spring coiling machine receives the second wire of another diameter from the wire feeding device; and the spring coiling machine bends the second wire into a spring coil of the desired diameter and pitch but having a second stiffness.
In another embodiment of the invention, a method is provided for making mattress and upholstery spring coils in which a plurality of wire paths are provided adjacent an inlet of a powered wire feeding device. The plurality of wire paths are moved to align one of the plurality of wire paths with an input side of the wire feeding device. The wire feeding device moves a first wire having a first diameter into a spring coiling machine, and the spring coiling machine is operated to make a first spring coil having a desired diameter and a first stiffness. The operation of the spring coiling machine and the wire feeding device is terminated, and the plurality of wire paths are moved to align another wire path with the wire feeding device. The wire feeding device moves a second wire having a second diameter into the spring coiling machine, and the spring coiling machine makes a second spring coil having the desired diameter and a second stiffness.
In one aspect of this invention, the spring coiling machine has a bending device; and after the spring coiling machine makes the first spring coil, the bending device is adjusted as a function of the diameter of the second wire.
These and other objects and advantages of the present invention will become more readily apparent during the following detailed description taken in conjunction with the drawings herein.
Referring to
The structure of the first multiple wire feeder 22 will be described in detail; and the explanation of the first multiple wire feeder 22 applies equally to the second multiple wire feeder 24. The first multiple wire feeder 22 has a pair of guide bars 28 that are rigidly connected to a supporting structure 30. A carriage 32 has guide ways 34 that are shaped to receive the guide bars 28 such that the carriage 32 is supported by, and readily slides over, the guide bars 28. A plurality of pairs of wire straightening rollers 36 are rotatably mounted on respective axles 38; and the axles 38 are rigidly mounted to the carriage 32. Referring to
As shown in
An actuator 62, for example, an electric solenoid, a fluid cylinder, a device that converts rotary motion into linear motion, etc., is rigidly connected to the supporting structure 30. The carriage 32 is mounted to a distal end of an operating element 64 of the actuator 62, for example, an armature, a cylinder rod, a rack, etc. Thus, the linear actuator 62 is operable to translate or reciprocate the carriage 32 and first wire guide block 52 in a direction generally parallel to centerlines 43 of the axles 38. The carriage 32 and first wire guide block 52 are reciprocated in order to align one of the second ends 66, 68 of the respective wire paths 54 or 56 with an input side of a powered wire feeding device 69.
The wire feeding device 69 has a powered wire feed roller 70 that is connected to an output shaft 72 of a feed motor 74 that, in turn, is rigidly connected to supporting structure 30. A pressure roller 76 is rotatably mounted to the distal end of an axle 78 having a proximal end rigidly connected to the supporting structure 30. Referring to
The feed and pressure rollers 70, 76 have respective grooves 80, 82 that having respective cross-sectional profiles adapted to receive coil wire. When the pressure actuator 84 is in a state in which little or no force is applied to the axle 78, the pressure roller 76 separates slightly from the feed roller 70; and thus, the groove 82 of the pressure roller 76 also separates from the groove 80 of the feed roller 70. The grooves 80, 82 separate by a distance sufficient to permit a wire, for example, a wire extending from an outer end 66, 68 of one of the grooves of the first wire guide block 52, to move laterally into or out of a location between the grooves 80, 82.
As shown in
A second wire guide block 86 is rigidly mounted to the supporting structure 30 adjacent output sides of the powered wire feeding devices 69a, 69b and has first and second grooves or wire paths 88, 90, respectively. The second guide block 86 is positioned such that a first end 92 of the first wire path 88 is positioned to receive a wire being fed from between the grooves 80, 82 of the respective feed and pressure rollers 70, 76. As shown in
The structure and operation of a spring coiling machine 110 of
The actuators and motors of the multiple wire feed apparatus 20 and spring coiling machine 110 are controlled by a programmable controller 140 that is electrically connected to user input/output (“I/O”) devices 142, for example, pushbuttons, keyboard, visual displays, lights, printer, etc. Using one or more of the I/O devices 142, a user is able to input a program identifying the basic specifications of a desired spring coil. The control 140 is electrically connected to a microcontroller 144 that is responsive to the desired spring coil specifications and provides outputs to various motor controllers 146 that control motors 118, 120, 122 on the spring coiling machine such that the desired spring coil is made. Feedback devices 148 provide feedback information to the motor controllers 146 to facilitate the control of the motors 118, 120, 122 in accordance with the commanded operation provided by the microcontroller 144. The microcontroller 144 also provides command signals to motor controllers 150 that are operative to operate motors 74a, 74b of the multiple wire feed apparatus 20 in order to initiate and terminate a wire feed at the appropriate times. Feedback devices 152 facilitate the control of the motors 74a, 74b by the motor controllers 150. A programmable logic controller 154 is also electrically connected to the programmable controller 140 and provides output signals to the actuators 84a, 84b, 62a, 62b of the multiple wire feed apparatus 20.
In use, when making spring coils for furniture, for example, mattresses, in order to support a human body in the proper posture when lying on a mattress, it is sometimes desirable to provide a mattress with spring coils at different locations having differing stiffnesses or spring constants to conform with the loading imposed by a human body. For example, a mattress may be divided into as many as five sections, a head section, an chest section, a waist section, a hip section and a leg section, wherein each section has spring coils of a specific and often different stiffness. Thus, in order to use spring coils of the same diameter, the spring coils for each section must be made with wire of a different size, that is, diameter. Using the example above, assume that the coils for the chest section are a medium stiffness, the coils for the hip section are a heavy stiffness and the coils for the head, waist and leg section are a light stiffness. The number of coils and their stiffness will vary depending on the mattress size, its target market, posture support profile, etc. Once designed, the number of coils to be made for each mattress section and the wire used is input and stored in the microcontroller 140. Further, the bender roller and pitch settings for each of the wire sizes for a spring coil diameter is also input and stored in the microcontroller 140 and/or the microprocessor 144.
To make spring coils for a mattress, the user first identifies or inputs either, a particular type of mattress or, the number of coils and wire size to be used for each mattress section. Upon initiating a cycle of operation, the microcontroller 140 causes the bending roller 114 and pitching tool 116 to be adjusted, so that a spring coil of a desired diameter will be made from a first wire size to provide a less stiff spring coil for the head section. The microcontroller 140 then commands the multiple wire feed apparatus of
After a number of coils have been made so that the head section of the mattress is complete, the microcontroller 140 commands the multiple wire feed apparatus to switch to a second wire size, for example, a heavier wire to make stiffer spring coils for the chest section of the mattress. Simultaneously, the microprocessor 144 causes the bending roller 114 and pitching tool 116 to be adjusted, so that a spring coil of the desired diameter will be made from the second, heavier wire size. The microcontroller 144 causes the heavier wire feed to be initiated, and a desired number of stiffer spring coils for the chest section of the mattress are made. Thereafter, the microcontroller 140 causes the multiple wire feed apparatus 20 to switch to a third, lighter gage wire, so that a number of coils are made for the waist section that have a lighter stiffness. After adjusting the bending roller and the pitching tool for the smaller size wire, the process is repeated in order make lighter stiffness coils for the waist section of the mattress. The above process is repeated using a heavier gage wire for the hip section and a lighter gage wire for the leg section. Thus, the multiple wire feed apparatus 20 permits spring coils to be continuously made from different wire sizes or gages without manually changing tooling on the machine.
The operation of the multiple wire feed apparatus is generally illustrated in FIG. 11. First, at 950, a determination is made whether the cutter 132 has completed its operation. If so, then at 952, the microcontroller 144 determines whether a new wire size is required. Assume that the spring coils are currently being made from the wire 44 and that a different wire size is not desired at this time. The PLC 154 then determines, at 954, whether a wire feed start command has been received. If so, the PLC proceeds, at 956, to engage the active pressure roller 76a by changing the state of an output signal to the actuator 84a. Changing the state of the actuator 84a causes pressure to be applied to the axle 78a, thereby moving the pressure roller 76a toward the feed roller 70a and engaging the wire 44 between the grooves 80, 82. The PLC 154 then provides a signal to the microcontroller 144 indicating that the pressure roller 76a is engaged.
Thereafter, at 958, the microcontroller 144 provides an output signal to the motor control 150 that causes the feed motor 74a to run. Upon operating the feed motor 74a, the wire 44 is pulled off its supply coil, through wire straightening rollers 36 and through the first wire feed guide block 52, and the wire 44 is pushed across the second wire guide block 86 into the spring coiling machine 110 of FIG. 9. The microcontroller 144 continues to operate the spring coiling machine 110 until a desired number of coils have been manufactured. It should be noted that in that process, the feed motor 74a may or may not be stopped during the operation of the wire cutter 132 as each spring coil is manufactured. If the feed motor 74a is stopped, a command is detected at 960, by motor controller 150 which, in turn, at 962, provides outputs to the motor 74a bringing it to the desired stopped state.
After a number of spring coils have been made from the wire 44, it may be desirable to manufacture a number of stiffer spring coils from a thicker wire, for example, wire 46. The microcontroller 144 then, at 964 of
After receiving a signal from the PLC 154 that the wire 46 is in the feed position, the microcontroller 144 then proceeds, at 954, to initiate a wire feed command. The PLC 154 first, at 956, engages the active pressure roller 76a and thereafter, at 958, operates the active feed roller 70a in a manner as previously described. The microcontroller 144 in addition operates the wire coiling machine 110 to produce a number of spring coils with the different sized wire 46. If the wire 46 has a thicker diameter, the spring coils made therefrom will be stiffer, feel firmer and provide more support for the user. If the wire 46 has a smaller diameter than the wire 44, the spring coils will be less stiff, feel softer and provide less support to the user. Thus, using the apparatus just described, spring coils for furniture can be automatically and continuously produced from different wire sizes in order to provide spring coils of differing thickness. Further, the diameter in pitch of spring coils made from each size wire may also be adjusted to provide further variations in stiffness.
As shown in
In switching from wire 46 to wire 45, the process of
The PLC 154 then switches the state of the pressure actuator 84b, thereby causing the pressure roller 76b to secure the wire 45 in the grooves 80b, 82b of the respective feed and pressure rollers 70b, 76b. Next, at 958, the microcontroller 144 runs the active feed roller by providing command signals to the motor controller 150b that, in turn, operates the active feed motor 74b in the forward direction. Thus, wire 45 is pulled from a feed coil, through wire straightening rollers 36b and along wire path 54b of the wire guide block 52b. Further, rotation of the active feed roller 70b pushes the wire 45 along wire path 90 of the second wire guide block 86 and into the spring coiling machine 110. Thus, a number of spring coils are made from wire 45 which is a different size than the wires 44 and 46.
If a change in spring coil stiffness is again required, the second multiple wire feeder can be used to provide a fourth wire 47 of a different size from the wires 44, 45, 46. In a manner similar to that described with respect to the change from wire 44 to wire 46, since the wire 47 is on the same carriage 32b as the wire 45, the wire 45 is retracted to a position adjacent the feed roller 70b as shown in FIG. 8. The feed roller 70b is stopped, and the pressure roller 76b is disengaged. Next, the carriage actuator 62b is operated so that the wire 47 is moved into a feeding relationship with respect to the feed and pressure rollers 70b, 76b. As shown in
The multiple wire feed apparatus described herein provides a simple and reliable apparatus for automatically and rapidly changing wires to an input of a spring coiling machine. The multiple wire feed apparatus permits the use of the same tooling on a spring coiling machine to make spring coils using different sizes of wires. Further, the changing of wire sizes with the multiple wire feed apparatus is accomplished automatically without the need for manual labor. Thus, the multiple wire feed apparatus is especially useful in making spring coils for furniture such as mattresses and seating furniture in which coil springs of a common diameter but a differing stiffness are often desired. By providing for the automatic and continuous manufacture of spring coils from wires of different sizes, the multiple wire feed apparatus permits such furniture to be made more quickly and at a substantially reduced cost.
While the invention has been illustrated by the description of one embodiment and while the embodiment has been described in considerable detail, there is no intention to restrict nor in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those who are skilled in the art. For example, in the described embodiment, four wires 44, 45, 46, 47 are selectively used to make spring coils of differing stiffness. As will be appreciated, similar structure can be used to feed additional wires. Further, in
Therefore, the invention in its broadest aspects is not limited to the specific details shown and described. Consequently, departures may be made from the details described herein without departing from the spirit and scope of the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
1908884 | Burd et al. | May 1933 | A |
2119002 | Bergevin et al. | May 1938 | A |
2944755 | Foster | Jul 1960 | A |
4043494 | Bickford et al. | Aug 1977 | A |
4112721 | Takase et al. | Sep 1978 | A |
5131251 | Jacobson | Jul 1992 | A |
5243746 | Shinichi | Sep 1993 | A |
5713115 | Knoepfel et al. | Feb 1998 | A |
6006572 | Tsuritani | Dec 1999 | A |
6045023 | Michard | Apr 2000 | A |
6186440 | Yamakawa et al. | Feb 2001 | B1 |
6374655 | Hresc | Apr 2002 | B1 |
Number | Date | Country |
---|---|---|
08102354 | Apr 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20030074944 A1 | Apr 2003 | US |