It is well known in the prior art to use molded trays constructed from pulp to carry items such as beverage cups and food items from one place to another. Particularly popular is a molded pulp beverage container tray having four symmetrically displaced recesses for carrying 1-4 beverage cups. Such a conventional beverage tray, which is shown in
The invention is directed to columns, trays and systems comprising columns and trays, as well as to bails for engaging conventional trays, that enable a person to conveniently and safely transport objects, such as one or more beverage containers, by tension (hanging) as opposed to compression (supporting). Unlike known embodiments in the prior art, the invention provides a means for establishing the center of gravity for the tray below a user's hand(s), thereby dramatically increasing its stability and portability. The means comprises an auxiliary structure having a hand gripping portion for facilitating handling by a user and a tray engaging portion for supporting a tray, either apertured or conventional.
As will be further disclosed herein, the invention comprises on the one hand an auxiliary structure that engages with a primary tray to permit one-handed transportation of items contained in the primary tray, and on the other hand a primary tray having a generally centrally located aperture for receiving an auxiliary structure. The components of the invention may be constructed from a planar or non-planar material such as plastic, corrugated cardboard, chip board or other cellulose-based material, or acetate sheet; alternatively, it may be cast or molded from a slurry. particularly including cellulose pulp. As used herein, the former are referred to as “constructed” columns while the later are referred to as “molded” columns. While each material has its benefits, greatest economies can be realized through the use of molded pulps.
In a first series of embodiments, the auxiliary structure comprises an elongate column adapted to extend from a central portion of a primary tray, which is adapted to receive the column. In a second series of embodiments, the invention comprises a bail-type member that engages at least two sides of an unmodified primary tray. In a third series of embodiments, the tray defines an aperture to receive a column.
The first series of embodiments, as noted above, comprise a column extending from a central portion of a primary tray. The column may be formed integral with the tray, or may be permanently or non-permanently attached to the tray. In an integrated embodiment, the primary tray and the column are co-formed to create a unitary structure, and are preferably constructed by a molding process. In embodiments wherein the column is permanently attached to the primary tray, adhesives are preferably used to modify a removable column to ensure the structural integrity of the overall assembly; modification of a conventional tray is not necessary although it may be desirable. For “attached” embodiments, a suitable tray will have at least an aperture formed therein for receiving the desired column, the aperture preferably having or caused to have a cross section shape or geometry that closely matches that of the column cross section at the interface between the two components, as will be discussed in greater detail below. The column may have a closed curve cross section, e.g., circular or elliptical, or may be an n-sided polygon in cross section, e.g., triangular, square, pentagonal, etc.
In the “attachable” embodiments, an appropriately formed aperture is either designed into the primary tray (created at the time of tray formation) or results from post formation modification. The post formation aperture may be established by removing a central portion of the tray, e.g., an outline perforation may be created in the tray whereby removal thereof can be accomplished “punching” the central portion or by perforating a pattern such as an “X”, which will create an approximate square aperture. It should be noted that with respect to at least the collapsible column embodiment described herein, the waste from the removal process can be used to maintain an expanded state after engagement of the column with the tray.
In a removable embodiment, the cross section of the column is selected to substantially mate with the geometry of the aperture defined by the primary tray, or vice versa. If the column is a regular or right cylinder, then the external dimensions of the column should closely match those of primary tray aperture; if the column is tapered in general or frusto-conical in particular (either closed curve or n-sided polygon in cross section), then that portion of the column intended to interface with the primary tray during use should have external dimensions and a geometry close to that of the primary tray aperture. These construction parameters result in a column that partially emerges from the top of the primary tray and, at least with respect to tapered columns without tray supporting elements, frictionally interferes with the primary tray aperture upon substantial extension there through.
To enhance tray stability with respect to the column, a feature of the invention provides for the inclusion of at least one aperture collar positioned about the perimeter of the aperture. An aperture collar increases the amount of area surface area contact between the column and the tray, and further distributes the torque moment between these two components over a greater area, thereby increasing tray stability. The at least one collar can be established on the upper surface of the tray or on the lower surface. Preferably, a tray will have both upper and lower collars.
At least one primary tray supporting element may be provided at a lower portion of the column to prevent over-extension of the column through the aperture and to distribute localized vertical column load across the tray. This at least one lower supporting element beneficially engages with the bottom of the tray and, therefore, prevents further translation of the column through the tray and distributes vertical load across a greater area of the primary tray. Optionally, the column may further comprise at least one upper retaining elements that beneficially engage with an upper surface of the tray, thereby preventing unintended downward translation of the column once engaged with the tray. The incorporation of upper retaining elements further increase the stability of tray relative to the column by arresting undesired torquing of the tray, such as would be encountered during transportation of asymmetrical loads.
Another variation of the tapered column embodiment relies upon a similar friction interference between the column and the primary beverage tray. However, while other embodiments rely upon supporting elements to prevent torquing of the primary tray relative to the support column, a plurality of laterally oriented slots are selectively formed in the column. In this embodiment, a non-circular cross section column is used (preferably one that has corners which have a maximum diameter greater than that of the minimum diameter of the tray aperture). By selectively forming laterally oriented slots at the column corners, the slots will engage with the peripheral portions of the tray aperture when the column is inserted into the aperture, the slots are brought coplanar with the peripheral portions of the aperture, and the column is rotated relative to the primary tray, thereby providing suitable support means without the use of discrete supporting elements.
In the embodiments heretofore described, the column was preferably rigid. However, if a lateral slot arrangement is to be used, a modification is to provide a collapsible lower portion in the column. In this embodiment, rotation of the column to engage the peripheral portions of the tray aperture is not needed. Instead, the collapsed portion of the column is inserted into the aperture where after the column is fixedly expanded. In a disclosed embodiment, the expansion is accomplished by introducing a stiffening member into the area defined by the column. The stiffening member is preferably a wall portion of the column that is pivoted inwardly in the direction of column collapse, until it contacts the opposing wall portion, thereby causing the same to project outwardly. This outward projection in turn flexes the opposing wall portions, thereby causing expansion of the column. At least a pair of opposing slots formed in a lower portion of column then engage the peripheral portions of the tray aperture, thereby “locking” the beverage tray in its relative position viz a viz the support column.
Both of the preceding embodiment series also preferably include a gripping means for providing a location for a user to grasp or retain the column. The gripping means may be a handle member insertable into the column, i.e., an auxiliary structure not integral with the column, or may be a handle member integral with the column, i.e., cut from a blank during formation of the column or molded with the column. If insertable, the handle member can be laterally inserted into a pair of aligned holes, or can be inserted through a slot depending from the top of the column where after an obstructive interface prevents reverse movement. The insertable handle member can be a simple “V” shaped insert, or a conventional handle formation, including obstructive interface features. The handle member can also be fixedly attached to the column, such as by mechanical fasteners and/or adhesives. Alternatively, the handle member can employ a bail having two opposed distal ends that are inserted or otherwise grip the column. Furthermore, the gripping means can take the form of positive and/or negative relief features formed on the outer surface of the column, or can take the form of a hole through which a user may insert a finger or other object.
A feature of select embodiments regarding the columns includes the use of tapered columns. By utilizing tapered columns, a plurality of columns can be stacked and nested into one another, thereby reducing overall space necessary for transportation and/or storage of assembled columns, with or without attached trays. Moreover, a tapered geometric form beneficially facilitates the insertion of the column through the aperture of the tray and permits reliance on a friction fit between the column and the tray, whether or not other means for securing the relationship between the components are used.
Another derivative of the embodiments described above comprises a secondary tray. The secondary tray includes an aperture of sufficient dimensions and geometry to permit a column to penetrate there through. If secondary tray supporting elements are present on the column, the secondary tray supporting elements can arrest undesired translation between the secondary tray and the primary tray, thereby creating a suitable support surface for carrying items in addition to those carried by the primary tray. If a tapered column is used, then the dimensions of the second tray aperture should be such that the secondary tray does not translate the entire length of the column, but is frictionally restricted from further translation at a location generally corresponding to the maximum dimensions of the second tray aperture. Additionally, secondary tray upper retaining elements may be provided that beneficially engage with an upper surface of the secondary tray, thereby preventing unintended upward translation of the secondary tray relative to the column once engaged with the secondary tray. The incorporation of secondary tray upper retaining elements further increase the stability of tray relative to the column by arresting undesired torquing of the tray, such as would be encountered during transportation of asymmetrical loads.
In addition to or in lieu of a secondary tray, additional accessories can be linked to the column. One example described in more detail below, relies upon a hook and slot arrangement to associate a beverage container with the column. The same or similar hook structure can also be used to link other carries or accessories to the column. Another example utilizes a tether member comprising a loop portion and a carrier portion. The loop portion defines an aperture akin to that of the secondary tray to provide a friction fit between it and the column, and further includes a tether portion linking the loop portion with a carrier portion. Preferably, pairs of these tether members are used to form a “saddle” configuration.
As noted above, a column can also be modified to accept beverages in addition to those being held by the beverage tray, or replace the function of the beverage tray as will now be described. By forming at least one elongate vertically aligned slot in the column and utilizing a slot engaging member having means for securing an object, additional objects, such as beverage cups, can be supported by the column. In one embodiment, a generally linear strip of material having two distal ends is formed so that upon envelopment of an object and overlapping attachment of the distal ends, a hook structure for the object is formed. A preferred means for attachment of the strip uses a latex-based cohesive such as that manufactured by Sovereign Chemical of Cincinnati, Ohio. The cohesive will only bond to itself, but create a high coefficient of friction with the object. The hook structure has a length greater than that of the at least one slot; only pivotal insertion of the hook structure into the slot will engage the overlapped strip of material with the column. By positioning the distal end of the hook upward, downward pivoting of the structure will not cause the structure to emerge from the slot. Thus, the hook structure extends into the at least one slot and thereby retains any object placed therein to the column. Other embodiments use a similar sliding engagement for retaining an auxiliary structure in a slot formed in the column, as will be appreciated by those skilled in the art.
In a second series of embodiments, the auxiliary structure is a bail member that provides support for the primary tray, which need not be modified in order to operate with the invention. In this embodiment series, the auxiliary structure comprises at least two peripheral support members that extend beyond the lateral sides of the primary tray and further extend inwardly toward the center of the tray (forming a handle segment) to provide a suitable support means for the tray. While this configuration provides suitable single axis support, it does not address orthogonal movement of the primary tray. Consequently, laterally extending stabilizers arrest the second axis rotation by preventing rotation about the axis defined by the two retention members.
The invention, its various embodiments and the disclosed features will become more apparent upon inspection of the accompanying illustrations.
Turning then to the several Figures wherein like numerals indicate like parts, and more particularly to
In order to establish a center of gravity for the tray that is below the point of actual support, an auxiliary structure is needed. As best shown in
Column 40 includes upper end 42, lower end 44 and sides 46a-e. In addition, and to provide suitable linkage to tray 20, supporting elements 60 are used. In this illustrated embodiment, supporting elements 60 comprise flaps 62a-d, each of which includes supporting edge 64. Column 40 can be die cut from a suitable material such as fiber board, corrugated or folding paperboard as is shown in
While a friction fit between column 40 and tray 20 through aperture 30 may provide sufficient linkage between the column and the tray, a more robust linkage employs lower supporting elements 60, as is best shown in
To facilitate the use of column 40, handle recesses 50 are provided. When column 40 is folded into a use configuration as shown in
Column 140, shown in
Also shown in use with column 140 is handle 180. While the functionality of handle 180 is similar to that of handle 80, it further comprises central body portion 184, which serves to link side 182a with side 182b, and to provide finger hole 88. As with handle 80, supporting edges 182a and 182b cooperate with retaining edges 156a and 156b.
Heretofore, the features associated with an improved column have focused on supporting elements that extend from the body of the column. In
The earlier discussion regarding the incorporation of secondary tray 90 intimated that it could be used for a variety of functions. The implicit utility of the upper potion of the column will now be further described.
If slot 648 is located towards lower end 644 of column 640, then ring 610 functions to stabilize a container disposed in a cup recess; this is particularly advantageous when carrying large volume beverage containers that have a small base but enlarged volume, thereby intrinsically creating an unstable container. If slot 648 is located towards upper end 642 of column 640, then ring 610 functions to hold additional containers or similarly cylindrical objects, presuming that column 640 is sufficiently sized to accept stacked containers.
Unintentional release of ring 610 from column 640 is accomplished by the interference between hook end 619 and the inside surface of column 640 at slot 648, as is best shown in
In the event that advertising on the column is desired, economies can be achieved though the use of sleeve 100, as is shown best in
Heretofore, the disclosed columns, with the exception of that in
Column 740 has a greater distance between lower end 744 and retainer 770 than column 840 for reasons that will now be described. As best shown in
Number | Date | Country | |
---|---|---|---|
60590004 | Jul 2004 | US |