MULTISPECIFIC SARS-COV-2 ANTIBODIES AND METHODS OF USE

Abstract
Provided herein are methods and compositions relating to libraries of optimized antibodies (e.g., multispecific antibodies) having nucleic acids encoding for an antibody comprising modified sequences. Libraries described herein comprise nucleic acids encoding SARS-CoV-2 or ACE2 antibodies.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in XML format and is hereby incorporated by reference in its entirety. Said XML copy, created on Dec. 20, 2022, is named 44854-846_201_SL.xml and is 2,922,041 bytes in size.


BACKGROUND

Coronaviruses like severe acute respiratory coronavirus 2 (SARS-CoV-2) can cause severe respiratory problems. Therapies are needed for treating and preventing viral infection caused by coronaviruses like SARS-CoV-2. Antibodies possess the capability to bind with high specificity and affinity to biological targets. However, the design of therapeutic antibodies is challenging due to balancing of immunological effects with efficacy. Thus, there is a need to develop compositions and methods for the optimization of antibody properties in order to develop effective therapies for treating coronavirus infections.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.


BRIEF SUMMARY

Provided herein are multispecific antibodies comprising at least two binding domains to a spike glycoprotein or a receptor of the spike glycoprotein: (a) a first binding domain of the at least two binding domains comprising a first variable domain, heavy chain region (VH), wherein the first VH region comprises complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein (i) an amino acid sequence of CDRH1 is as set forth in any one of SEQ ID NOs: 1-122; (ii) an amino acid sequence of CDRH2 is as set forth in any one of SEQ ID NOs: 652-773; and (iii) an amino acid sequence of CDRH3 is as set forth in any one of SEQ ID NOs: 1303-1425; and (b) a second binding domain of the at least two binding domains comprising a second variable domain, heavy chain region (VH), wherein the first VH region comprises complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein (i) an amino acid sequence of CDRH1 is as set forth in any one of SEQ ID NOs: 123-651; (ii) an amino acid sequence of CDRH2 is as set forth in any one of SEQ ID NOs: 774-1302; and (iii) an amino acid sequence of CDRH3 is as set forth in any one of SEQ ID NOs: 1426-1953. Further provided herein are multispecific antibodies, wherein the multispecific antibody is bispecific, trispecific, or tetraspecific. Further provided herein are multispecific antibodies, wherein the multispecific antibody is bispecific. Further provided herein are multispecific antibodies, wherein the multispecific antibody is bivalent, trivalent, or tetravalent. Further provided herein are multispecific antibodies, wherein the multispecific antibody is bivalent. Further provided herein are multispecific antibodies, wherein the antibody or antibody fragment comprises a KD of less than 50 nM. Further provided herein are multispecific antibodies, wherein the antibody or antibody fragment comprises a KD of less than 25 nM. Further provided herein are multispecific antibodies, wherein the antibody or antibody fragment comprises a KD of less than 10 nM. Further provided herein are multispecific antibodies, wherein the antibody or antibody fragment comprises a KD of less than 5 nM.


Provided herein are multispecific antibodies comprising at least two binding domains to a spike glycoprotein or a receptor of the spike glycoprotein: (a) a first binding domain of the at least two binding domains comprising a first variable domain, heavy chain region (VH) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 2212-2333; and (b) a second binding domain of the at least two binding domains comprising a second variable domain, heavy chain region (VH) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 2334-3099. Further provided herein are multispecific antibodies, wherein the multispecific antibody is bispecific, trispecific, or tetraspecific. Further provided herein are multispecific antibodies, wherein the multispecific antibody is bispecific. Further provided herein are multispecific antibodies, wherein the multispecific antibody is bivalent, trivalent, or tetravalent. Further provided herein are multispecific antibodies, wherein the multispecific antibody is bivalent. Further provided herein are multispecific antibodies, wherein the antibody or antibody fragment comprises a KD of less than 50 nM. Further provided herein are multispecific antibodies, wherein the antibody or antibody fragment comprises a KD of less than 25 nM. Further provided herein are multispecific antibodies, wherein the antibody or antibody fragment comprises a KD of less than 10 nM. Further provided herein are multispecific antibodies, wherein the antibody or antibody fragment comprises a KD of less than 5 nM.


Provided herein are nucleic acid compositions comprising: a) a first nucleic acid encoding a first variable domain, heavy chain region (VH) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 2212-2333; b) a second nucleic acid encoding a second variable domain, heavy chain region (VH) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 2334-3099; and an excipient.


Provided herein are methods of treating a SARS-CoV-2 infection, comprising administering the multispecific antibody described herein. Further provided herein are methods of treating a SARS-CoV-2 infection, wherein the multispecific antibody is administered prior to exposure to SARS-CoV-2. Further provided herein are methods of treating a SARS-CoV-2 infection, wherein the multispecific antibody is administered at least about 1 week prior to exposure to SARS-CoV-2. Further provided herein are methods of treating a SARS-CoV-2 infection, wherein the multispecific antibody is administered at least about 1 month prior to exposure to SARS-CoV-2. Further provided herein are methods of treating a SARS-CoV-2 infection, wherein the multispecific antibody is administered at least about 5 months prior to exposure to SARS-CoV-2. Further provided herein are methods of treating a SARS-CoV-2 infection, wherein the multispecific antibody is administered after exposure to SARS-CoV-2. Further provided herein are methods of treating a SARS-CoV-2 infection, wherein the multispecific antibody is administered at most about 24 hours after exposure to SARS-CoV-2. Further provided herein are methods of treating a SARS-CoV-2 infection, wherein the multispecific antibody is administered at most about 1 week after exposure to SARS-CoV-2. Further provided herein are methods of treating a SARS-CoV-2 infection, wherein the multispecific antibody is administered at most about 1 month after exposure to SARS-CoV-2.


Provided herein are methods of treating an individual with a SARS-CoV-2 infection with the multispecific antibody described herein comprising: (a) obtaining or having obtained a sample from the individual; (b) performing or having performed an expression level assay on the sample to determine expression levels of SARS-CoV-2 antibodies; and (c) if the sample has an expression level of the SARS-CoV-2 antibodies then administering to the individual the antibody or antibody fragment described herein, thereby treating the SARS-CoV-2 infection.


Provided herein are methods of diagnosing an individual with a SARS-CoV-2 infection with the multispecific antibody described herein comprising: (a) obtaining or having obtained a sample from the individual; and (b) performing or having performed an expression level assay on the sample to determine expression levels of SARS-CoV-2 antibodies using the multispecific antibody described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIG. 1 depicts a workflow for antibody optimization.



FIG. 2 presents a diagram of steps demonstrating an exemplary process workflow for gene synthesis as disclosed herein.



FIG. 3 illustrates an example of a computer system.



FIG. 4 is a block diagram illustrating an architecture of a computer system.



FIG. 5 is a diagram demonstrating a network configured to incorporate a plurality of computer systems, a plurality of cell phones and personal data assistants, and Network Attached Storage (NAS).



FIG. 6 is a block diagram of a multiprocessor computer system using a shared virtual address memory space.



FIG. 7 depicts the locations of different mutations in SARS-CoV-2 variants.



FIG. 8A is a schema of a panning workflow. FIG. 8B is a schema of an additional panning workflow.



FIG. 9A depicts Carterra SPR kinetics against the SARS-COV-2 S1.



FIG. 9B depicts additional Carterra SPR kinetics against the SARS-COV-2 S1.



FIG. 9C depicts Carterra SPR kinetics against the SARS-CoV-2 501.V2 S1.



FIG. 9D depicts Carterra SPR kinetics against the SARS-CoV-2 B.1.1.7 S1.



FIG. 9E depicts Carterra SPR kinetics against the SARS-COV-2 CA Var. W152C L452R D614G S1.



FIG. 9F depicts Carterra SPR kinetics against the SARS-COV-2 RBD India Var. L452R E484Q S1.



FIG. 10 depicts the S1-RBD-mFc binding competition assay used.



FIG. 11A depicts the results of the competition assay against Acro S1.



FIG. 11B depicts the results of the competition assay against D614G S1.



FIG. 11C depicts the results of the competition assay against 501.V2 South Africa S1.



FIG. 11D depicts the results of the competition assay against B.1.1.7 UK S1.



FIGS. 12A-12D depict the results of comparing antibody 181-8 mutant Fc, 5-3 Fc mutant, and Acro neutralizing antibody in an Acro S1-mFc binding competition assay (FIG. 12A), a TB178.8-6 binding competition assay (FIG. 12B), a TB178-8 binding competition assay (FIG. 12C), and a TB178-9 binding competition assay (FIG. 12D).



FIG. 13A depicts the binding of the CA variant S1 to Vero cells.



FIG. 13B depicts the results of a competition assay of the panel of variants against the CCA S1 spike protein.



FIGS. 14A-14F depict the result of a binding competition assay comparing SARS-CoV-2 cross-reacting antibody variants with different strains of SARS-CoV-2, including Acro S1 (FIG. 14A), 178-6 (FIG. 14B), 178-8 (FIG. 14C), 178-9 (FIG. 14D), 178-10 using 1 ug/ml (FIG. 14E), and 178-10 using 0.2 ug/ml (FIG. 14F).



FIGS. 15A-15H depict results from pseudovirus assays of the variant D614G (FIG. 15A), alpha variant (FIG. 15B), beta variant (FIG. 15C), gamma variant (FIG. 15D), epsilon variant 427 (FIG. 15E), and epsilon variant 429 (FIG. 15F). FIG. 15G depicts a summary of the pseudovirus assays. FIG. 15H depicts an additional pseudovirus assay with select antibodies.



FIG. 16A depicts a schema of the bispecific antibodies described herein. FIG. 16B depicts an alternate schema of the bispecific antibodies described herein.



FIG. 17A depicts the results of a 178-9 binding competition assay comparing SARS-CoV-2 cross-reacting antibody variants. FIG. 17B depicts the results of a 178-9 binding competition assay comparing SARS-CoV-2 cross-reacting additional antibody variants. FIG. 17C depicts the results of a 178-9 binding competition assay comparing SARS-CoV-2 cross-reacting additional antibody variants.



FIG. 18A depicts the results of a 178-8 binding competition assay comparing SARS-CoV-2 cross-reacting antibody variants. FIG. 18B depicts the results of a 178-8 binding competition assay comparing SARS-CoV-2 cross-reacting additional antibody variants. FIG. 18C depicts the results of a 178-8 binding competition assay comparing SARS-CoV-2 cross-reacting antibody additional variants.



FIG. 19A depicts the results of a 178-10 binding competition assay comparing SARS-CoV-2 cross-reacting antibody variants. FIG. 19B depicts the results of a 178-10 binding competition assay comparing SARS-CoV-2 cross-reacting antibody variants. FIG. 19C depicts the results of a 178-10 binding competition assay comparing SARS-CoV-2 cross-reacting antibody variants.



FIGS. 20A-20B depict the results of the bispecific antibodies against pseudovirus variants of concern (VOCs) epsilon 427 (FIG. 20A) and epsilon 429 (FIG. 20B).



FIGS. 21A-21B depict the results of the bispecific antibodies in viral neutralization assays against variant AZ1 (FIG. 21A) and variant delta (FIG. 21B). FIG. 21C shows a table summary of the results. FIG. 21D depicts data from variant B.1.351. FIG. 21E depicts a graph summarizing the results.



FIG. 22 depicts the results from hamster low-dose therapeutic vs. preventative studies. Preventative (1 mg/Kg) results are shown for variant 6A-63 (Panel A), variant 6A-3 (Panel B), and variant 81-36 (Panel C). Therapeutic (1.5 mg/Kg) results are shown for variant 6A-3 (Panel D). Panel E shows that days 5-8 showed significant protection. Panel F shows health score results for the therapeutic hamster data. Panel G shows post-challenge data for variant 6A-3 in both the lungs and nares. Significance is denoted as *P≤0.05; **P≤0.01; ***P≤0.001.



FIG. 23 depicts Carterra SPR kinetics against different variants of SARS-CoV-2.



FIG. 24A depicts a the results of a neutralization assay. FIG. 24B depicts the results of a surface RBD display assay. In the surface RBD assay data points are colored based on concentration wherein red denotes 15 ug/mL, blue denotes 3 ug/mL, orange denotes 0.6 ug/mL and green denotes 0.24 ug/mL of each variant.



FIG. 25 depicts antibody yield from 1 mL Expi293 Cell Culture.





DETAILED DESCRIPTION

The present disclosure employs, unless otherwise indicated, conventional molecular biology techniques, which are within the skill of the art. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art.


Definitions

Throughout this disclosure, various embodiments are presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of any embodiments. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range to the tenth of the unit of the lower limit unless the context clearly dictates otherwise. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual values within that range, for example, 1.1, 2, 2.3, 5, and 5.9. This applies regardless of the breadth of the range. The upper and lower limits of these intervening ranges may independently be included in the smaller ranges, and are also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure, unless the context clearly dictates otherwise.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of any embodiment. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


Unless specifically stated or obvious from context, as used herein, the term “about” in reference to a number or range of numbers is understood to mean the stated number and numbers +/−10% thereof, or 10% below the lower listed limit and 10% above the higher listed limit for the values listed for a range.


Unless specifically stated, as used herein, the term “nucleic acid” encompasses double- or triple-stranded nucleic acids, as well as single-stranded molecules. In double- or triple-stranded nucleic acids, the nucleic acid strands need not be coextensive (i.e., a double-stranded nucleic acid need not be double-stranded along the entire length of both strands). Nucleic acid sequences, when provided, are listed in the 5′ to 3′ direction, unless stated otherwise. Methods described herein provide for the generation of isolated nucleic acids. Methods described herein additionally provide for the generation of isolated and purified nucleic acids. A “nucleic acid” as referred to herein can comprise at least 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, or more bases in length. Moreover, provided herein are methods for the synthesis of any number of polypeptide-segments encoding nucleotide sequences, including sequences encoding non-ribosomal peptides (NRPs), sequences encoding non-ribosomal peptide-synthetase (NRPS) modules and synthetic variants, polypeptide segments of other modular proteins, such as antibodies, polypeptide segments from other protein families, including non-coding DNA or RNA, such as regulatory sequences e.g. promoters, transcription factors, enhancers, siRNA, shRNA, RNAi, miRNA, small nucleolar RNA derived from microRNA, or any functional or structural DNA or RNA unit of interest. The following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, intergenic DNA, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), small nucleolar RNA, ribozymes, complementary DNA (cDNA), which is a DNA representation of mRNA, usually obtained by reverse transcription of messenger RNA (mRNA) or by amplification; DNA molecules produced synthetically or by amplification, genomic DNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. cDNA encoding for a gene or gene fragment referred herein may comprise at least one region encoding for exon sequences without an intervening intron sequence in the genomic equivalent sequence. cDNA described herein may be generated by de novo synthesis.


Antibody Optimization Library for Coronavirus


Provided herein are methods, compositions, and systems for the optimization of antibodies for coronavirus. In some embodiments, the antibodies are optimized for SARS-CoV, MERS-CoV, CoV-229E, HCoV-NL63, HCoV-0C43, or HCoV-HKU1. In some embodiments, the antibodies are optimized for SARS-CoV-2. In some embodiments, the antibodies are optimized for a receptor that binds to the coronavirus. In some embodiments, the receptor of the coronavirus is ACE2 or dipeptidyl peptidase 4 (DPP4). In some embodiments, the antibodies are optimized based on interactions between the coronavirus and the receptor that binds the coronavirus. In some embodiments, the antibodies are optimized for angiotensin-converting enzyme 2 (ACE2). In some embodiments, the antibodies are optimized based on interactions between SARS-CoV-2 and ACE2.


Antibodies are in some instances optimized by the design of in-silico libraries comprising variant sequences of an input antibody sequence (FIG. 1). Input sequences 100 are in some instances modified in-silico 102 with one or more mutations or variants to generate libraries of optimized sequences 103. In some instances, such libraries are synthesized, cloned into expression vectors, and translation products (antibodies) evaluated for activity. In some instances, fragments of sequences are synthesized and subsequently assembled. In some instances, expression vectors are used to display and enrich desired antibodies, such as phage display. Selection pressures used during enrichment in some instances includes, but is not limited to, binding affinity, toxicity, immunological tolerance, stability, receptor-ligand competition, or developability. Such expression vectors allow antibodies with specific properties to be selected (“panning”), and subsequent propagation or amplification of such sequences enriches the library with these sequences. Panning rounds can be repeated any number of times, such as 1, 2, 3, 4, 5, 6, 7, or more than 7 rounds. Sequencing at one or more rounds is in some instances used to identify which sequences 105 have been enriched in the library.


Described herein are methods and systems of in-silico library design. For example, an antibody or antibody fragment sequence is used as input. In some instances, the antibody sequence used as input is an antibody or antibody fragment sequence that binds SARS-CoV-2. In some instances, the input is an antibody or antibody fragment sequence that binds a protein of SARS-CoV-2. In some instances, the protein is a spike glycoprotein, a membrane protein, an envelope protein, a nucleocapsid protein, or combinations thereof. In some instances, the protein is a spike glycoprotein of SARS-CoV-2. In some instances, the protein is a receptor binding domain of SARS-CoV-2. In some instances, the input sequence is an antibody or antibody fragment sequence that binds angiotensin-converting enzyme 2 (ACE2). In some instances, the input sequence is an antibody or antibody fragment sequence that binds an extracellular domain of the angiotensin-converting enzyme 2 (ACE2).


A database 102 comprising known mutations or variants of one or more viruses is queried 101, and a library 103 of sequences comprising combinations of these mutations or variants are generated. In some instances, the database comprises known mutations or variants of SARS-CoV-like coronaviruses, SARS-CoV-2, SARS-CoV, or combinations thereof. In some instances, the database comprises known mutations or variants of the spike protein of SARS-CoV-like coronaviruses, SARS-CoV-2, SARS-CoV, or combinations thereof. In some instances, the database comprises known mutations or variants of the receptor binding domain of SARS-CoV-like coronaviruses, SARS-CoV-2, SARS-CoV, or combinations thereof. In some instances, the database comprises mutations or variants of a protein of SARS-CoV-like coronaviruses, SARS-CoV-2, SARS-CoV, or combinations thereof that binds to ACE2.


In some instances, the input sequence is a heavy chain sequence of an antibody or antibody fragment that binds SARS-CoV-like coronaviruses, SARS-CoV-2, SARS-CoV, or combinations thereof. In some instances, the input sequence is a light chain sequence of an antibody or antibody fragment that binds SARS-CoV-like coronaviruses, SARS-CoV-2, SARS-CoV, or combinations thereof. In some instances, the heavy chain sequence comprises varied CDR regions. In some instances, the light chain sequence comprises varied CDR regions. In some instances, known mutations or variants from CDRs are used to build the sequence library. Filters 104, or exclusion criteria, are in some instances used to select specific types of variants for members of the sequence library. For example, sequences having a mutation or variant are added if a minimum number of organisms in the database have the mutation or variant. In some instances, additional CDRs are specified for inclusion in the database. In some instances, specific mutations or variants or combinations of mutations or variants are excluded from the library (e.g., known immunogenic sites, structure sites, etc.). In some instances, specific sites in the input sequence are systematically replaced with histidine, aspartic acid, glutamic acid, or combinations thereof. In some instances, the maximum or minimum number of mutations or variants allowed for each region of an antibody are specified. Mutations or variants in some instances are described relative to the input sequence or the input sequence's corresponding germline sequence. For example, sequences generated by the optimization comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or more than 16 mutations or variants from the input sequence. In some instances, sequences generated by the optimization comprise no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or no more than 18 mutations or variants from the input sequence. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or about 18 mutations or variants relative to the input sequence. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the input sequence in a first CDR region. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the input sequence in a second CDR region. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the input sequence in a third CDR region. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the input sequence in a first CDR region of a heavy chain. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the input sequence in a second CDR region of a heavy chain. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the input sequence in a third CDR region of a heavy chain. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the input sequence in a first CDR region of a light chain. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the input sequence in a second CDR region of a light chain. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the input sequence in a third CDR region of a light chain. In some instances, a first CDR region is CDR1. In some instances, a second CDR region is CDR2. In some instances, a third CDR region is CDR3. In-silico antibodies libraries are in some instances synthesized, assembled, and enriched for desired sequences.


The germline sequences corresponding to an input sequence may also be modified to generate sequences in a library. For example, sequences generated by the optimization methods described herein comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or more than 16 mutations or variants from the germline sequence. In some instances, sequences generated by the optimization comprise no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or no more than 18 mutations or variants from the germline sequence. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or about 18 mutations or variants relative to the germline sequence.


Provided herein are methods, systems, and compositions for antibody optimization, wherein the input sequence comprises mutations or variants in an antibody region. Exemplary regions of the antibody include, but are not limited to, a complementarity-determining region (CDR), a variable domain, or a constant domain. In some instances, the CDR is CDR1, CDR2, or CDR3. In some instances, the CDR is a heavy domain including, but not limited to, CDRH1, CDRH2, and CDRH3. In some instances, the CDR is a light domain including, but not limited to, CDRL1, CDRL2, and CDRL3. In some instances, the variable domain is variable domain, light chain (VL) or variable domain, heavy chain (VH). In some instances, the VL domain comprises kappa or lambda chains. In some instances, the constant domain is constant domain, light chain (CL) or constant domain, heavy chain (CH). In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the germline sequence in a first CDR region. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the germline sequence in a second CDR region. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the germline sequence in a third CDR region. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the germline sequence in a first CDR region of a heavy chain. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the germline sequence in a second CDR region of a heavy chain. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the germline sequence in a third CDR region of a heavy chain. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the germline sequence in a first CDR region of a light chain. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the germline sequence in a second CDR region of a light chain. In some instances, sequences generated by the optimization comprise about 1, 2, 3, 4, 5, 6, or 7 mutations or variants from the germline sequence in a third CDR region of a light chain. In some instances, a first CDR region is CDR1. In some instances, a second CDR region is CDR2. In some instances, a third CDR region is CDR3.


VHH Libraries


Provided herein are methods, compositions, and systems for generation of antibodies or antibody fragments. In some instances, the antibodies or antibody fragments are single domain antibodies. Methods, compositions, and systems described herein for the optimization of antibodies comprise a ratio-variant approach that mirror the natural diversity of antibody sequences. In some instances, libraries of optimized antibodies comprise variant antibody sequences. In some instances, the variant antibody sequences are designed comprising variant CDR regions. In some instances, the variant antibody sequences comprising variant CDR regions are generated by shuffling the natural CDR sequences in a llama, humanized, or chimeric framework. In some instances, such libraries are synthesized, cloned into expression vectors, and translation products (antibodies) evaluated for activity. In some instances, fragments of sequences are synthesized and subsequently assembled. In some instances, expression vectors are used to display and enrich desired antibodies, such as phage display. In some instances, the phage vector is a Fab phagemid vector. Selection pressures used during enrichment in some instances includes, but is not limited to, binding affinity, toxicity, immunological tolerance, stability, receptor-ligand competition, or developability. Such expression vectors allow antibodies with specific properties to be selected (“panning”), and subsequent propagation or amplification of such sequences enriches the library with these sequences. Panning rounds can be repeated any number of times, such as 1, 2, 3, 4, 5, 6, 7, or more than 7 rounds. In some instances, each round of panning involves a number of washes. In some instances, each round of panning involves at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or more than 16 washes.


Described herein are methods and systems of in-silico library design. Libraries as described herein, in some instances, are designed based on a database comprising a variety of antibody sequences. In some instances, the database comprises a plurality of variant antibody sequences against various targets. In some instances, the database comprises at least 100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, or more than 5000 antibody sequences. An exemplary database is an iCAN database. In some instances, the database comprises naïve and memory B-cell receptor sequences. In some instances, the naïve and memory B-cell receptor sequences are human, mouse, or primate sequences. In some instances, the naïve and memory B-cell receptor sequences are human sequences. In some instances, the database is analyzed for position specific variation. In some instances, antibodies described herein comprise position specific variations in CDR regions. In some instances, the CDR regions comprise multiple sites for variation.


Described herein are libraries comprising variation in a CDR region. In some instances, the CDR is CDR1, CDR2, or CDR3 of a variable heavy chain. In some instances, the CDR is CDR1, CDR2, or CDR3 of a variable light chain. In some instances, the libraries comprise multiple variants encoding for CDR1, CDR2, or CDR3. In some instances, the libraries as described herein encode for at least 50, 100, 200, 300, 400, 500, 1000, 1200, 1500, 1700, 2000, 2500, 3000, 3500, 4000, 4500, 5000, or more than 5000 CDR1 sequences. In some instances, the libraries as described herein encode for at least 50, 100, 200, 300, 400, 500, 1000, 1200, 1500, 1700, 2000, 2500, 3000, 3500, 4000, 4500, 5000, or more than 5000 CDR2 sequences. In some instances, the libraries as described herein encode for at least 50, 100, 200, 300, 400, 500, 1000, 1200, 1500, 1700, 2000, 2500, 3000, 3500, 4000, 4500, 5000, or more than 5000 CDR3 sequences. In-silico antibodies libraries are in some instances synthesized, assembled, and enriched for desired sequences.


Following synthesis of CDR1 variants, CDR2 variants, and CDR3 variants, in some instances, the CDR1 variants, the CDR2 variants, and the CDR3 variants are shuffled to generate a diverse library. In some instances, the diversity of the libraries generated by methods described herein have a theoretical diversity of at least or about 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, or more than 1018 sequences. In some instances, the library has a final library diversity of at least or about 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, or more than 1018 sequences.


The germline sequences corresponding to a variant sequence may also be modified to generate sequences in a library. For example, sequences generated by methods described herein comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or more than 16 mutations or variants from the germline sequence. In some instances, sequences generated comprise no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or no more than 18 mutations or variants from the germline sequence. In some instances, sequences generated comprise about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or about 18 mutations or variants relative to the germline sequence.


Coronavirus Antibody Libraries


Provided herein are libraries generated from antibody optimization methods described herein. Antibodies described herein result in improved functional activity, structural stability, expression, specificity, or a combination thereof.


Provided herein are methods and compositions relating to SARS-CoV-2 binding libraries comprising nucleic acids encoding for a SARS-CoV-2 antibody. Further provided herein are methods and compositions relating to ACE2 binding libraries comprising nucleic acids encoding for an ACE2 antibody. Such methods and compositions in some instances are generated by the antibody optimization methods and systems described herein. Libraries as described herein may be further variegated to provide for variant libraries comprising nucleic acids each encoding for a predetermined variant of at least one predetermined reference nucleic acid sequence. Further described herein are protein libraries that may be generated when the nucleic acid libraries are translated. In some instances, nucleic acid libraries as described herein are transferred into cells to generate a cell library. Also provided herein are downstream applications for the libraries synthesized using methods described herein. Downstream applications include identification of variant nucleic acids or protein sequences with enhanced biologically relevant functions, e.g., improved stability, affinity, binding, functional activity, and for the treatment or prevention of an infection caused by a coronavirus such as SARS-CoV-2.


In some instances, an antibody or antibody fragment (e.g., multispecific antibody) described herein comprises a sequence of any one as provided in Tables 13-17. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to a sequence of any one as provided in Tables 13-17. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to a sequence of any one as provided in Tables 13-17. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a sequence of any one as provided in Tables 13-17. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical to a sequence of any one as provided in Tables 13-17.


In some instances, an antibody or antibody fragment (e.g., multispecific antibody) described herein comprises a sequence of any one of SEQ ID NOs: 1-3193. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to a sequence of any one of SEQ ID NOs: 1-3193. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to a sequence of any one of SEQ ID NOs: 1-3193. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-3193. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical to a sequence of any one of SEQ ID NOs: 1-3193.


In some instances, an antibody or antibody fragment (e.g., multispecific antibody) described herein comprises a first CDRH1 sequence of any one of SEQ ID NOs: 1-122 and a second CDRH2 sequence of any one of SEQ ID NOs: 123-651. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to a first CDRH1 sequence of any one of SEQ ID NOs: 1-122 and a second CDRH2 sequence of any one of SEQ ID NOs: 123-651. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to a first CDRH1 sequence of any one of SEQ ID NOs: 1-122 and a second CDRH2 sequence of any one of SEQ ID NOs: 123-651. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a first CDRH1 sequence of any one of SEQ ID NOs: 1-89 and a second CDRH2 sequence of any one of SEQ ID NOs: 123-651. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical to a first CDRH1 sequence of any one of SEQ ID NOs: 1-122 and a second CDRH2 sequence of any one of SEQ ID NOs: 123-651. In some instances, an antibody or antibody fragment described herein comprises a first CDRH2 sequence of any one of SEQ ID NOs: 652-773 and a second CDRH2 sequence of any one of SEQ ID NOs: 774-1302. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to first CDRH2 sequence of any one of SEQ ID NOs: 652-773 and a second CDRH2 sequence of any one of SEQ ID NOs: 774-1302. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to first CDRH2 sequence of any one of SEQ ID NOs: 652-773 and a second CDRH2 sequence of any one of SEQ ID NOs: 774-1302. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a first CDRH2 sequence of any one of SEQ ID NOs: 652-773 and a second CDRH2 sequence of any one of SEQ ID NOs: 774-1302. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical to a first CDRH2 sequence of any one of SEQ ID NOs: 652-773 and a second CDRH2 sequence of any one of SEQ ID NOs: 774-1302. In some instances, an antibody or antibody fragment described herein comprises a first CDRH3 sequence of any one of SEQ ID NOs: 1303-1425 and a second CDRH3 sequence of any one of SEQ ID NOs: 1426-1953. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to a first CDRH3 sequence of any one of SEQ ID NOs: 1303-1425 and a second CDRH3 sequence of any one of SEQ ID NOs: 1426-1953. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to a first CDRH3 sequence of any one of SEQ ID NOs: 1303-1425 and a second CDRH3 sequence of any one of SEQ ID NOs: 1426-1953. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a first CDRH3 sequence of any one of SEQ ID NOs: 1303-1425 and a second CDRH3 sequence of any one of SEQ ID NOs: 1426-1953. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical a first CDRH3 sequence of any one of SEQ ID NOs: 1303-1425 and a second CDRH3 sequence of any one of SEQ ID NOs: 1426-1953.


Described herein, in some embodiments, are antibodies or antibody fragments (e.g., multispecific antibodies) comprising a first variable domain, heavy chain region (VH) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 2212-2333, and a second VH comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 2334-3099. In some instances, the antibodies or antibody fragments comprise a first VH comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 2212-2333, and a second VH comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 2334-3099.


Described herein, in some embodiments, are antibodies or antibody fragments (e.g., multispecific antibodies) comprising an amino acid sequence at least about 90% identical to a sequence as set forth SEQ ID NO: 3192. In some instances, the antibodies or antibody fragments comprise an amino acid sequence at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to SEQ ID NO: 3192.


Described herein, in some embodiments, are antibodies or antibody fragments (e.g., multispecific antibodies) comprising an amino acid sequence at least about 90% identical to a sequence as set forth SEQ ID NO: 3193. In some instances, the antibodies or antibody fragments comprise an amino acid sequence at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to SEQ ID NO: 3193.


The term “sequence identity” means that two polynucleotide sequences are identical (i.e., on a nucleotide-by-nucleotide basis) over the window of comparison. The term “percentage of sequence identity” is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity.


The term “homology” or “similarity” between two proteins is determined by comparing the amino acid sequence and its conserved amino acid substitutes of one protein sequence to the second protein sequence. Similarity may be determined by procedures which are well-known in the art, for example, a BLAST program (Basic Local Alignment Search Tool at the National Center for Biological Information).


Provided herein are libraries comprising nucleic acids encoding for SARS-CoV-2 antibodies. Antibodies described herein allow for improved stability for a range of SARS-CoV-2 or ACE2 binding domain encoding sequences. In some instances, the binding domain encoding sequences are determined by interactions between SARS-CoV-2 and ACE2.


Sequences of binding domains based on surface interactions between SARS-CoV-2 and ACE2 are analyzed using various methods. For example, multispecies computational analysis is performed. In some instances, a structure analysis is performed. In some instances, a sequence analysis is performed. Sequence analysis can be performed using a database known in the art. Non-limiting examples of databases include, but are not limited to, NCBI BLAST (blast.ncbi.nlm.nih.gov/Blast.cgi), UCSC Genome Browser (genome.ucsc.edu/), UniProt (www.uniprot.org/), and IUPHAR/BPS Guide to PHARMACOLOGY (guidetopharmacology.org/).


Described herein are SARS-CoV-2 or ACE2 binding domains designed based on sequence analysis among various organisms. For example, sequence analysis is performed to identify homologous sequences in different organisms. Exemplary organisms include, but are not limited to, mouse, rat, equine, sheep, cow, primate (e.g., chimpanzee, baboon, gorilla, orangutan, monkey), dog, cat, pig, donkey, rabbit, fish, fly, and human. In some instances, homologous sequences are identified in the same organism, across individuals.


Following identification of SARS-CoV-2 or ACE2 binding domains, libraries comprising nucleic acids encoding for the SARS-CoV-2 or ACE2 binding domains may be generated. In some instances, libraries of SARS-CoV-2 or ACE2 binding domains comprise sequences of SARS-CoV-2 or ACE2 binding domains designed based on conformational ligand interactions, peptide ligand interactions, small molecule ligand interactions, extracellular domains of SARS-CoV-2 or ACE2, or antibodies that target SARS-CoV-2 or ACE2. Libraries of SARS-CoV-2 or ACE2 binding domains may be translated to generate protein libraries. In some instances, libraries of SARS-CoV-2 or ACE2 binding domains are translated to generate peptide libraries, immunoglobulin libraries, derivatives thereof, or combinations thereof. In some instances, libraries of SARS-CoV-2 or ACE2 binding domains are translated to generate protein libraries that are further modified to generate peptidomimetic libraries. In some instances, libraries of SARS-CoV-2 or ACE2 binding domains are translated to generate protein libraries that are used to generate small molecules.


Methods described herein provide for synthesis of libraries of SARS-CoV-2 or ACE2 binding domains comprising nucleic acids each encoding for a predetermined variant of at least one predetermined reference nucleic acid sequence. In some cases, the predetermined reference sequence is a nucleic acid sequence encoding for a protein, and the variant library comprises sequences encoding for variation of at least a single codon such that a plurality of different variants of a single residue in the subsequent protein encoded by the synthesized nucleic acid are generated by standard translation processes. In some instances, the libraries of SARS-CoV-2 or ACE2 binding domains comprise varied nucleic acids collectively encoding variations at multiple positions. In some instances, the variant library comprises sequences encoding for variation of at least a single codon in a SARS-CoV-2 or ACE2 binding domain. In some instances, the variant library comprises sequences encoding for variation of multiple codons in a SARS-CoV-2 or ACE2 binding domain. An exemplary number of codons for variation include, but are not limited to, at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 225, 250, 275, 300, or more than 300 codons.


Methods described herein provide for synthesis of libraries comprising nucleic acids encoding for the SARS-CoV-2 or ACE2 binding domains, wherein the libraries comprise sequences encoding for variation of length of the SARS-CoV-2 or ACE2 binding domains. In some instances, the library comprises sequences encoding for variation of length of at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 225, 250, 275, 300, or more than 300 codons less as compared to a predetermined reference sequence. In some instances, the library comprises sequences encoding for variation of length of at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, or more than 300 codons more as compared to a predetermined reference sequence.


Following identification of SARS-CoV-2 or ACE2 binding domains, antibodies may be designed and synthesized to comprise the SARS-CoV-2 or ACE2 binding domains. Antibodies comprising SARS-CoV-2 or ACE2 binding domains may be designed based on binding, specificity, stability, expression, folding, or downstream activity. In some instances, the antibodies comprising SARS-CoV-2 or ACE2 binding domains enable contact with the SARS-CoV-2 or ACE2. In some instances, the antibodies comprising SARS-CoV-2 or ACE2 binding domains enables high affinity binding with the SARS-CoV-2 or ACE2. Exemplary amino acid sequences of SARS-CoV-2 or ACE2 binding domains comprise any one of SEQ ID NOs: 1-3193.


In some instances, the SARS-CoV-2 antibody comprises a binding affinity (e.g., KD) to SARS-CoV-2 of less than 1 nM, less than 1.2 nM, less than 2 nM, less than 5 nM, less than 10 nM, less than 11 nm, less than 13.5 nM, less than 15 nM, less than 20 nM, less than 25 nM, or less than 30 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 1 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 1.2 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 2 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 5 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 10 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 13.5 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 15 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 20 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 25 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 30 nM.


In some instances, the ACE2 antibody comprises a binding affinity (e.g., KD) to ACE2 of less than 1 nM, less than 1.2 nM, less than 2 nM, less than 5 nM, less than 10 nM, less than 11 nm, less than 13.5 nM, less than 15 nM, less than 20 nM, less than 25 nM, or less than 30 nM. In some instances, the ACE2 antibody comprises a KD of less than 1 nM. In some instances, the ACE2 antibody comprises a KD of less than 1.2 nM. In some instances, the ACE2 antibody comprises a KD of less than 2 nM. In some instances, the ACE2 antibody comprises a KD of less than 5 nM. In some instances, the ACE2 antibody comprises a KD of less than 10 nM. In some instances, the ACE2 antibody comprises a KD of less than 13.5 nM. In some instances, the ACE2 antibody comprises a KD of less than 15 nM. In some instances, the ACE2 antibody comprises a KD of less than 20 nM. In some instances, the ACE2 antibody comprises a KD of less than 25 nM. In some instances, the ACE2 antibody comprises a KD of less than 30 nM.


In some instances, the SARS-CoV-2 or ACE2 immunoglobulin is an agonist. In some instances, the SARS-CoV-2 or ACE2 immunoglobulin is an antagonist. In some instances, the SARS-CoV-2 or ACE2 immunoglobulin is an allosteric modulator. In some instances, the allosteric modulator is a negative allosteric modulator. In some instances, the allosteric modulator is a positive allosteric modulator. In some instances, the SARS-CoV-2 or ACE2 immunoglobulin results in agonistic, antagonistic, or allosteric effects at a concentration of at least or about 1 nM, 2 nM, 4 nM, 6 nM, 8 nM, 10 nM, 20 nM, 30 nM, 40 nM, 50 nM, 60 nM, 70 nM, 80 nM, 90 nM, 100 nM, 120 nM, 140 nM, 160 nM, 180 nM, 200 nM, 300 nM, 400 nM, 500 nM, 600 nM, 700 nM, 800 nM, 900 nM, 1000 nM, or more than 1000 nM. In some instances, the SARS-CoV-2 or ACE2 immunoglobulin is a negative allosteric modulator. In some instances, the SARS-CoV-2 or ACE2 immunoglobulin is a negative allosteric modulator at a concentration of at least or about 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1 nM, 2 nM, 4 nM, 6 nM, 8 nM, 10 nM, 20 nM, 30 nM, 40 nM, 50 nM, 60 nM, 70 nM, 80 nM, 90 nM, 100 nM, or more than 100 nM. In some instances, the SARS-CoV-2 or ACE2 immunoglobulin is a negative allosteric modulator at a concentration in a range of about 0.001 to about 100, 0.01 to about 90, about 0.1 to about 80, 1 to about 50, about 10 to about 40 nM, or about 1 to about 10 nM. In some instances, the SARS-CoV-2 or ACE2 immunoglobulin comprises an EC50 or IC50 of at least or about 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.06, 0.07, 0.08, 0.9, 0.1, 0.5, 1, 2, 3, 4, 5, 6, or more than 6 nM. In some instances, the SARS-CoV-2 or ACE2 immunoglobulin comprises an EC50 or IC50 of at least or about 1 nM, 2 nM, 4 nM, 6 nM, 8 nM, 10 nM, 20 nM, 30 nM, 40 nM, 50 nM, 60 nM, 70 nM, 80 nM, 90 nM, 100 nM, or more than 100 nM.


In some instances, the affinity of the SARS-CoV-2 or ACE2 antibody generated by methods as described herein is at least or about 1.5×, 2.0×, 5×, 10×, 20×, 30×, 40×, 50×, 60×, 70×, 80×, 90×, 100×, 200×, or more than 200×improved binding affinity as compared to a comparator antibody. In some instances, the SARS-CoV-2 or ACE2 antibody generated by methods as described herein is at least or about 1.5×, 2.0×, 5×, 10×, 20×, 30×, 40×, 50×, 60×, 70×, 80×, 90×, 100×, 200×, or more than 200×improved function as compared to a comparator antibody. In some instances, the comparator antibody is an antibody with similar structure, sequence, or antigen target.


Provided herein are SARS-CoV-2 or ACE2 binding libraries comprising nucleic acids encoding for antibodies comprising SARS-CoV-2 or ACE2 binding domains comprise variation in domain type, domain length, or residue variation. In some instances, the domain is a region in the antibody comprising the SARS-CoV-2 or ACE2 binding domains. For example, the region is the VH, CDRH3, or VL domain. In some instances, the domain is the SARS-CoV-2 or ACE2 binding domain.


Methods described herein provide for synthesis of a SARS-CoV-2 or ACE21 binding library of nucleic acids each encoding for a predetermined variant of at least one predetermined reference nucleic acid sequence. In some cases, the predetermined reference sequence is a nucleic acid sequence encoding for a protein, and the variant library comprises sequences encoding for variation of at least a single codon such that a plurality of different variants of a single residue in the subsequent protein encoded by the synthesized nucleic acid are generated by standard translation processes. In some instances, the SARS-CoV-2 or ACE2 binding library comprises varied nucleic acids collectively encoding variations at multiple positions. In some instances, the variant library comprises sequences encoding for variation of at least a single codon of a VH or VL domain. In some instances, the variant library comprises sequences encoding for variation of at least a single codon in a SARS-CoV-2 or ACE2 binding domain. For example, at least one single codon of a SARS-CoV-2 or ACE2 binding domain is varied. In some instances, the variant library comprises sequences encoding for variation of multiple codons of a VH or VL domain. In some instances, the variant library comprises sequences encoding for variation of multiple codons in a SARS-CoV-2 or ACE2 binding domain. An exemplary number of codons for variation include, but are not limited to, at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 225, 250, 275, 300, or more than 300 codons.


Methods described herein provide for synthesis of a SARS-CoV-2 or ACE2 binding library of nucleic acids each encoding for a predetermined variant of at least one predetermined reference nucleic acid sequence, wherein the SARS-CoV-2 or ACE2 binding library comprises sequences encoding for variation of length of a domain. In some instances, the domain is VH or VL domain. In some instances, the domain is the SARS-CoV-2 or ACE2 binding domain. In some instances, the library comprises sequences encoding for variation of length of at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 225, 250, 275, 300, or more than 300 codons less as compared to a predetermined reference sequence. In some instances, the library comprises sequences encoding for variation of length of at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, or more than 300 codons more as compared to a predetermined reference sequence.


Provided herein are SARS-CoV-2 or ACE2 binding libraries comprising nucleic acids encoding for antibodies comprising SARS-CoV-2 or ACE2 binding domains, wherein the SARS-CoV-2 or ACE2 binding libraries are synthesized with various numbers of fragments. In some instances, the fragments comprise the VH or VL domain. In some instances, the SARS-CoV-2 or ACE2 binding libraries are synthesized with at least or about 2 fragments, 3 fragments, 4 fragments, 5 fragments, or more than 5 fragments. The length of each of the nucleic acid fragments or average length of the nucleic acids synthesized may be at least or about 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, or more than 600 base pairs. In some instances, the length is about 50 to 600, 75 to 575, 100 to 550, 125 to 525, 150 to 500, 175 to 475, 200 to 450, 225 to 425, 250 to 400, 275 to 375, or 300 to 350 base pairs.


SARS-CoV-2 or ACE2 binding libraries comprising nucleic acids encoding for antibodies comprising SARS-CoV-2 or ACE2 binding domains as described herein comprise various lengths of amino acids when translated. In some instances, the length of each of the amino acid fragments or average length of the amino acid synthesized may be at least or about 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, or more than 150 amino acids. In some instances, the length of the amino acid is about 15 to 150, 20 to 145, 25 to 140, 30 to 135, 35 to 130, 40 to 125, 45 to 120, 50 to 115, 55 to 110, 60 to 110, 65 to 105, 70 to 100, or 75 to 95 amino acids. In some instances, the length of the amino acid is about 22 to about 75 amino acids.


SARS-CoV-2 or ACE2 binding libraries comprising de novo synthesized variant sequences encoding for antibodies comprising SARS-CoV-2 or ACE2 binding domains comprise a number of variant sequences. In some instances, a number of variant sequences is de novo synthesized for a CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, VH, or a combination thereof. In some instances, a number of variant sequences is de novo synthesized for framework element 1 (FW1), framework element 2 (FW2), framework element 3 (FW3), or framework element 4 (FW4). In some instances, a number of variant sequences are de novo synthesized for a SARS-CoV-2 or ACE2 binding domain. The number of variant sequences may be at least or about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, or more than 500 sequences. In some instances, the number of variant sequences is about 10 to 300, 25 to 275, 50 to 250, 75 to 225, 100 to 200, or 125 to 150 sequences.


SARS-CoV-2 or ACE2 binding libraries comprising de novo synthesized variant sequences encoding for antibodies comprising SARS-CoV-2 or ACE2 binding domains comprise improved diversity. In some instances, variants include affinity maturation variants. Alternatively or in combination, variants include variants in other regions of the antibody including, but not limited to, CDRH1, CDRH2, CDRL1, CDRL2, and CDRL3. In some instances, the number of variants of the SARS-CoV-2 or ACE2 binding libraries is least or about 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014 or more than 1014 non-identical sequences.


Following synthesis of SARS-CoV-2 or ACE2 binding libraries comprising nucleic acids encoding antibodies comprising SARS-CoV-2 or ACE2 binding domains, libraries may be used for screening and analysis. For example, libraries are assayed for library displayability and panning. In some instances, displayability is assayed using a selectable tag. Exemplary tags include, but are not limited to, a radioactive label, a fluorescent label, an enzyme, a chemiluminescent tag, a colorimetric tag, an affinity tag or other labels or tags that are known in the art. In some instances, the tag is histidine, polyhistidine, myc, hemagglutinin (HA), or FLAG. For example, SARS-CoV-2 or ACE2 binding libraries comprise nucleic acids encoding antibodies comprising SARS-CoV-2 or ACE2 binding domains with multiple tags such as GFP, FLAG, and Lucy as well as a DNA barcode. In some instances, libraries are assayed by sequencing using various methods including, but not limited to, single-molecule real-time (SMRT) sequencing, Polony sequencing, sequencing by ligation, reversible terminator sequencing, proton detection sequencing, ion semiconductor sequencing, nanopore sequencing, electronic sequencing, pyrosequencing, Maxam-Gilbert sequencing, chain termination (e.g., Sanger) sequencing, +S sequencing, or sequencing by synthesis.


As used herein, the term antibody will be understood to include proteins having the characteristic two-armed, Y-shape of a typical antibody molecule as well as one or more fragments of an antibody that retain the ability to specifically bind to an antigen. Exemplary antibodies include, but are not limited to, a monoclonal antibody, a polyclonal antibody, a bi-specific antibody, a multispecific antibody, a grafted antibody, a human antibody, a humanized antibody, a synthetic antibody, a chimeric antibody, a camelized antibody, a single-chain Fvs (scFv) (including fragments in which the VL and VH are joined using recombinant methods by a synthetic or natural linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules, including single chain Fab and scFab), a single chain antibody, a Fab fragment (including monovalent fragments comprising the VL, VH, CL, and CH1 domains), a F(ab′)2 fragment (including bivalent fragments comprising two Fab fragments linked by a disulfide bridge at the hinge region), a Fd fragment (including fragments comprising the VH and CH1 fragment), a Fv fragment (including fragments comprising the VL and VH domains of a single arm of an antibody), a single-domain antibody (dAb or sdAb) (including fragments comprising a VH domain), an isolated complementarity determining region (CDR), a diabody (including fragments comprising bivalent dimers such as two VL and VH domains bound to each other and recognizing two different antigens), a fragment comprised of only a single monomeric variable domain, disulfide-linked Fvs (sdFv), an intrabody, an anti-idiotypic (anti-Id) antibody, or ab antigen-binding fragments thereof. In some instances, the libraries disclosed herein comprise nucleic acids encoding for an antibody, wherein the antibody is a Fv antibody, including Fv antibodies comprised of the minimum antibody fragment which contains a complete antigen-recognition and antigen-binding site. In some embodiments, the Fv antibody consists of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent association, and the three hypervariable regions of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. In some embodiments, the six hypervariable regions confer antigen-binding specificity to the antibody. In some embodiments, a single variable domain (or half of an Fv comprising only three hypervariable regions specific for an antigen, including single domain antibodies isolated from camelid animals comprising one heavy chain variable domain such as VHH antibodies or nanobodies) has the ability to recognize and bind antigen. In some instances, the libraries disclosed herein comprise nucleic acids encoding for an antibody, wherein the antibody is a single-chain Fv or scFv, including antibody fragments comprising a VH, a VL, or both a VH and VL domain, wherein both domains are present in a single polypeptide chain. In some embodiments, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains allowing the scFv to form the desired structure for antigen binding. In some instances, a scFv is linked to the Fc fragment or a VHH is linked to the Fc fragment (including minibodies). In some instances, the antibody comprises immunoglobulin molecules and immunologically active fragments of immunoglobulin molecules, e.g., molecules that contain an antigen binding site. Immunoglobulin molecules are of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG 1, IgG 2, IgG 3, IgG 4, IgA 1 and IgA 2) or subclass.


In some embodiments, the antibody is a multivalent antibody. In some embodiments, the antibody is a monovalent, bivalent, or multivalent antibody. In some instances, the antibody is monospecific, bispecific, or multispecific. In some embodiments, the antibody is monovalent monospecific, monovalent bispecific, monovalent multispecific, bivalent monospecific, bivalent bispecific, bivalent multispecific, multivalent monospecific, multivalent bispecific, multivalent multispecific. In some instances, the antibody is homodimeric, heterodimeric, or heterotrimeric.


In some embodiments, libraries comprise immunoglobulins that are adapted to the species of an intended therapeutic target. Generally, these methods include “mammalization” and comprises methods for transferring donor antigen-binding information to a less immunogenic mammal antibody acceptor to generate useful therapeutic treatments. In some instances, the mammal is mouse, rat, equine, sheep, cow, primate (e.g., chimpanzee, baboon, gorilla, orangutan, monkey), dog, cat, pig, donkey, rabbit, and human. In some instances, provided herein are libraries and methods for felinization and caninization of antibodies.


“Humanized” forms of non-human antibodies can be chimeric antibodies that contain minimal sequence derived from the non-human antibody. A humanized antibody is generally a human antibody (recipient antibody) in which residues from one or more CDRs are replaced by residues from one or more CDRs of a non-human antibody (donor antibody). The donor antibody can be any suitable non-human antibody, such as a mouse, rat, rabbit, chicken, or non-human primate antibody having a desired specificity, affinity, or biological effect. In some instances, selected framework region residues of the recipient antibody are replaced by the corresponding framework region residues from the donor antibody. Humanized antibodies may also comprise residues that are not found in either the recipient antibody or the donor antibody. In some instances, these modifications are made to further refine antibody performance.


“Caninization” can comprise a method for transferring non-canine antigen-binding information from a donor antibody to a less immunogenic canine antibody acceptor to generate treatments useful as therapeutics in dogs. In some instances, caninized forms of non-canine antibodies provided herein are chimeric antibodies that contain minimal sequence derived from non-canine antibodies. In some instances, caninized antibodies are canine antibody sequences (“acceptor” or “recipient” antibody) in which hypervariable region residues of the recipient are replaced by hypervariable region residues from a non-canine species (“donor” antibody) such as mouse, rat, rabbit, cat, dogs, goat, chicken, bovine, horse, llama, camel, dromedaries, sharks, non-human primates, human, humanized, recombinant sequence, or an engineered sequence having the desired properties. In some instances, framework region (FR) residues of the canine antibody are replaced by corresponding non-canine FR residues. In some instances, caninized antibodies include residues that are not found in the recipient antibody or in the donor antibody. In some instances, these modifications are made to further refine antibody performance. The caninized antibody may also comprise at least a portion of an immunoglobulin constant region (Fc) of a canine antibody.


“Felinization” can comprise a method for transferring non-feline antigen-binding information from a donor antibody to a less immunogenic feline antibody acceptor to generate treatments useful as therapeutics in cats. In some instances, felinized forms of non-feline antibodies provided herein are chimeric antibodies that contain minimal sequence derived from non-feline antibodies. In some instances, felinized antibodies are feline antibody sequences (“acceptor” or “recipient” antibody) in which hypervariable region residues of the recipient are replaced by hypervariable region residues from a non-feline species (“donor” antibody) such as mouse, rat, rabbit, cat, dogs, goat, chicken, bovine, horse, llama, camel, dromedaries, sharks, non-human primates, human, humanized, recombinant sequence, or an engineered sequence having the desired properties. In some instances, framework region (FR) residues of the feline antibody are replaced by corresponding non-feline FR residues. In some instances, felinized antibodies include residues that are not found in the recipient antibody or in the donor antibody. In some instances, these modifications are made to further refine antibody performance. The felinized antibody may also comprise at least a portion of an immunoglobulin constant region (Fc) of a felinize antibody.


Methods as described herein may be used for optimization of libraries encoding a non-immunoglobulin. In some instances, the libraries comprise antibody mimetics. Exemplary antibody mimetics include, but are not limited to, anticalins, affilins, affibody molecules, affimers, affitins, alphabodies, avimers, atrimers, DARPins, fynomers, Kunitz domain-based proteins, monobodies, anticalins, knottins, armadillo repeat protein-based proteins, and bicyclic peptides.


Libraries described herein comprising nucleic acids encoding for an antibody comprise variations in at least one region of the antibody. Exemplary regions of the antibody for variation include, but are not limited to, a complementarity-determining region (CDR), a variable domain, or a constant domain. In some instances, the CDR is CDR1, CDR2, or CDR3. In some instances, the CDR is a heavy domain including, but not limited to, CDRH1, CDRH2, and CDRH3. In some instances, the CDR is a light domain including, but not limited to, CDRL1, CDRL2, and CDRL3. In some instances, the variable domain is variable domain, light chain (VL) or variable domain, heavy chain (VH). In some instances, the VL domain comprises kappa or lambda chains. In some instances, the constant domain is constant domain, light chain (CL) or constant domain, heavy chain (CH).


Methods described herein provide for synthesis of libraries comprising nucleic acids encoding an antibody, wherein each nucleic acid encodes for a predetermined variant of at least one predetermined reference nucleic acid sequence. In some cases, the predetermined reference sequence is a nucleic acid sequence encoding for a protein, and the variant library comprises sequences encoding for variation of at least a single codon such that a plurality of different variants of a single residue in the subsequent protein encoded by the synthesized nucleic acid are generated by standard translation processes. In some instances, the antibody library comprises varied nucleic acids collectively encoding variations at multiple positions. In some instances, the variant library comprises sequences encoding for variation of at least a single codon of a CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, or VH domain. In some instances, the variant library comprises sequences encoding for variation of multiple codons of a CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, or VH domain. In some instances, the variant library comprises sequences encoding for variation of multiple codons of framework element 1 (FW1), framework element 2 (FW2), framework element 3 (FW3), or framework element 4 (FW4). An exemplary number of codons for variation include, but are not limited to, at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 225, 250, 275, 300, or more than 300 codons.


In some instances, the at least one region of the antibody for variation is from heavy chain V-gene family, heavy chain D-gene family, heavy chain J-gene family, light chain V-gene family, or light chain J-gene family. In some instances, the light chain V-gene family comprises immunoglobulin kappa (IGK) gene or immunoglobulin lambda (IGL). Exemplary regions of the antibody for variation include, but are not limited to, IGHV1-18, IGHV1-69, IGHV1-8, IGHV3-21, IGHV3-23, IGHV3-30/33rn, IGHV3-28, IGHV1-69, IGHV3-74, IGHV4-39, IGHV4-59/61, IGKV1-39, IGKV1-9, IGKV2-28, IGKV3-11, IGKV3-15, IGKV3-20, IGKV4-1, IGLV1-51, IGLV2-14, IGLV1-40, and IGLV3-1. In some instances, the gene is IGHV1-69, IGHV3-30, IGHV3-23, IGHV3, IGHV1-46, IGHV3-7, IGHV1, or IGHV1-8. In some instances, the gene is IGHV1-69 and IGHV3-30. In some instances, the region of the antibody for variation is IGHJ3, IGHJ6, IGHJ, IGHJ4, IGHJ5, IGHJ2, or IGH1. In some instances, the region of the antibody for variation is IGHJ3, IGHJ6, IGHJ, or IGHJ4. In some instances, the at least one region of the antibody for variation is IGHV1-69, IGHV3-23, IGKV3-20, IGKV1-39, or combinations thereof. In some instances, the at least one region of the antibody for variation is IGHV1-69 and IGKV3-20, In some instances, the at least one region of the antibody for variation is IGHV1-69 and IGKV1-39. In some instances, the at least one region of the antibody for variation is IGHV3-23 and IGKV3-20. In some instances, the at least one region of the antibody for variation is IGHV3-23 and IGKV1-39.


Provided herein are libraries comprising nucleic acids encoding for antibodies, wherein the libraries are synthesized with various numbers of fragments. In some instances, the fragments comprise the CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, or VH domain. In some instances, the fragments comprise framework element 1 (FW1), framework element 2 (FW2), framework element 3 (FW3), or framework element 4 (FW4). In some instances, the antibody libraries are synthesized with at least or about 2 fragments, 3 fragments, 4 fragments, 5 fragments, or more than 5 fragments. The length of each of the nucleic acid fragments or average length of the nucleic acids synthesized may be at least or about 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, or more than 600 base pairs. In some instances, the length is about 50 to 600, 75 to 575, 100 to 550, 125 to 525, 150 to 500, 175 to 475, 200 to 450, 225 to 425, 250 to 400, 275 to 375, or 300 to 350 base pairs.


Libraries comprising nucleic acids encoding for antibodies as described herein comprise various lengths of amino acids when translated. In some instances, the length of each of the amino acid fragments or average length of the amino acid synthesized may be at least or about 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, or more than 150 amino acids. In some instances, the length of the amino acid is about 15 to 150, 20 to 145, 25 to 140, 30 to 135, 35 to 130, 40 to 125, 45 to 120, 50 to 115, 55 to 110, 60 to 110, 65 to 105, 70 to 100, or 75 to 95 amino acids. In some instances, the length of the amino acid is about 22 amino acids to about 75 amino acids. In some instances, the antibodies comprise at least or about 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, or more than 5000 amino acids.


A number of variant sequences for the at least one region of the antibody for variation are de novo synthesized using methods as described herein. In some instances, a number of variant sequences is de novo synthesized for CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, VH, or combinations thereof. In some instances, a number of variant sequences is de novo synthesized for framework element 1 (FW1), framework element 2 (FW2), framework element 3 (FW3), or framework element 4 (FW4). The number of variant sequences may be at least or about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, or more than 500 sequences. In some instances, the number of variant sequences is at least or about 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, or more than 8000 sequences. In some instances, the number of variant sequences is about 10 to 500, 25 to 475, 50 to 450, 75 to 425, 100 to 400, 125 to 375, 150 to 350, 175 to 325, 200 to 300, 225 to 375, 250 to 350, or 275 to 325 sequences.


Variant sequences for the at least one region of the antibody, in some instances, vary in length or sequence. In some instances, the at least one region that is de novo synthesized is for CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, VH, or combinations thereof. In some instances, the at least one region that is de novo synthesized is for framework element 1 (FW1), framework element 2 (FW2), framework element 3 (FW3), or framework element 4 (FW4). In some instances, the variant sequence comprises at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, or more than 50 variant nucleotides or amino acids as compared to wild-type. In some instances, the variant sequence comprises at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 additional nucleotides or amino acids as compared to wild-type. In some instances, the variant sequence comprises at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 less nucleotides or amino acids as compared to wild-type. In some instances, the libraries comprise at least or about 101, 102, 103, 104, 105, 106, 107, 108, 109, 1010, or more than 1010 variants.


Following synthesis of antibody libraries, antibody libraries may be used for screening and analysis. For example, antibody libraries are assayed for library displayability and panning. In some instances, displayability is assayed using a selectable tag. Exemplary tags include, but are not limited to, a radioactive label, a fluorescent label, an enzyme, a chemiluminescent tag, a colorimetric tag, an affinity tag or other labels or tags that are known in the art. In some instances, the tag is histidine, polyhistidine, myc, hemagglutinin (HA), or FLAG. In some instances, antibody libraries are assayed by sequencing using various methods including, but not limited to, single-molecule real-time (SMRT) sequencing, Polony sequencing, sequencing by ligation, reversible terminator sequencing, proton detection sequencing, ion semiconductor sequencing, nanopore sequencing, electronic sequencing, pyrosequencing, Maxam-Gilbert sequencing, chain termination (e.g., Sanger) sequencing, +S sequencing, or sequencing by synthesis. In some instances, antibody libraries are displayed on the surface of a cell or phage. In some instances, antibody libraries are enriched for sequences with a desired activity using phage display.


In some instances, the antibody libraries are assayed for functional activity, structural stability (e.g., thermal stable or pH stable), expression, specificity, or a combination thereof. In some instances, the antibody libraries are assayed for antibody capable of folding. In some instances, a region of the antibody is assayed for functional activity, structural stability, expression, specificity, folding, or a combination thereof. For example, a VH region or VL region is assayed for functional activity, structural stability, expression, specificity, folding, or a combination thereof.


In some instances, the affinity of antibodies or IgGs generated by methods as described herein is at least or about 1.5×, 2.0×, 5×, 10×, 20×, 30×, 40×, 50×, 60×, 70×, 80×, 90×, 100×, 200×, or more than 200×improved binding affinity as compared to a comparator antibody. In some instances, the affinity of antibodies or IgGs generated by methods as described herein is at least or about 1.5×, 2.0×, 5×, 10×, 20×, 30×, 40×, 50×, 60×, 70×, 80×, 90×, 100×, 200×, or more than 200×improved function as compared to a comparator antibody. In some instances, the comparator antibody is an antibody with similar structure, sequence, or antigen target.


Expression Systems


Provided herein are libraries comprising nucleic acids encoding for antibody comprising binding domains, wherein the libraries have improved specificity, stability, expression, folding, or downstream activity. In some instances, libraries described herein are used for screening and analysis.


Provided herein are libraries comprising nucleic acids encoding for antibody comprising binding domains, wherein the nucleic acid libraries are used for screening and analysis. In some instances, screening and analysis comprises in vitro, in vivo, or ex vivo assays. Cells for screening include primary cells taken from living subjects or cell lines. Cells may be from prokaryotes (e.g., bacteria and fungi) or eukaryotes (e.g., animals and plants). Exemplary animal cells include, without limitation, those from a mouse, rabbit, primate, and insect. In some instances, cells for screening include a cell line including, but not limited to, Chinese Hamster Ovary (CHO) cell line, human embryonic kidney (HEK) cell line, or baby hamster kidney (BHK) cell line. In some instances, nucleic acid libraries described herein may also be delivered to a multicellular organism. Exemplary multicellular organisms include, without limitation, a plant, a mouse, rabbit, primate, and insect.


Nucleic acid libraries described herein may be screened for various pharmacological or pharmacokinetic properties. In some instances, the libraries are screened using in vitro assays, in vivo assays, or ex vivo assays. For example, in vitro pharmacological or pharmacokinetic properties that are screened include, but are not limited to, binding affinity, binding specificity, and binding avidity. Exemplary in vivo pharmacological or pharmacokinetic properties of libraries described herein that are screened include, but are not limited to, therapeutic efficacy, activity, preclinical toxicity properties, clinical efficacy properties, clinical toxicity properties, immunogenicity, potency, and clinical safety properties.


Provided herein are nucleic acid libraries, wherein the nucleic acid libraries may be expressed in a vector. Expression vectors for inserting nucleic acid libraries disclosed herein may comprise eukaryotic or prokaryotic expression vectors. Exemplary expression vectors include, without limitation, mammalian expression vectors: pSF-CMV-NEO-NH2-PPT-3×FLAG, pSF-CMV-NEO—COOH-3×FLAG, pSF-CMV—PURO-NH2-GST-TEV, pSF-OXB20-COOH-TEV-FLAG(R)-6His, pCEP4 pDEST27, pSF-CMV-Ub-KrYFP, pSF-CMV-FMDV-daGFP, pEF1a-mCherry-N1 Vector, pEFla-tdTomato Vector, pSF-CMV-FMDV-Hygro, pSF-CMV-PGK-Puro, pMCP-tag(m), and pSF-CMV—PURO-NH2-CMYC; bacterial expression vectors: pSF-OXB20-BetaGal, pSF-OXB20-Fluc, pSF-OXB20, and pSF-Tac; plant expression vectors: pRI 101-AN DNA and pCambia2301; and yeast expression vectors: pTYB21 and pKLAC2, and insect vectors: pAc5.1/V5-His A and pDEST8. In some instances, the vector is pcDNA3 or pcDNA3.1.


Described herein are nucleic acid libraries that are expressed in a vector to generate a construct comprising an antibody. In some instances, a size of the construct varies. In some instances, the construct comprises at least or about 500, 600, 700, 800, 900, 1000, 1100, 1300, 1400, 1500, 1600, 1700, 1800, 2000, 2400, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000, 4200, 4400, 4600, 4800, 5000, 6000, 7000, 8000, 9000, 10000, or more than 10000 bases. In some instances, a the construct comprises a range of about 300 to 1,000, 300 to 2,000, 300 to 3,000, 300 to 4,000, 300 to 5,000, 300 to 6,000, 300 to 7,000, 300 to 8,000, 300 to 9,000, 300 to 10,000, 1,000 to 2,000, 1,000 to 3,000, 1,000 to 4,000, 1,000 to 5,000, 1,000 to 6,000, 1,000 to 7,000, 1,000 to 8,000, 1,000 to 9,000, 1,000 to 10,000, 2,000 to 3,000, 2,000 to 4,000, 2,000 to 5,000, 2,000 to 6,000, 2,000 to 7,000, 2,000 to 8,000, 2,000 to 9,000, 2,000 to 10,000, 3,000 to 4,000, 3,000 to 5,000, 3,000 to 6,000, 3,000 to 7,000, 3,000 to 8,000, 3,000 to 9,000, 3,000 to 10,000, 4,000 to 5,000, 4,000 to 6,000, 4,000 to 7,000, 4,000 to 8,000, 4,000 to 9,000, 4,000 to 10,000, 5,000 to 6,000, 5,000 to 7,000, 5,000 to 8,000, 5,000 to 9,000, 5,000 to 10,000, 6,000 to 7,000, 6,000 to 8,000, 6,000 to 9,000, 6,000 to 10,000, 7,000 to 8,000, 7,000 to 9,000, 7,000 to 10,000, 8,000 to 9,000, 8,000 to 10,000, or 9,000 to 10,000 bases.


Provided herein are libraries comprising nucleic acids encoding for antibodies, wherein the nucleic acid libraries are expressed in a cell. In some instances, the libraries are synthesized to express a reporter gene. Exemplary reporter genes include, but are not limited to, acetohydroxyacid synthase (AHAS), alkaline phosphatase (AP), beta galactosidase (LacZ), beta glucuronidase (GUS), chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), cerulean fluorescent protein, citrine fluorescent protein, orange fluorescent protein, cherry fluorescent protein, turquoise fluorescent protein, blue fluorescent protein, horseradish peroxidase (HRP), luciferase (Luc), nopaline synthase (NOS), octopine synthase (OCS), luciferase, and derivatives thereof. Methods to determine modulation of a reporter gene are well known in the art, and include, but are not limited to, fluorometric methods (e.g. fluorescence spectroscopy, Fluorescence Activated Cell Sorting (FACS), fluorescence microscopy), and antibiotic resistance determination.


Diseases and Disorders


Provided herein are SARS-CoV-2 or ACE2 binding libraries comprising nucleic acids encoding for antibodies comprising SARS-CoV-2 or ACE2 binding domains may have therapeutic effects. In some instances, the SARS-CoV-2 or ACE2 binding libraries result in protein when translated that is used to treat a disease or disorder. In some instances, the protein is an immunoglobulin. In some instances, the protein is a peptidomimetic. In some instances, the disease or disorder is a viral infection caused by SARS-CoV-2. In some instances, the disease or disorder is a respiratory disease or disorder caused by SARS-CoV-2.


SARS-CoV-2 or ACE2 variant antibody libraries as described herein may be used to treat SARS-CoV-2. In some embodiments, the SARS-CoV-2 or ACE2 variant antibody libraries are used to treat or prevent symptoms of SARS-CoV-2. These symptoms include, but are not limited to, fever, chills, cough, fatigue, headaches, loss of taste, loss of smell, nausea, vomiting, muscle weakness, sleep difficulties, anxiety, and depression. In some embodiments, the SARS-CoV-2 or ACE2 variant antibody libraries are used to treat a subject who has symptoms for an extended period of time. In some embodiments, the subject has symptoms for an extended period of time after testing negative for SARS-CoV-2. In some embodiments, the subject has symptoms for an extended period of time including at least 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, or more than 1 year.


In some instances, the subject is a mammal. In some instances, the subject is a mouse, rabbit, dog, or human. Subjects treated by methods described herein may be infants, adults, or children. Pharmaceutical compositions comprising antibodies or antibody fragments as described herein may be administered intravenously or subcutaneously. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment (e.g., multispecific antibody) comprising a sequence of any one as provided in Tables 13-17. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to a sequence of any one as provided in Tables 13-17. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to a sequence of any one as provided in Tables 13-17. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a sequence of any one as provided in Tables 13-17. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical to a sequence of any one as provided in Tables 13-17.


In some instances, a pharmaceutical composition comprises an antibody or antibody fragment (e.g., multispecific antibody) comprising a sequence of any one of SEQ ID NOs: 1-3193. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to a sequence of any one of SEQ ID NOs: 1-3193. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to a sequence of any one of SEQ ID NOs: 1-3193. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-3193. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical to a sequence of any one of SEQ ID NOs: 1-3193.


In some instances, a pharmaceutical composition comprises an antibody or antibody fragment (e.g., multispecific antibody) comprising a first CDRH1 sequence of any one of SEQ ID NOs: 1-122 and a second CDRH2 sequence of any one of SEQ ID NOs: 123-651. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to a first CDRH1 sequence of any one of SEQ ID NOs: 1-122 and a second CDRH2 sequence of any one of SEQ ID NOs: 123-651. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to a first CDRH1 sequence of any one of SEQ ID NOs: 1-122 and a second CDRH2 sequence of any one of SEQ ID NOs: 123-651. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a first CDRH1 sequence of any one of SEQ ID NOs: 1-89 and a second CDRH2 sequence of any one of SEQ ID NOs: 123-651. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical to a first CDRH1 sequence of any one of SEQ ID NOs: 1-122 and a second CDRH2 sequence of any one of SEQ ID NOs: 123-651. In some instances, an antibody or antibody fragment described herein comprises a first CDRH2 sequence of any one of SEQ ID NOs: 652-773 and a second CDRH2 sequence of any one of SEQ ID NOs: 774-1302. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to first CDRH2 sequence of any one of SEQ ID NOs: 652-773 and a second CDRH2 sequence of any one of SEQ ID NOs: 774-1302. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to first CDRH2 sequence of any one of SEQ ID NOs: 652-773 and a second CDRH2 sequence of any one of SEQ ID NOs: 774-1302. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a first CDRH2 sequence of any one of SEQ ID NOs: 652-773 and a second CDRH2 sequence of any one of SEQ ID NOs: 774-1302. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical to a first CDRH2 sequence of any one of SEQ ID NOs: 652-773 and a second CDRH2 sequence of any one of SEQ ID NOs: 774-1302. In some instances, an antibody or antibody fragment described herein comprises a first CDRH3 sequence of any one of SEQ ID NOs: 1303-1425 and a second CDRH3 sequence of any one of SEQ ID NOs: 1426-1953. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to a first CDRH3 sequence of any one of SEQ ID NOs: 1303-1425 and a second CDRH3 sequence of any one of SEQ ID NOs: 1426-1953. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to a first CDRH3 sequence of any one of SEQ ID NOs: 1303-1425 and a second CDRH3 sequence of any one of SEQ ID NOs: 1426-1953. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a first CDRH3 sequence of any one of SEQ ID NOs: 1303-1425 and a second CDRH3 sequence of any one of SEQ ID NOs: 1426-1953. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical a first CDRH3 sequence of any one of SEQ ID NOs: 1303-1425 and a second CDRH3 sequence of any one of SEQ ID NOs: 1426-1953.


In some instances, a pharmaceutical composition comprises an antibody or antibody fragment (e.g., multispecific antibody) comprising a first variable domain, heavy chain region (VH) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 2212-2333, and a second VH comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 2334-3099. In some instances, the antibodies or antibody fragments comprise a first VH comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 2212-2333, and a second VH comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 2334-3099.


In some instances, a pharmaceutical composition comprises an antibody or antibody fragment (e.g., multispecific antibody) comprising an amino acid sequence at least about 90% identical to a sequence as set forth SEQ ID NO: 3192. In some instances, the antibodies or antibody fragments comprise an amino acid sequence at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to SEQ ID NO: 3192.


In some instances, a pharmaceutical composition comprises an antibody or antibody fragment (e.g., multispecific antibody) comprising an amino acid sequence at least about 90% identical to a sequence as set forth SEQ ID NO: 3193. In some instances, the antibodies or antibody fragments comprise an amino acid sequence at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to SEQ ID NO: 3193.


SARS-CoV-2 or ACE2 antibodies as described herein may confer immunity after exposure to SARS-CoV-2 or ACE2 antibodies. In some embodiments, the SARS-CoV-2 or ACE2 antibodies described herein are used for passive immunization of a subject. In some instances, the subject is actively immunized after exposure to SARS-CoV-2 or ACE2 antibodies followed by exposure to SARS-CoV-2. In some embodiments, SARS-CoV-2 or ACE2 antibodies are derived from a subject who has recovered from SARS-CoV-2.


In some embodiments, the immunity occurs at least about 30 minutes, 1 hour, 5 hours, 10 hours, 16 hours, 20 hours, 24 hours, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 2 weeks, or more than 2 weeks after exposure to SARS-CoV-2 or ACE2 antibodies. In some instances, the immunity lasts for at least about 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 2 years, 3 years, 4 years, 5 years, or more than 5 years after exposure to SARS-CoV-2 or ACE2 antibodies.


In some embodiments, the subject receives the SARS-CoV-2 or ACE2 antibodies prior to exposure to SARS-CoV-2. In some embodiments, the subject receives the SARS-CoV-2 or ACE2 antibodies at least about 30 minutes, 1 hour, 4 hours, 8 hours, 12 hours, 16 hours, 20 hours, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 2 years, 3 years, 4 years, 5 years, or more than 5 years prior to exposure to SARS-CoV-2. In some embodiments, the subject receives the SARS-CoV-2 or ACE2 antibodies after exposure to SARS-CoV-2. In some embodiments, the subject receives the SARS-CoV-2 or ACE2 antibodies at least about 30 minutes, 1 hour, 4 hours, 8 hours, 12 hours, 16 hours, 20 hours, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 2 years, 3 years, 4 years, 5 years, or more than 5 years after exposure to SARS-CoV-2.


SARS-CoV-2 or ACE2 antibodies described herein may be administered through various routes. The administration may, depending on the composition being administered, for example, be oral, pulmonary, intravenous, intraperitoneal, intramuscular, intracavity, subcutaneous, or transdermal.


Described herein are compositions or pharmaceutical compositions comprising SARS-CoV-2 or ACE2 antibodies or antibody fragment thereof that comprise various dosages of the antibodies or antibody fragment. In some instances, the dosage is ranging from about 1 to 25 mg/kg, from about 1 to 50 mg/kg, from about 1 to 80 mg/kg, from about 1 to about 100 mg/kg, from about 5 to about 100 mg/kg, from about 5 to about 80 mg/kg, from about 5 to about 60 mg/kg, from about 5 to about 50 mg/kg or from about 5 to about 500 mg/kg which can be administered in single or multiple doses. In some instances, the dosage is administered in an amount of about 0.01 mg/kg, about 0.05 mg/kg, about 0.10 mg/kg, about 0.25 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 5 mg/kg, about 10 mg/kg, about 15 mg/kg, about 20 mg/kg, about 25 mg/kg, about 30 mg/kg, about 35 mg/kg, about 40 mg/kg, about 45 mg/kg, about 50 mg/kg, about 55 mg/kg, about 60 mg/kg, about 65 mg/kg, about 70 mg/kg, about 75 mg/kg, about 80 mg/kg, about 85 mg/kg, about 90 mg/kg, about 95 mg/kg, about 100 mg/kg, about 105 mg/kg, about 110 mg/kg, about 115 mg/kg, about 120, about 125, about 130, about 135, about 140, about 145, about 150, about 155, about 160, about 165, about 170, about 175, about 180, about 185, about 190, about 195, about 200, about 205, about 210, about 215, about 220, about 225, about 230, about 240, about 250, about 260, about 270, about 275, about 280, about 290, about 300, about 310, about 320, about 330, about 340, about 350, about 360 mg/kg, about 370 mg/kg, about 380 mg/kg, about 390 mg/kg, about 400 mg/kg, 410 mg/kg, about 420 mg/kg, about 430 mg/kg, about 440 mg/kg, about 450 mg/kg, about 460 mg/kg, about 470 mg/kg, about 480 mg/kg, about 490 mg/kg, or about 500 mg/kg.


SARS-CoV-2 or ACE2 antibodies or antibody fragment thereof described herein, in some embodiments, improve disease severity. In some embodiments, the SARS-CoV-2 or ACE2 antibodies or antibody fragment thereof improve disease severity at a dose level of about 0.01 mg/kg, about 0.05 mg/kg, about 0.10 mg/kg, about 0.25 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 5 mg/kg, about 10 mg/kg, about 15 mg/kg, or about 20 mg/kg. In some embodiments, the SARS-CoV-2 or ACE2 antibodies or antibody fragment thereof improve disease severity at a dose level of about 1 mg/kg, about 5 mg/kg, or about 10 mg/kg. In some embodiments, disease severity is determined by percent weight loss. In some embodiments, the SARS-CoV-2 or ACE2 antibodies or antibody fragment thereof protects against weight loss at a dose level of about 0.01 mg/kg, about 0.05 mg/kg, about 0.10 mg/kg, about 0.25 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 5 mg/kg, about 10 mg/kg, about 15 mg/kg, or about 20 mg/kg. In some embodiments, the SARS-CoV-2 or ACE2 antibodies or antibody fragment thereof protects against weight loss at a dose level of about 1 mg/kg, about 5 mg/kg, or about 10 mg/kg. In some embodiments, SARS-CoV-2 or ACE2 antibodies or antibody fragment thereof


Variant Libraries


Codon Variation


Variant nucleic acid libraries described herein may comprise a plurality of nucleic acids, wherein each nucleic acid encodes for a variant codon sequence compared to a reference nucleic acid sequence. In some instances, each nucleic acid of a first nucleic acid population contains a variant at a single variant site. In some instances, the first nucleic acid population contains a plurality of variants at a single variant site such that the first nucleic acid population contains more than one variant at the same variant site. The first nucleic acid population may comprise nucleic acids collectively encoding multiple codon variants at the same variant site. The first nucleic acid population may comprise nucleic acids collectively encoding up to 19 or more codons at the same position. The first nucleic acid population may comprise nucleic acids collectively encoding up to 60 variant triplets at the same position, or the first nucleic acid population may comprise nucleic acids collectively encoding up to 61 different triplets of codons at the same position. Each variant may encode for a codon that results in a different amino acid during translation. Table 1 provides a listing of each codon possible (and the representative amino acid) for a variant site.









TABLE 1







List of codons and amino acids











One
Three




letter
letter


Amino Acids
code
code
Codons
















Alanine
A
Ala
GCA
GCC
GCG
GCT











Cysteine
C
Cys
TGC
TGT


Aspartic acid
D
Asp
GAC
GAT


Glutamic
E
Glu
GAA
GAG


acid


Phenyl-
F
Phe
TTC
TTT


alanine













Glycine
G
Gly
GGA
GGC
GGG
GGT











Histidine
H
His
CAC
CAT












Isoleucine
I
Iso
ATA
ATC
ATT











Lysine
K
Lys
AAA
AAG















Leucine
L
Leu
TTA
TTG
CTA
CTC
CTG
CTT










Methionine
M
Met
ATG











Asparagine
N
Asn
AAC
AAT













Proline
P
Pro
CCA
CCC
CCG
CCT











Glutamine
Q
Gln
CAA
CAG















Arginine
R
Arg
AGA
AGG
CGA
CGC
CGG
CGT


Serine
S
Ser
AGC
AGT
TCA
TCC
TCG
TCT













Threonine
T
Thr
ACA
ACC
ACG
ACT


Valine
V
Val
GTA
GTC
GTG
GTT










Tryptophan
W
Trp
TGG











Tyrosine
Y
Tyr
TAC
TAT









A nucleic acid population may comprise varied nucleic acids collectively encoding up to 20 codon variations at multiple positions. In such cases, each nucleic acid in the population comprises variation for codons at more than one position in the same nucleic acid. In some instances, each nucleic acid in the population comprises variation for codons at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more codons in a single nucleic acid. In some instances, each variant long nucleic acid comprises variation for codons at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more codons in a single long nucleic acid. In some instances, the variant nucleic acid population comprises variation for codons at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more codons in a single nucleic acid. In some instances, the variant nucleic acid population comprises variation for codons in at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or more codons in a single long nucleic acid.


Highly Parallel Nucleic Acid Synthesis


Provided herein is a platform approach utilizing miniaturization, parallelization, and vertical integration of the end-to-end process from polynucleotide synthesis to gene assembly within nanowells on silicon to create a revolutionary synthesis platform. Devices described herein provide, with the same footprint as a 96-well plate, a silicon synthesis platform is capable of increasing throughput by a factor of up to 1,000 or more compared to traditional synthesis methods, with production of up to approximately 1,000,000 or more polynucleotides, or 10,000 or more genes in a single highly-parallelized run.


With the advent of next-generation sequencing, high resolution genomic data has become an important factor for studies that delve into the biological roles of various genes in both normal biology and disease pathogenesis. At the core of this research is the central dogma of molecular biology and the concept of “residue-by-residue transfer of sequential information.” Genomic information encoded in the DNA is transcribed into a message that is then translated into the protein that is the active product within a given biological pathway.


Another exciting area of study is on the discovery, development and manufacturing of therapeutic molecules focused on a highly-specific cellular target. High diversity DNA sequence libraries are at the core of development pipelines for targeted therapeutics. Gene variants are used to express proteins in a design, build, and test protein engineering cycle that ideally culminates in an optimized gene for high expression of a protein with high affinity for its therapeutic target. As an example, consider the binding pocket of a receptor. The ability to test all sequence permutations of all residues within the binding pocket simultaneously will allow for a thorough exploration, increasing chances of success. Saturation mutagenesis, in which a researcher attempts to generate all possible mutations or variants at a specific site within the receptor, represents one approach to this development challenge. Though costly and time and labor-intensive, it enables each variant to be introduced into each position. In contrast, combinatorial mutagenesis, where a few selected positions or short stretch of DNA may be modified extensively, generates an incomplete repertoire of variants with biased representation.


To accelerate the drug development pipeline, a library with the desired variants available at the intended frequency in the right position available for testing—in other words, a precision library, enables reduced costs as well as turnaround time for screening. Provided herein are methods for synthesizing nucleic acid synthetic variant libraries which provide for precise introduction of each intended variant at the desired frequency. To the end user, this translates to the ability to not only thoroughly sample sequence space but also be able to query these hypotheses in an efficient manner, reducing cost and screening time. Genome-wide editing can elucidate important pathways, libraries where each variant and sequence permutation can be tested for optimal functionality, and thousands of genes can be used to reconstruct entire pathways and genomes to re-engineer biological systems for drug discovery.


In a first example, a drug itself can be optimized using methods described herein. For example, to improve a specified function of an antibody, a variant polynucleotide library encoding for a portion of the antibody is designed and synthesized. A variant nucleic acid library for the antibody can then be generated by processes described herein (e.g., PCR mutagenesis followed by insertion into a vector). The antibody is then expressed in a production cell line and screened for enhanced activity. Example screens include examining modulation in binding affinity to an antigen, stability, or effector function (e.g., ADCC, complement, or apoptosis). Exemplary regions to optimize the antibody include, without limitation, the Fc region, Fab region, variable region of the Fab region, constant region of the Fab region, variable domain of the heavy chain or light chain (VH or VL), and specific complementarity-determining regions (CDRs) of VH or VL.


Nucleic acid libraries synthesized by methods described herein may be expressed in various cells associated with a disease state. Cells associated with a disease state include cell lines, tissue samples, primary cells from a subject, cultured cells expanded from a subject, or cells in a model system. Exemplary model systems include, without limitation, plant and animal models of a disease state.


To identify a variant molecule associated with prevention, reduction or treatment of a disease state, a variant nucleic acid library described herein is expressed in a cell associated with a disease state, or one in which a cell a disease state can be induced. In some instances, an agent is used to induce a disease state in cells. Exemplary tools for disease state induction include, without limitation, a Cre/Lox recombination system, LPS inflammation induction, and streptozotocin to induce hypoglycemia. The cells associated with a disease state may be cells from a model system or cultured cells, as well as cells from a subject having a particular disease condition. Exemplary disease conditions include a bacterial, fungal, viral, autoimmune, or proliferative disorder (e.g., cancer). In some instances, the variant nucleic acid library is expressed in the model system, cell line, or primary cells derived from a subject, and screened for changes in at least one cellular activity. Exemplary cellular activities include, without limitation, proliferation, cycle progression, cell death, adhesion, migration, reproduction, cell signaling, energy production, oxygen utilization, metabolic activity, and aging, response to free radical damage, or any combination thereof


Substrates


Devices used as a surface for polynucleotide synthesis may be in the form of substrates which include, without limitation, homogenous array surfaces, patterned array surfaces, channels, beads, gels, and the like. Provided herein are substrates comprising a plurality of clusters, wherein each cluster comprises a plurality of loci that support the attachment and synthesis of polynucleotides. In some instances, substrates comprise a homogenous array surface. For example, the homogenous array surface is a homogenous plate. The term “locus” as used herein refers to a discrete region on a structure which provides support for polynucleotides encoding for a single predetermined sequence to extend from the surface. In some instances, a locus is on a two dimensional surface, e.g., a substantially planar surface. In some instances, a locus is on a three-dimensional surface, e.g., a well, microwell, channel, or post. In some instances, a surface of a locus comprises a material that is actively functionalized to attach to at least one nucleotide for polynucleotide synthesis, or preferably, a population of identical nucleotides for synthesis of a population of polynucleotides. In some instances, polynucleotide refers to a population of polynucleotides encoding for the same nucleic acid sequence. In some cases, a surface of a substrate is inclusive of one or a plurality of surfaces of a substrate. The average error rates for polynucleotides synthesized within a library described here using the systems and methods provided are often less than 1 in 1000, less than about 1 in 2000, less than about 1 in 3000 or less often without error correction.


Provided herein are surfaces that support the parallel synthesis of a plurality of polynucleotides having different predetermined sequences at addressable locations on a common support. In some instances, a substrate provides support for the synthesis of more than 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more non-identical polynucleotides. In some cases, the surfaces provide support for the synthesis of more than 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more polynucleotides encoding for distinct sequences. In some instances, at least a portion of the polynucleotides have an identical sequence or are configured to be synthesized with an identical sequence. In some instances, the substrate provides a surface environment for the growth of polynucleotides having at least 80, 90, 100, 120, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500 bases or more.


Provided herein are methods for polynucleotide synthesis on distinct loci of a substrate, wherein each locus supports the synthesis of a population of polynucleotides. In some cases, each locus supports the synthesis of a population of polynucleotides having a different sequence than a population of polynucleotides grown on another locus. In some instances, each polynucleotide sequence is synthesized with 1, 2, 3, 4, 5, 6, 7, 8, 9 or more redundancy across different loci within the same cluster of loci on a surface for polynucleotide synthesis. In some instances, the loci of a substrate are located within a plurality of clusters. In some instances, a substrate comprises at least 10, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 20000, 30000, 40000, 50000 or more clusters. In some instances, a substrate comprises more than 2,000; 5,000; 10,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,100,000; 1,200,000; 1,300,000; 1,400,000; 1,500,000; 1,600,000; 1,700,000; 1,800,000; 1,900,000; 2,000,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; or 10,000,000 or more distinct loci. In some instances, a substrate comprises about 10,000 distinct loci. The amount of loci within a single cluster is varied in different instances. In some cases, each cluster includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 130, 150, 200, 300, 400, 500 or more loci. In some instances, each cluster includes about 50-500 loci. In some instances, each cluster includes about 100-200 loci. In some instances, each cluster includes about 100-150 loci. In some instances, each cluster includes about 109, 121, 130 or 137 loci. In some instances, each cluster includes about 19, 20, 61, 64 or more loci. Alternatively or in combination, polynucleotide synthesis occurs on a homogenous array surface.


In some instances, the number of distinct polynucleotides synthesized on a substrate is dependent on the number of distinct loci available in the substrate. In some instances, the density of loci within a cluster or surface of a substrate is at least or about 1, 10, 25, 50, 65, 75, 100, 130, 150, 175, 200, 300, 400, 500, 1,000 or more loci per mm2. In some cases, a substrate comprises 10-500, 25-400, 50-500, 100-500, 150-500, 10-250, 50-250, 10-200, or 50-200 mm2. In some instances, the distance between the centers of two adjacent loci within a cluster or surface is from about 10-500, from about 10-200, or from about 10-100 um. In some instances, the distance between two centers of adjacent loci is greater than about 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 um. In some instances, the distance between the centers of two adjacent loci is less than about 200, 150, 100, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, each locus has a width of about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 um. In some cases, each locus has a width of about 0.5-100, 0.5-50, 10-75, or 0.5-50 um.


In some instances, the density of clusters within a substrate is at least or about 1 cluster per 100 mm2, 1 cluster per 10 mm2, 1 cluster per 5 mm2, 1 cluster per 4 mm2, 1 cluster per 3 mm2, 1 cluster per 2 mm2, 1 cluster per 1 mm2, 2 clusters per 1 mm2, 3 clusters per 1 mm2, 4 clusters per 1 mm2, 5 clusters per 1 mm2, 10 clusters per 1 mm2, 50 clusters per 1 mm2 or more. In some instances, a substrate comprises from about 1 cluster per 10 mm2 to about 10 clusters per 1 mm2. In some instances, the distance between the centers of two adjacent clusters is at least or about 50, 100, 200, 500, 1000, 2000, or 5000 um. In some cases, the distance between the centers of two adjacent clusters is between about 50-100, 50-200, 50-300, 50-500, and 100-2000 um. In some cases, the distance between the centers of two adjacent clusters is between about 0.05-50, 0.05-10, 0.05-5, 0.05-4, 0.05-3, 0.05-2, 0.1-10, 0.2-10, 0.3-10, 0.4-10, 0.5-10, 0.5-5, or 0.5-2 mm. In some cases, each cluster has a cross section of about 0.5 to about 2, about 0.5 to about 1, or about 1 to about 2 mm. In some cases, each cluster has a cross section of about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 mm. In some cases, each cluster has an interior cross section of about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.15, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 mm.


In some instances, a substrate is about the size of a standard 96 well plate, for example between about 100 and about 200 mm by between about 50 and about 150 mm. In some instances, a substrate has a diameter less than or equal to about 1000, 500, 450, 400, 300, 250, 200, 150, 100 or 50 mm. In some instances, the diameter of a substrate is between about 25-1000, 25-800, 25-600, 25-500, 25-400, 25-300, or 25-200 mm. In some instances, a substrate has a planar surface area of at least about 100; 200; 500; 1,000; 2,000; 5,000; 10,000; 12,000; 15,000; 20,000; 30,000; 40,000; 50,000 mm2 or more. In some instances, the thickness of a substrate is between about 50-2000, 50-1000, 100-1000, 200-1000, or 250-1000 mm.


Surface Materials


Substrates, devices, and reactors provided herein are fabricated from any variety of materials suitable for the methods, compositions, and systems described herein. In certain instances, substrate materials are fabricated to exhibit a low level of nucleotide binding. In some instances, substrate materials are modified to generate distinct surfaces that exhibit a high level of nucleotide binding. In some instances, substrate materials are transparent to visible and/or UV light. In some instances, substrate materials are sufficiently conductive, e.g., are able to form uniform electric fields across all or a portion of a substrate. In some instances, conductive materials are connected to an electric ground. In some instances, the substrate is heat conductive or insulated. In some instances, the materials are chemical resistant and heat resistant to support chemical or biochemical reactions, for example polynucleotide synthesis reaction processes. In some instances, a substrate comprises flexible materials. For flexible materials, materials can include, without limitation: nylon, both modified and unmodified, nitrocellulose, polypropylene, and the like. In some instances, a substrate comprises rigid materials. For rigid materials, materials can include, without limitation: glass; fuse silica; silicon, plastics (for example polytetrafluoroethylene, polypropylene, polystyrene, polycarbonate, and blends thereof, and the like); metals (for example, gold, platinum, and the like). The substrate, solid support or reactors can be fabricated from a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, polydimethylsiloxane (PDMS), and glass. The substrates/solid supports or the microstructures, reactors therein may be manufactured with a combination of materials listed herein or any other suitable material known in the art.


Surface Architecture


Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates have a surface architecture suitable for the methods, compositions, and systems described herein. In some instances, a substrate comprises raised and/or lowered features. One benefit of having such features is an increase in surface area to support polynucleotide synthesis. In some instances, a substrate having raised and/or lowered features is referred to as a three-dimensional substrate. In some cases, a three-dimensional substrate comprises one or more channels. In some cases, one or more loci comprise a channel. In some cases, the channels are accessible to reagent deposition via a deposition device such as a material deposition device. In some cases, reagents and/or fluids collect in a larger well in fluid communication one or more channels. For example, a substrate comprises a plurality of channels corresponding to a plurality of loci with a cluster, and the plurality of channels are in fluid communication with one well of the cluster. In some methods, a library of polynucleotides is synthesized in a plurality of loci of a cluster.


Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates are configured for polynucleotide synthesis. In some instances, the structure is configured to allow for controlled flow and mass transfer paths for polynucleotide synthesis on a surface. In some instances, the configuration of a substrate allows for the controlled and even distribution of mass transfer paths, chemical exposure times, and/or wash efficacy during polynucleotide synthesis. In some instances, the configuration of a substrate allows for increased sweep efficiency, for example by providing sufficient volume for a growing polynucleotide such that the excluded volume by the growing polynucleotide does not take up more than 50, 45, 40, 35, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1%, or less of the initially available volume that is available or suitable for growing the polynucleotide. In some instances, a three-dimensional structure allows for managed flow of fluid to allow for the rapid exchange of chemical exposure.


Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates comprise structures suitable for the methods, compositions, and systems described herein. In some instances, segregation is achieved by physical structure. In some instances, segregation is achieved by differential functionalization of the surface generating active and passive regions for polynucleotide synthesis. In some instances, differential functionalization is achieved by alternating the hydrophobicity across the substrate surface, thereby creating water contact angle effects that cause beading or wetting of the deposited reagents. Employing larger structures can decrease splashing and cross-contamination of distinct polynucleotide synthesis locations with reagents of the neighboring spots. In some cases, a device, such as a material deposition device, is used to deposit reagents to distinct polynucleotide synthesis locations. Substrates having three-dimensional features are configured in a manner that allows for the synthesis of a large number of polynucleotides (e.g., more than about 10,000) with a low error rate (e.g., less than about 1:500, 1:1000, 1:1500, 1:2,000, 1:3,000, 1:5,000, or 1:10,000). In some cases, a substrate comprises features with a density of about or greater than about 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400 or 500 features per mm2.


A well of a substrate may have the same or different width, height, and/or volume as another well of the substrate. A channel of a substrate may have the same or different width, height, and/or volume as another channel of the substrate. In some instances, the diameter of a cluster or the diameter of a well comprising a cluster, or both, is between about 0.05-50, 0.05-10, 0.05-5, 0.05-4, 0.05-3, 0.05-2, 0.05-1, 0.05-0.5, 0.05-0.1, 0.1-10, 0.2-10, 0.3-10, 0.4-10, 0.5-10, 0.5-5, or 0.5-2 mm. In some instances, the diameter of a cluster or well or both is less than or about 5, 4, 3, 2, 1, 0.5, 0.1, 0.09, 0.08, 0.07, 0.06, or 0.05 mm. In some instances, the diameter of a cluster or well or both is between about 1.0 and 1.3 mm. In some instances, the diameter of a cluster or well, or both is about 1.150 mm. In some instances, the diameter of a cluster or well, or both is about 0.08 mm. The diameter of a cluster refers to clusters within a two-dimensional or three-dimensional substrate.


In some instances, the height of a well is from about 20-1000, 50-1000, 100-1000, 200-1000, 300-1000, 400-1000, or 500-1000 um. In some cases, the height of a well is less than about 1000, 900, 800, 700, or 600 um.


In some instances, a substrate comprises a plurality of channels corresponding to a plurality of loci within a cluster, wherein the height or depth of a channel is 5-500, 5-400, 5-300, 5-200, 5-100, 5-50, or 10-50 um. In some cases, the height of a channel is less than 100, 80, 60, 40, or 20 um.


In some instances, the diameter of a channel, locus (e.g., in a substantially planar substrate) or both channel and locus (e.g., in a three-dimensional substrate wherein a locus corresponds to a channel) is from about 1-1000, 1-500, 1-200, 1-100, 5-100, or 10-100 um, for example, about 90, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, the diameter of a channel, locus, or both channel and locus is less than about 100, 90, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, the distance between the center of two adjacent channels, loci, or channels and loci is from about 1-500, 1-200, 1-100, 5-200, 5-100, 5-50, or 5-30, for example, about 20 um.


Surface Modifications


Provided herein are methods for polynucleotide synthesis on a surface, wherein the surface comprises various surface modifications. In some instances, the surface modifications are employed for the chemical and/or physical alteration of a surface by an additive or subtractive process to change one or more chemical and/or physical properties of a substrate surface or a selected site or region of a substrate surface. For example, surface modifications include, without limitation, (1) changing the wetting properties of a surface, (2) functionalizing a surface, i.e., providing, modifying or substituting surface functional groups, (3) defunctionalizing a surface, i.e., removing surface functional groups, (4) otherwise altering the chemical composition of a surface, e.g., through etching, (5) increasing or decreasing surface roughness, (6) providing a coating on a surface, e.g., a coating that exhibits wetting properties that are different from the wetting properties of the surface, and/or (7) depositing particulates on a surface.


In some cases, the addition of a chemical layer on top of a surface (referred to as adhesion promoter) facilitates structured patterning of loci on a surface of a substrate. Exemplary surfaces for application of adhesion promotion include, without limitation, glass, silicon, silicon dioxide and silicon nitride. In some cases, the adhesion promoter is a chemical with a high surface energy. In some instances, a second chemical layer is deposited on a surface of a substrate. In some cases, the second chemical layer has a low surface energy. In some cases, surface energy of a chemical layer coated on a surface supports localization of droplets on the surface. Depending on the patterning arrangement selected, the proximity of loci and/or area of fluid contact at the loci are alterable.


In some instances, a substrate surface, or resolved loci, onto which nucleic acids or other moieties are deposited, e.g., for polynucleotide synthesis, are smooth or substantially planar (e.g., two-dimensional) or have irregularities, such as raised or lowered features (e.g., three-dimensional features). In some instances, a substrate surface is modified with one or more different layers of compounds. Such modification layers of interest include, without limitation, inorganic and organic layers such as metals, metal oxides, polymers, small organic molecules and the like.


In some instances, resolved loci of a substrate are functionalized with one or more moieties that increase and/or decrease surface energy. In some cases, a moiety is chemically inert. In some cases, a moiety is configured to support a desired chemical reaction, for example, one or more processes in a polynucleotide synthesis reaction. The surface energy, or hydrophobicity, of a surface is a factor for determining the affinity of a nucleotide to attach onto the surface. In some instances, a method for substrate functionalization comprises: (a) providing a substrate having a surface that comprises silicon dioxide; and (b) silanizing the surface using, a suitable silanizing agent described herein or otherwise known in the art, for example, an organofunctional alkoxysilane molecule. Methods and functionalizing agents are described in U.S. Pat. No. 5,474,796, which is herein incorporated by reference in its entirety.


In some instances, a substrate surface is functionalized by contact with a derivatizing composition that contains a mixture of silanes, under reaction conditions effective to couple the silanes to the substrate surface, typically via reactive hydrophilic moieties present on the substrate surface. Silanization generally covers a surface through self-assembly with organofunctional alkoxysilane molecules. A variety of siloxane functionalizing reagents can further be used as currently known in the art, e.g., for lowering or increasing surface energy. The organofunctional alkoxysilanes are classified according to their organic functions.


Polynucleotide Synthesis


Methods of the current disclosure for polynucleotide synthesis may include processes involving phosphoramidite chemistry. In some instances, polynucleotide synthesis comprises coupling a base with phosphoramidite. Polynucleotide synthesis may comprise coupling a base by deposition of phosphoramidite under coupling conditions, wherein the same base is optionally deposited with phosphoramidite more than once, i.e., double coupling. Polynucleotide synthesis may comprise capping of unreacted sites. In some instances, capping is optional. Polynucleotide synthesis may also comprise oxidation or an oxidation step or oxidation steps. Polynucleotide synthesis may comprise deblocking, detritylation, and sulfurization. In some instances, polynucleotide synthesis comprises either oxidation or sulfurization. In some instances, between one or each step during a polynucleotide synthesis reaction, the device is washed, for example, using tetrazole or acetonitrile. Time frames for any one step in a phosphoramidite synthesis method may be less than about 2 min, 1 min, 50 sec, 40 sec, 30 sec, 20 sec and 10 sec.


Polynucleotide synthesis using a phosphoramidite method may comprise a subsequent addition of a phosphoramidite building block (e.g., nucleoside phosphoramidite) to a growing polynucleotide chain for the formation of a phosphite triester linkage. Phosphoramidite polynucleotide synthesis proceeds in the 3′ to 5′ direction. Phosphoramidite polynucleotide synthesis allows for the controlled addition of one nucleotide to a growing nucleic acid chain per synthesis cycle. In some instances, each synthesis cycle comprises a coupling step. Phosphoramidite coupling involves the formation of a phosphite triester linkage between an activated nucleoside phosphoramidite and a nucleoside bound to the substrate, for example, via a linker. In some instances, the nucleoside phosphoramidite is provided to the device activated. In some instances, the nucleoside phosphoramidite is provided to the device with an activator. In some instances, nucleoside phosphoramidites are provided to the device in a 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100-fold excess or more over the substrate-bound nucleosides. In some instances, the addition of nucleoside phosphoramidite is performed in an anhydrous environment, for example, in anhydrous acetonitrile. Following addition of a nucleoside phosphoramidite, the device is optionally washed. In some instances, the coupling step is repeated one or more additional times, optionally with a wash step between nucleoside phosphoramidite additions to the substrate. In some instances, a polynucleotide synthesis method used herein comprises 1, 2, 3 or more sequential coupling steps. Prior to coupling, in many cases, the nucleoside bound to the device is de-protected by removal of a protecting group, where the protecting group functions to prevent polymerization. A common protecting group is 4,4′-dimethoxytrityl (DMT).


Following coupling, phosphoramidite polynucleotide synthesis methods optionally comprise a capping step. In a capping step, the growing polynucleotide is treated with a capping agent. A capping step is useful to block unreacted substrate-bound 5′-OH groups after coupling from further chain elongation, preventing the formation of polynucleotides with internal base deletions. Further, phosphoramidites activated with 1H-tetrazole may react, to a small extent, with the O6 position of guanosine. Without being bound by theory, upon oxidation with I2/water, this side product, possibly via O6-N7 migration, may undergo depurination. The apurinic sites may end up being cleaved in the course of the final deprotection of the polynucleotide thus reducing the yield of the full-length product. The O6 modifications may be removed by treatment with the capping reagent prior to oxidation with I2/water. In some instances, inclusion of a capping step during polynucleotide synthesis decreases the error rate as compared to synthesis without capping. As an example, the capping step comprises treating the substrate-bound polynucleotide with a mixture of acetic anhydride and 1-methylimidazole. Following a capping step, the device is optionally washed.


In some instances, following addition of a nucleoside phosphoramidite, and optionally after capping and one or more wash steps, the device bound growing nucleic acid is oxidized. The oxidation step comprises the phosphite triester is oxidized into a tetracoordinated phosphate triester, a protected precursor of the naturally occurring phosphate diester internucleoside linkage. In some instances, oxidation of the growing polynucleotide is achieved by treatment with iodine and water, optionally in the presence of a weak base (e.g., pyridine, lutidine, collidine). Oxidation may be carried out under anhydrous conditions using, e.g. tert-Butyl hydroperoxide or (1S)-(+)-(10-camphorsulfonyl)-oxaziridine (CSO). In some methods, a capping step is performed following oxidation. A second capping step allows for device drying, as residual water from oxidation that may persist can inhibit subsequent coupling. Following oxidation, the device and growing polynucleotide is optionally washed. In some instances, the step of oxidation is substituted with a sulfurization step to obtain polynucleotide phosphorothioates, wherein any capping steps can be performed after the sulfurization. Many reagents are capable of the efficient sulfur transfer, including but not limited to 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione, DDTT, 3H-1,2-benzodithiol-3-one 1,1-dioxide, also known as Beaucage reagent, and N,N,N′N′-Tetraethylthiuram disulfide (TETD).


In order for a subsequent cycle of nucleoside incorporation to occur through coupling, the protected 5′ end of the device bound growing polynucleotide is removed so that the primary hydroxyl group is reactive with a next nucleoside phosphoramidite. In some instances, the protecting group is DMT and deblocking occurs with trichloroacetic acid in dichloromethane. Conducting detritylation for an extended time or with stronger than recommended solutions of acids may lead to increased depurination of solid support-bound polynucleotide and thus reduces the yield of the desired full-length product. Methods and compositions of the disclosure described herein provide for controlled deblocking conditions limiting undesired depurination reactions. In some instances, the device bound polynucleotide is washed after deblocking. In some instances, efficient washing after deblocking contributes to synthesized polynucleotides having a low error rate.


Methods for the synthesis of polynucleotides typically involve an iterating sequence of the following steps: application of a protected monomer to an actively functionalized surface (e.g., locus) to link with either the activated surface, a linker or with a previously deprotected monomer; deprotection of the applied monomer so that it is reactive with a subsequently applied protected monomer; and application of another protected monomer for linking. One or more intermediate steps include oxidation or sulfurization. In some instances, one or more wash steps precede or follow one or all of the steps.


Methods for phosphoramidite-based polynucleotide synthesis comprise a series of chemical steps. In some instances, one or more steps of a synthesis method involve reagent cycling, where one or more steps of the method comprise application to the device of a reagent useful for the step. For example, reagents are cycled by a series of liquid deposition and vacuum drying steps. For substrates comprising three-dimensional features such as wells, microwells, channels and the like, reagents are optionally passed through one or more regions of the device via the wells and/or channels.


Methods and systems described herein relate to polynucleotide synthesis devices for the synthesis of polynucleotides. The synthesis may be in parallel. For example, at least or about at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 10000, 50000, 75000, 100000 or more polynucleotides can be synthesized in parallel. The total number polynucleotides that may be synthesized in parallel may be from 2-100000, 3-50000, 4-10000, 5-1000, 6-900, 7-850, 8-800, 9-750, 10-700, 11-650, 12-600, 13-550, 14-500, 15-450, 16-400, 17-350, 18-300, 19-250, 20-200, 21-150,22-100, 23-50, 24-45, 25-40, 30-35. Those of skill in the art appreciate that the total number of polynucleotides synthesized in parallel may fall within any range bound by any of these values, for example 25-100. The total number of polynucleotides synthesized in parallel may fall within any range defined by any of the values serving as endpoints of the range. Total molar mass of polynucleotides synthesized within the device or the molar mass of each of the polynucleotides may be at least or at least about 10, 20, 30, 40, 50, 100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 25000, 50000, 75000, 100000 picomoles, or more. The length of each of the polynucleotides or average length of the polynucleotides within the device may be at least or about at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 150, 200, 300, 400, 500 nucleotides, or more. The length of each of the polynucleotides or average length of the polynucleotides within the device may be at most or about at most 500, 400, 300, 200, 150, 100, 50, 45, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 nucleotides, or less. The length of each of the polynucleotides or average length of the polynucleotides within the device may fall from 10-500, 9-400, 11-300, 12-200, 13-150, 14-100, 15-50, 16-45, 17-40, 18-35, 19-25. Those of skill in the art appreciate that the length of each of the polynucleotides or average length of the polynucleotides within the device may fall within any range bound by any of these values, for example 100-300. The length of each of the polynucleotides or average length of the polynucleotides within the device may fall within any range defined by any of the values serving as endpoints of the range.


Methods for polynucleotide synthesis on a surface provided herein allow for synthesis at a fast rate. As an example, at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 125, 150, 175, 200 nucleotides per hour, or more are synthesized. Nucleotides include adenine, guanine, thymine, cytosine, uridine building blocks, or analogs/modified versions thereof. In some instances, libraries of polynucleotides are synthesized in parallel on substrate. For example, a device comprising about or at least about 100; 1,000; 10,000; 30,000; 75,000; 100,000; 1,000,000; 2,000,000; 3,000,000; 4,000,000; or 5,000,000 resolved loci is able to support the synthesis of at least the same number of distinct polynucleotides, wherein polynucleotide encoding a distinct sequence is synthesized on a resolved locus. In some instances, a library of polynucleotides is synthesized on a device with low error rates described herein in less than about three months, two months, one month, three weeks, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 days, 24 hours or less. In some instances, larger nucleic acids assembled from a polynucleotide library synthesized with low error rate using the substrates and methods described herein are prepared in less than about three months, two months, one month, three weeks, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 days, 24 hours or less.


In some instances, methods described herein provide for generation of a library of nucleic acids comprising variant nucleic acids differing at a plurality of codon sites. In some instances, a nucleic acid may have 1 site, 2 sites, 3 sites, 4 sites, 5 sites, 6 sites, 7 sites, 8 sites, 9 sites, 10 sites, 11 sites, 12 sites, 13 sites, 14 sites, 15 sites, 16 sites, 17 sites 18 sites, 19 sites, 20 sites, 30 sites, 40 sites, 50 sites, or more of variant codon sites.


In some instances, the one or more sites of variant codon sites may be adjacent. In some instances, the one or more sites of variant codon sites may not be adjacent and separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more codons.


In some instances, a nucleic acid may comprise multiple sites of variant codon sites, wherein all the variant codon sites are adjacent to one another, forming a stretch of variant codon sites. In some instances, a nucleic acid may comprise multiple sites of variant codon sites, wherein none the variant codon sites are adjacent to one another. In some instances, a nucleic acid may comprise multiple sites of variant codon sites, wherein some the variant codon sites are adjacent to one another, forming a stretch of variant codon sites, and some of the variant codon sites are not adjacent to one another.


Referring to the Figures, FIG. 2 illustrates an exemplary process workflow for synthesis of nucleic acids (e.g., genes) from shorter nucleic acids. The workflow is divided generally into phases: (1) de novo synthesis of a single stranded nucleic acid library, (2) joining nucleic acids to form larger fragments, (3) error correction, (4) quality control, and (5) shipment. Prior to de novo synthesis, an intended nucleic acid sequence or group of nucleic acid sequences is preselected. For example, a group of genes is preselected for generation.


Once large nucleic acids for generation are selected, a predetermined library of nucleic acids is designed for de novo synthesis. Various suitable methods are known for generating high density polynucleotide arrays. In the workflow example, a device surface layer is provided. In the example, chemistry of the surface is altered in order to improve the polynucleotide synthesis process. Areas of low surface energy are generated to repel liquid while areas of high surface energy are generated to attract liquids. The surface itself may be in the form of a planar surface or contain variations in shape, such as protrusions or microwells which increase surface area. In the workflow example, high surface energy molecules selected serve a dual function of supporting DNA chemistry, as disclosed in International Patent Application Publication WO/2015/021080, which is herein incorporated by reference in its entirety.


In situ preparation of polynucleotide arrays is generated on a solid support and utilizes single nucleotide extension process to extend multiple oligomers in parallel. A deposition device, such as a material deposition device 201, is designed to release reagents in a step wise fashion such that multiple polynucleotides extend, in parallel, one residue at a time to generate oligomers with a predetermined nucleic acid sequence 202. In some instances, polynucleotides are cleaved from the surface at this stage. Cleavage includes gas cleavage, e.g., with ammonia or methylamine.


The generated polynucleotide libraries are placed in a reaction chamber. In this exemplary workflow, the reaction chamber (also referred to as “nanoreactor”) is a silicon coated well, containing PCR reagents and lowered onto the polynucleotide library 203. Prior to or after the sealing 204 of the polynucleotides, a reagent is added to release the polynucleotides from the substrate. In the exemplary workflow, the polynucleotides are released subsequent to sealing of the nanoreactor 205. Once released, fragments of single stranded polynucleotides hybridize in order to span an entire long range sequence of DNA. Partial hybridization 205 is possible because each synthesized polynucleotide is designed to have a small portion overlapping with at least one other polynucleotide in the pool.


After hybridization, a PCA reaction is commenced. During the polymerase cycles, the polynucleotides anneal to complementary fragments and gaps are filled in by a polymerase. Each cycle increases the length of various fragments randomly depending on which polynucleotides find each other. Complementarity amongst the fragments allows for forming a complete large span of double stranded DNA 206.


After PCA is complete, the nanoreactor is separated from the device 207 and positioned for interaction with a device having primers for PCR 208. After sealing, the nanoreactor is subject to PCR 209 and the larger nucleic acids are amplified. After PCR 210, the nanochamber is opened 211, error correction reagents are added 212, the chamber is sealed 213 and an error correction reaction occurs to remove mismatched base pairs and/or strands with poor complementarity from the double stranded PCR amplification products 214. The nanoreactor is opened and separated 215. Error corrected product is next subject to additional processing steps, such as PCR and molecular bar coding, and then packaged 222 for shipment 223.


In some instances, quality control measures are taken. After error correction, quality control steps include for example interaction with a wafer having sequencing primers for amplification of the error corrected product 216, sealing the wafer to a chamber containing error corrected amplification product 217, and performing an additional round of amplification 218. The nanoreactor is opened 219 and the products are pooled 220 and sequenced 221. After an acceptable quality control determination is made, the packaged product 222 is approved for shipment 223.


In some instances, a nucleic acid generate by a workflow such as that in FIG. 2 is subject to mutagenesis using overlapping primers disclosed herein. In some instances, a library of primers are generated by in situ preparation on a solid support and utilize single nucleotide extension process to extend multiple oligomers in parallel. A deposition device, such as a material deposition device, is designed to release reagents in a step wise fashion such that multiple polynucleotides extend, in parallel, one residue at a time to generate oligomers with a predetermined nucleic acid sequence 202.


Computer Systems


Any of the systems described herein, may be operably linked to a computer and may be automated through a computer either locally or remotely. In various instances, the methods and systems of the disclosure may further comprise software programs on computer systems and use thereof. Accordingly, computerized control for the synchronization of the dispense/vacuum/refill functions such as orchestrating and synchronizing the material deposition device movement, dispense action and vacuum actuation are within the bounds of the disclosure. The computer systems may be programmed to interface between the user specified base sequence and the position of a material deposition device to deliver the correct reagents to specified regions of the substrate.


The computer system 300 illustrated in FIG. 3 may be understood as a logical apparatus that can read instructions from media 311 and/or a network port 305, which can optionally be connected to server 309 having fixed media 312. The system, such as shown in FIG. 3 can include a CPU 301, disk drives 303, optional input devices such as keyboard 315 and/or mouse 316 and optional monitor 307. Data communication can be achieved through the indicated communication medium to a server at a local or a remote location. The communication medium can include any means of transmitting and/or receiving data. For example, the communication medium can be a network connection, a wireless connection or an internet connection. Such a connection can provide for communication over the World Wide Web. It is envisioned that data relating to the present disclosure can be transmitted over such networks or connections for reception and/or review by a party 322 as illustrated in FIG. 3.



FIG. 4 is a block diagram illustrating a first example architecture of a computer system 400 that can be used in connection with example instances of the present disclosure. As depicted in FIG. 4, the example computer system can include a processor 402 for processing instructions. Non-limiting examples of processors include: Intel Xeon™ processor, AMD Opteron™ processor, Samsung 32-bit RISC ARM 1176JZ(F)-S v1.0 ™ processor, ARM Cortex-A8 Samsung S5PC100™ processor, ARM Cortex-A8 Apple A4 ™ processor, Marvell PXA 930 ™ processor, or a functionally-equivalent processor. Multiple threads of execution can be used for parallel processing. In some instances, multiple processors or processors with multiple cores can also be used, whether in a single computer system, in a cluster, or distributed across systems over a network comprising a plurality of computers, cell phones, and/or personal data assistant devices.


As illustrated in FIG. 4, a high speed cache 404 can be connected to, or incorporated in, the processor 402 to provide a high speed memory for instructions or data that have been recently, or are frequently, used by processor 402. The processor 402 is connected to a north bridge 406 by a processor bus 408. The north bridge 406 is connected to random access memory (RAM) 410 by a memory bus 412 and manages access to the RAM 410 by the processor 402. The north bridge 406 is also connected to a south bridge 414 by a chipset bus 416. The south bridge 414 is, in turn, connected to a peripheral bus 418. The peripheral bus can be, for example, PCI, PCI-X, PCI Express, or other peripheral bus. The north bridge and south bridge are often referred to as a processor chipset and manage data transfer between the processor, RAM, and peripheral components on the peripheral bus 418. In some alternative architectures, the functionality of the north bridge can be incorporated into the processor instead of using a separate north bridge chip. In some instances, system 400 can include an accelerator card 422 attached to the peripheral bus 418. The accelerator can include field programmable gate arrays (FPGAs) or other hardware for accelerating certain processing. For example, an accelerator can be used for adaptive data restructuring or to evaluate algebraic expressions used in extended set processing.


Software and data are stored in external storage 424 and can be loaded into RAM 410 and/or cache 404 for use by the processor. The system 400 includes an operating system for managing system resources; non-limiting examples of operating systems include: Linux, Windows™, MACOS™, BlackBerry OS™, iOS™, and other functionally-equivalent operating systems, as well as application software running on top of the operating system for managing data storage and optimization in accordance with example instances of the present disclosure. In this example, system 400 also includes network interface cards (NICs) 420 and 421 connected to the peripheral bus for providing network interfaces to external storage, such as Network Attached Storage (NAS) and other computer systems that can be used for distributed parallel processing.



FIG. 5 is a diagram showing a network 500 with a plurality of computer systems 502a, and 502b, a plurality of cell phones and personal data assistants 502c, and Network Attached Storage (NAS) 504a, and 504b. In example instances, systems 502a, 502b, and 502c can manage data storage and optimize data access for data stored in Network Attached Storage (NAS) 504a and 504b. A mathematical model can be used for the data and be evaluated using distributed parallel processing across computer systems 502a, and 502b, and cell phone and personal data assistant systems 502c. Computer systems 502a, and 502b, and cell phone and personal data assistant systems 502c can also provide parallel processing for adaptive data restructuring of the data stored in Network Attached Storage (NAS) 504a and 504b. FIG. 5 illustrates an example only, and a wide variety of other computer architectures and systems can be used in conjunction with the various instances of the present disclosure. For example, a blade server can be used to provide parallel processing. Processor blades can be connected through a back plane to provide parallel processing. Storage can also be connected to the back plane or as Network Attached Storage (NAS) through a separate network interface. In some example instances, processors can maintain separate memory spaces and transmit data through network interfaces, back plane or other connectors for parallel processing by other processors. In other instances, some or all of the processors can use a shared virtual address memory space.



FIG. 6 is a block diagram of a multiprocessor computer system using a shared virtual address memory space in accordance with an example instance. The system includes a plurality of processors 602a-f that can access a shared memory subsystem 604. The system incorporates a plurality of programmable hardware memory algorithm processors (MAPs) 606a-f in the memory subsystem 604. Each MAP 606a-f can comprise a memory 608a-f and one or more field programmable gate arrays (FPGAs) 610a-f. The MAP provides a configurable functional unit and particular algorithms or portions of algorithms can be provided to the FPGAs 610a-f for processing in close coordination with a respective processor. For example, the MAPs can be used to evaluate algebraic expressions regarding the data model and to perform adaptive data restructuring in example instances. In this example, each MAP is globally accessible by all of the processors for these purposes. In one configuration, each MAP can use Direct Memory Access (DMA) to access an associated memory 608a-f, allowing it to execute tasks independently of, and asynchronously from the respective microprocessor 602a-f. In this configuration, a MAP can feed results directly to another MAP for pipelining and parallel execution of algorithms.


The above computer architectures and systems are examples only, and a wide variety of other computer, cell phone, and personal data assistant architectures and systems can be used in connection with example instances, including systems using any combination of general processors, co-processors, FPGAs and other programmable logic devices, system on chips (SOCs), application specific integrated circuits (ASICs), and other processing and logic elements. In some instances, all or part of the computer system can be implemented in software or hardware. Any variety of data storage media can be used in connection with example instances, including random access memory, hard drives, flash memory, tape drives, disk arrays, Network Attached Storage (NAS) and other local or distributed data storage devices and systems.


In example instances, the computer system can be implemented using software modules executing on any of the above or other computer architectures and systems. In other instances, the functions of the system can be implemented partially or completely in firmware, programmable logic devices such as field programmable gate arrays (FPGAs) as referenced in FIG. 4, system on chips (SOCs), application specific integrated circuits (ASICs), or other processing and logic elements. For example, the Set Processor and Optimizer can be implemented with hardware acceleration through the use of a hardware accelerator card, such as accelerator card 422 illustrated in FIG. 4.


The following examples are set forth to illustrate more clearly the principle and practice of embodiments disclosed herein to those skilled in the art and are not to be construed as limiting the scope of any claimed embodiments. Unless otherwise stated, all parts and percentages are on a weight basis.


EXAMPLES

The following examples are given for the purpose of illustrating various embodiments of the disclosure and are not meant to limit the present disclosure in any fashion. The present examples, along with the methods described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the disclosure. Changes therein and other uses which are encompassed within the spirit of the disclosure as defined by the scope of the claims will occur to those skilled in the art.


Example 1: Functionalization of a Device Surface

A device was functionalized to support the attachment and synthesis of a library of polynucleotides. The device surface was first wet cleaned using a piranha solution comprising 90% H2SO4 and 10% H2O2 for 20 minutes. The device was rinsed in several beakers with DI water, held under a DI water gooseneck faucet for 5 min, and dried with N2. The device was subsequently soaked in NH4OH (1:100; 3 mL:300 mL) for 5 min, rinsed with DI water using a handgun, soaked in three successive beakers with DI water for 1 min each, and then rinsed again with DI water using the handgun. The device was then plasma cleaned by exposing the device surface to O2. A SAMCO PC-300 instrument was used to plasma etch O2 at 250 watts for 1 min in downstream mode.


The cleaned device surface was actively functionalized with a solution comprising N-(3-triethoxysilylpropyl)-4-hydroxybutyramide using a YES-1224P vapor deposition oven system with the following parameters: 0.5 to 1 torr, 60 min, 70° C., 135° C. vaporizer. The device surface was resist coated using a Brewer Science 200×spin coater. SPR™ 3612 photoresist was spin coated on the device at 2500 rpm for 40 sec. The device was pre-baked for 30 min at 90° C. on a Brewer hot plate. The device was subjected to photolithography using a Karl Suss MA6 mask aligner instrument. The device was exposed for 2.2 sec and developed for 1 min in MSF 26A. Remaining developer was rinsed with the handgun and the device soaked in water for 5 min. The device was baked for 30 min at 100° C. in the oven, followed by visual inspection for lithography defects using a Nikon L200. A descum process was used to remove residual resist using the SAMCO PC-300 instrument to 02 plasma etch at 250 watts for 1 min.


The device surface was passively functionalized with a 100 μL solution of perfluorooctyltrichlorosilane mixed with 10 μL light mineral oil. The device was placed in a chamber, pumped for 10 min, and then the valve was closed to the pump and left to stand for 10 min. The chamber was vented to air. The device was resist stripped by performing two soaks for 5 min in 500 mL NMP at 70° C. with ultrasonication at maximum power (9 on Crest system). The device was then soaked for 5 min in 500 mL isopropanol at room temperature with ultrasonication at maximum power. The device was dipped in 300 mL of 200 proof ethanol and blown dry with N2. The functionalized surface was activated to serve as a support for polynucleotide synthesis.


Example 2: Synthesis of a 50-Mer Sequence on an Oligonucleotide Synthesis Device

A two dimensional oligonucleotide synthesis device was assembled into a flowcell, which was connected to a flowcell (Applied Biosystems (ABI394 DNA Synthesizer”). The two-dimensional oligonucleotide synthesis device was uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE (Gelest) was used to synthesize an exemplary polynucleotide of 50 bp (“50-mer polynucleotide”) using polynucleotide synthesis methods described herein.


The sequence of the 50-mer was as described. 5′AGACAATCAACCATTTGGGGTGGACAGCCTTGACCTCTAGACTTCGGCAT ##TTTTTT TTTT3′ (SEQ ID NO: 3194), where #denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes), which is a cleavable linker enabling the release of oligos from the surface during deprotection.


The synthesis was done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 2 and an ABI synthesizer.









TABLE 2







Table 2: Synthesis protocols









General DNA Synthesis

Time


Process Name
Process Step
(sec)












WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
23



N2 System Flush
4



Acetonitrile System Flush
4


DNA BASE ADDITION
Activator Manifold Flush
2


(Phosphoramidite +
Activator to Flowcell
6


Activator Flow)
Activator +
6



Phosphoramidite to



Flowcell



Activator to Flowcell
0.5



Activator +
5



Phosphoramidite to



Flowcell



Activator to Flowcell
0.5



Activator +
5



Phosphoramidite to



Flowcell



Activator to Flowcell
0.5



Activator +
5



Phosphoramidite to



Flowcell



Incubate for 25 sec
25


WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
15



N2 System Flush
4



Acetonitrile System Flush
4


DNA BASE ADDITION
Activator Manifold Flush
2


(Phosphoramidite +
Activator to Flowcell
5


Activator Flow)
Activator +
18



Phosphoramidite to



Flowcell



Incubate for 25 sec
25


WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
15



N2 System Flush
4



Acetonitrile System Flush
4


CAPPING (CapA + B, 1:1,
CapA + B to Flowcell
15


Flow)


WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
15



Acetonitrile System Flush
4


OXIDATION (Oxidizer
Oxidizer to Flowcell
18


Flow)


WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
N2 System Flush
4



Acetonitrile System Flush
4



Acetonitrile to Flowcell
15



Acetonitrile System Flush
4



Acetonitrile to Flowcell
15



N2 System Flush
4



Acetonitrile System Flush
4



Acetonitrile to Flowcell
23



N2 System Flush
4



Acetonitrile System Flush
4


DEBLOCKING (Deblock
Deblock to Flowcell
36


Flow)


WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
N2 System Flush
4



Acetonitrile System Flush
4



Acetonitrile to Flowcell
18



N2 System Flush
4.13



Acetonitrile System Flush
4.13



Acetonitrile to Flowcell
15









The phosphoramidite/activator combination was delivered similar to the delivery of bulk reagents through the flowcell. No drying steps were performed as the environment stays “wet” with reagent the entire time.


The flow restrictor was removed from the ABI 394 synthesizer to enable faster flow. Without flow restrictor, flow rates for amidites (0.1M in ACN), Activator, (0.25M Benzoylthiotetrazole (“BTT”; 30-3070-xx from GlenResearch) in ACN), and Ox (0.02M 12 in 20% pyridine, 10% water, and 70% THF) were roughly ˜100 uL/sec, for acetonitrile (“ACN”) and capping reagents (1:1 mix of CapA and CapB, wherein CapA is acetic anhydride in THF/Pyridine and CapB is 16% 1-methylimidizole in THF), roughly ˜200 uL/sec, and for Deblock (3% dichloroacetic acid in toluene), roughly ˜300 uL/sec (compared to ˜50 uL/sec for all reagents with flow restrictor). The time to completely push out Oxidizer was observed, the timing for chemical flow times was adjusted accordingly and an extra ACN wash was introduced between different chemicals. After polynucleotide synthesis, the chip was deprotected in gaseous ammonia overnight at 75 psi. Five drops of water were applied to the surface to recover polynucleotides. The recovered polynucleotides were then analyzed on a BioAnalyzer small RNA chip.


Example 3: Synthesis of a 100-Mer Sequence on an Oligonucleotide Synthesis Device

The same process as described in Example 2 for the synthesis of the 50-mer sequence was used for the synthesis of a 100-mer polynucleotide (“100-mer polynucleotide”; 5′ CGGGATCCTTATCGTCATCGTCGTACAGATCCCGACCCATTTGCTGTCCACCAGTCATG CTAGCCATACCATGATGATGATGATGATGAGAACCCCGCAT ##TTTTTTTTTT3′ (SEQ ID NO: 3195), where #denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes) on two different silicon chips, the first one uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE and the second one functionalized with 5/95 mix of 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane, and the polynucleotides extracted from the surface were analyzed on a BioAnalyzer instrument.


All ten samples from the two chips were further PCR amplified using a forward (5′ATGCGGGGTTCTCATCATC3′) (SEQ ID NO: 3196) and a reverse (5′CGGGATCCTTATCGTCATCG3′) (SEQ ID NO: 3197) primer in a 50 uL PCR mix (25 uL NEB Q5 mastermix, 2.5 uL 10 uM Forward primer, 2.5 uL 10 uM Reverse primer, 1 uL polynucleotide extracted from the surface, and water up to 50 uL) using the following thermalcycling program:


98° C., 30 sec


98° C., 10 sec; 63° C., 10 sec; 72° C., 10 sec; repeat 12 cycles


72° C., 2 min


The PCR products were also run on a BioAnalyzer, demonstrating sharp peaks at the 100-mer position. Next, the PCR amplified samples were cloned, and Sanger sequenced. Table 3 summarizes the results from the Sanger sequencing for samples taken from spots 1-5 from chip 1 and for samples taken from spots 6-10 from chip 2.









TABLE 3







Sequencing results












Spot

Error rate
Cycle efficiency
















1
1/763
bp
99.87%



2
1/824
bp
99.88%



3
1/780
bp
99.87%



4
1/429
bp
99.77%



5
1/1525
bp
99.93%



6
1/1615
bp
99.94%



7
1/531
bp
99.81%



8
1/1769
bp
99.94%



9
1/854
bp
99.88%



10
1/1451
bp
99.93%










Thus, the high quality and uniformity of the synthesized polynucleotides were repeated on two chips with different surface chemistries. Overall, 89% of the 100-mers that were sequenced were perfect sequences with no errors, corresponding to 233 out of 262.


Table 4 summarizes error characteristics for the sequences obtained from the polynucleotides samples from spots 1-10.









TABLE 4





Error characteristics

















Sample ID/Spot no.













OSA_0046/1
OSA_0047/2
OSA_0048/3
OSA_0049/4
OSA_0050/5





Total
32 
32 
32 
32 
32 


Sequences


Sequencing
25 of 28
27 of 27
26 of 30
21 of 23
25 of 26


Quality


Oligo
23 of 25
25 of 27
22 of 26
18 of 21
24 of 25


Quality


ROI
2500  
2698  
2561  
2122  
2499  


Match


Count


ROI
2
2
1
3
1


Mutation


ROI Multi
0
0
0
0
0


Base


Deletion


ROI Small
1
0
0
0
0


Insertion


ROI
0
0
0
0
0


Single


Base


Deletion


Large
0
0
1
0
0


Deletion


Count


Mutation:
2
2
1
2
1


G > A


Mutation:
0
0
0
1
0


T > C


ROI Error
3
2
2
3
1


Count


ROI Error
Err: ~1
Err: ~1
Err: ~1
Err: ~1
Err: ~1


Rate
in 834
in 1350
in 1282
in 708
in 2500


ROI
MP Err: ~1
MP Err: ~1
MP Err: ~1
MP Err: ~1
MP Err: ~1


Minus
in 763
in 824
in 780
in 429
in 1525


Primer


Error Rate












Sample ID/Spot no.













OSA_0051/6
OSA_0052/7
OSA_0053/8
OSA_0054/9
OSA_0055/10





Total
32 
32 
32 
32 
32 


Sequences


Sequencing
29 of 30
27 of 31
29 of 31
28 of 29
25 of 28


Quality


Oligo
25 of 29
22 of 27
28 of 29
26 of 28
20 of 25


Quality


ROI
2666  
2625  
2899  
2798  
2348  


Match


Count


ROI
0
2
1
2
1


Mutation


ROI Multi
0
0
0
0
0


Base


Deletion


ROI Small
0
0
0
0
0


Insertion


ROI
0
0

0
0


Single


Base


Deletion


Large
1
1
0
0
0


Deletion


Count


Mutation:
0
2
1
2
1


G > A


Mutation:
0
0
0
0
0


T > C


ROI Error
1
3
1
2
1


Count


ROI Error
Err: ~1
Err: ~1
Err: ~ 1
Err: ~1
Err: ~1


Rate
in 2667
in 876
in 2900
in 1400
in 2349


ROI
MP Err: ~1
MP Err: ~1
MP Err: ~1
MP Err: ~1
MP Err: ~1


Minus
in 1615
in 531
in 1769
in 854
in 1451


Primer


Error Rate









Example 4: Panning and Screening for Identification of Antibodies for SARS-CoV-2 Variants

This example describes identification of antibodies for SARS-CoV-2 variants. FIG. 7 depicts different mutations found in several SARS-CoV-2 variants.


Phage displayed scFv, VHH, and Fab libraries were panned for binding to biotinylated SARS-CoV-2 S1 variants 501.V2 and B.1.1.7. Biotinylated antigen was bound to streptavidin coated magnetic beads at a density of 100 μmol antigen per mg of beads (Thermo Fisher #11206D). Phage libraries were blocked with 5% BSA in PBS. Following magnetic bead depletion for 1 hour at room temperature (RT), the beads were removed, and phage supernatant was transferred to 1 mg of antigen-bound beads in 1 mL PBS and incubated at RT with rotation for 1 hour. Non-binding clones were washed away by addition of 1 mL PBST, increasing the number of washes with each panning round. Trypsin was used to elute the phage bound to the antigen-bead complex. Phage were amplified in TG1 E. coli for the next round of selection. This selection strategy was repeated for four rounds, with successively lower amounts of antigen per round. Following all four selection rounds, 400 clones from each of round 2, 3, and 4 were selected for phage expression and phage ELISA screening. Data from the panning is seen in Tables 5-6.









TABLE 5







Panning and screening for identification


of antibodies for SARS-CoV-2 variants














# hits
#



Arm
Round
sequencing
reformats
















Antibody 1
3
42
36




4
0



Antibody 2
3
1




4
0



Antibody 3
3
54
31




4
1



Antibody 4
3
1




4
0



Antibody 5
3
0




4
0



Antibody 6
3
29
*All were






VHH




4
0



Antibody 7
3
59
45




4
7



Antibody 8
3
14
10




4
0

















TABLE 6







Reformat list











Project
Target
Reformat







Antibody 1
S1501.V2-Fc
36 IgG1



Antibody 3
S1 501.V2-Fc
31 VHH-Fc



Antibody 7
S1 B.1.1.7-Fc
45 VHH-Fc



Antibody 8
S1 B.1.1.7-Fc
10 VHH-Fc










Carterra kinetics rank ordered by affinity are depicted in FIGS. 9A-9F, FIG. 23, and Table 7. In Table 7, the antibodies indicated with a * are cross-reactive, including binding to the India variant mutation L452R E484Q. These are all part of the same CAADGVPEYSDYASGPVW (SEQ ID NO: 1369) clonotype.









TABLE 7







Carterra kinetics
























Antibody











178-10_









Antibody
Antibody
His









178-
 178-
CA_W152C_
S1 RBD







SARS-
09_His
08_His
L45
L452R






SEQ 
CoV-2 S1
B.1.1.7
501.V2
2R_D614G
E484Q






ID
(Acro)
(27080)
(27079)
(27081)
(Acro)


Variant
Target
Library
CDRH3
NO:
KD (nM)
KD (nM)
KD (nM)
KD (nM)
KD (nM)



















7-6
B.1.1.7
hShuffle
CAAALSEVWRGSE
1375
42.4
42.4
n.b.
n.b.
n.b.




VHH
NLREGYDW











3-31*
501.V2
VHH
CAADGVPEYSDYA
1369
21.0
16.1
96652.0
41.0
16.2




hShuffle
SGPVW











7-8
B.1.1.7
hShuffle
CAADGVPEYSDYA
1369
52.8
n.b.
n.b.
n.b.
n.b.




VHH
SGPVW











7-14*
B.1.1.7
hShuffle
CAADGVPEYSDYA
1369
20.8
19.2
16.9
43.1
20.1




VHH
SGPVW











7-26*
B.1.1.7
VHH
CAADGVPEYSDYA
1369
24.8
22.7
74.9
34.8
18.0




hShuffle
SGPVW











7-32
B.1.1.7
hShuffle
CAADGVPEYSDYA
1369
48.5
62.4
n.b.
n.b.
n.b.




VHH
SGPVW











7-33
B.1.1.7
hShuffle
CAADGVPEYSDYA
1369
21.2
21.1
n.b.
80.7
32467.6




VHH
SGPVW











7-37*
B.1.1.7
hShuffle
CAADGVPEYSDYA
1369
21.6
17.8
122.9
45.1
58.5




VHH
SGPVW











7-11
B.1.1.7
hShuffle
CAADRAADFFAQR
1380
80.6
164242.3
n.b.
n.b.
n.b.




VHH
DEYDW











7-30
B.1.1.7
hShuffle
CAAEVRNGSDYLPI
1399
48.7
32.0
n.b.
55.9
n.b.




VHH
DW











3-16
501.V2
hShuffle
CAAFDGYSGSDW
1354
2550.3
n.b.
n.b.
n.b.
n.b.




VHH












7-25
B.1.1.7
hShuffle
CAAFDGYTGSDW
1351
1316.1
10.0
n.b.
n.b.
n.b.




VHH












7-31
B.1.1.7
hShuffle
CAAQTEDSAQYIW
1400
227.9
387.6
n.b.
n.b.
n.b.




VHH












7-29
B.1.1.7
VHH
CAARRWIPPGPIW
1398
31.2
54.8
n.b.
n.b.
n.b.




hShuffle












7-09
B.1.1.7
VHH
CAKEDVGKPFDW
1378
24.1
23.2
n.b.
38.7
177248.4




hShuffle












7-18
B.1.1.7
VHH
CAKEDVGKPFDW
1378
4766.2
862396.3
n.b.
n.b.
n.b.




hShuffle












7-21
B.1.1.7
hShuffle
CAKEDVGKPFDW
1378
27.1
35.6
n.b.
276.7
n.b.




VHH












7-40
B.1.1.7
VHH
CAKEDVGKPFDW
1378
85612.6
n.b.
n.b.
n.b.
n.b.




hShuffle












7-41
B.1.1.7
hShuffle
CAKEDVGKPFDW
1378
48.1
35.6
n.b.
95.5
n.b.




VHH












7-45
B.1.1.7
hShuffle
CAKEDVGKPFDW
1378
36.3
43.4
n.b.
n.b.
n.b.




VHH












7-22
B.1.1.7
VHH
CAKQDVGKPFDW
1391
40.9
41.7
n.b.
698.5
n.b.




hShuffle












3-24
501.V2
VHH
CALRVRPYGQYDW
1362
n.b.
2606.7
585.5
n.b.
n.b.




hShuffle












8-3
B.1.1.7
VHH
CAREDYYDSSGYS
1417
18366.4
40.5
1.7
100.5
n.b.




hShuffle
W










HI












8-10
B.1.1.7
VHH
CAREGYYYDSSGY
1424
657633.8
376.8
n.b.
n.b.
n.b.




hShuffle
PYYFDYW










HI












8-2
B.1.1.7
VHH
CARERRYYDSSGY
1416
4208.4
27.1
n.b.
n.b.
n.b.




hShuffle
PYYFDYW










HI












7-24
B.1.1.7
VHH
CAREVGLYYYGSG
1393
4257477.8
n.b.
n.b.
n.b.
n.b.




hShuffle
SSSRRLLGRIDYYF











DYW











8-06
B.1.1.7
VHH
CARWGPFDIW
1420
37.7
141.0
n.b.
n.b.
n.b.




hShuffle











HI












7-17
B.1.1.7
VHH
CASAYNPGIGYDW
1386
60.4
39.8
n.b.
n.b.
n.b.




hShuffle












3-17
501.V2
VHH
CATGPYRSYFARSY
1355
141.2
n.b.
n.b.
n.b.
n.b.




hShuffle
LW











3-28
501.V2
VHH
CAVDLSGDAVYD
1366
52.2
16.6
22.0
n.b.
n.b.




hShuffle
W











8-5
B.1.1.7
VHH
CAVVAMRMVTTE
1419
665983.2
224.2
n.b.
n.b.
n.b.




hShuffle
GPDVLDVW










HI









Tables 8A-8B depict a set of cross-reactive leads to test in the Vero E6 competition assay. Many of the cross-reactive leads are part of the same CAADGVPEYSDYASGPVW (SEQ ID NO: 31981 clonotype. Tables 8C-8D depict variant binding.









TABLE 8A







Cross-reactive variants

















SEQ

SEQ

SEQ


Var-
Tar-

ID

ID

ID


iant
get
CDRH1
NO
CDRH2
NO
CDRH3
NO





5A-1
Wuhan
GTFSS
3199
VAAIS
3209
CAKED
3219




IGMG

WDGGA

VGKPF







TAYA

DW






6A-3
Wuhan
FTFSP
3200
VATIN
3210
CARVD
3220




SWMG

EYGGR

RDFDY







NYA

W






6A-63
Wuhan
QTFNM
3201
VAAIG
3211
CWRLG
3221




G

SGGST

NDYFD







SYA

YW






3-28
501.
FTFRR
3202
SAISG
3212
CAVDL
3222



V2
YDMG

GLAYY

SGDAV







A

YDW






3-31
501.
STFSI
3203
AGITS
3213
CAADG
3223



V2
NAMG

SGGYT

VPEYS







NYA

DYASG









PVW






7-09
B.1.
GTFSS
3204
AAISW
3214
CAKED
3224



1.7
IGMG

DGGAT

VGKPF







AYA

DW






7-14
B.1.
STFSI
3205
AGISR
3215
CAADG
3225



1.7
NAMG

GGTTN

VPEYS







YA

DYASG









PVW






7-26
B.1.
STFSI
3206
AGITS
3216
CAADG
3226



1.7
NAMG

SGGYT

VPEYS







NYA

DYASG









PVW






7-30
B.1.
RTFSM
3207
ASISS
3217
CAAEV
3227



1.7
HAMG

QGRTN

RNGSD







YA

YLPID









W






7-37
B.1.
STLSI
3208
AGITR
3218
CAADG
3228



1.7
NAMG

SGSVT

VPEYS







NYA

DYASG









PVW
















TABLE 8B







Cross-reactive variants














Antibody
Antibody
Antibody
S1 RBD



SARS-
178-09_His
178-08_His
178-10_His
L452R



CoV-2 S1
B.l.1.7
501.V2
CA_W152C_L452R_D614G
E484Q



(Acro)
(27080)
(27079)
(27081)
(Acro)


Clone
KD (nM)
KD (nM)
KD (nM)
KD (nM)
KD (nM)















5A-1
6.6
t.b.d.
t.b.d.
12.7
t.b.d.


6A-3
31.5
t.b.d.
t.b.d.
26.8
t.b.d.


6A-63
46.4
t.b.d.
t.b.d.
n.b.
t.b.d.


3-28
52.2
16.6
22.0
n.b.
n.b.


3-31
21.0
16.1
96652.0  
41.0
16.2


7-09
24.1
23.2
n.b.
38.7
177248.4  


7-14
20.8
19.2
16.9
43.1
20.1


7-26
24.8
22.7
74.9
34.8
18.0


7-30
48.7
32.0
n.b.
55.9
n.b.


7-37
21.6
17.8
122.9 
45.1
58.5
















TABLE 8C







Variant Binding













SARS-CoV-2 S protein trimer




SARS-CoV-2 S protein trimer
(Beta B.1.351 SA variant)



SARS-CoV-2 S1 monomer
[SPN-C52H9]
[SPN-C52Hk]

















ka (M−1


ka (M−1


ka (M−1




Name
s−1)
kd (s−1)
KD (M)
s−1)
kd (s−1)
KD (M)
s−1)
kd (s−1)
KD (M)





5A-3
4.62E+04
4.90E−04
1.06E−08
1.04E+05
3.12E−05
2.99E−10
1.05E+05
1.00E−05
9.53E−11


5A-63
1.14E+05
1.94E−03
1.70E−08
1.52E+05
1.00E−05
6.59E−11
4.78E+05
1.00E−05
2.09E−11


3-31
3.10E+04
1.83E−04
5.91E−09
7.34E+05
1.00E−05
1.36E−11
1.02E+06
1.00E−05
9.80E−12


7-14
4.22E+04
4.04E−04
9.57E−09
9.54E+05
1.00E−05
1.05E−11
1.23E+06
1.05E−05
8.53E−12


7-26
4.21E+04
1.53E−04
3.63E−09
9.11E+05
1.00E−05
1.10E−11
1.24E+06
1.00E−05
8.08E−12


7-37
3.08E+04
5.28E−04
1.71E−08
8.44E+05
1.00E−05
1.18E−11
1.03E+06
2.30E−05
2.24E−11
















TABLE 8D







Variant Binding











SARS-CoV-2 S protein trimer
SARS-CoV-2 S protein trimer
SARS-CoV-2 S protein trimer



(Kappa B.1.617.1 India variant)
(Delta B.1.617.2 India variant)
(Alpha B.1.1.7 UK variant)



[SPN-C52Hr]
[SPN-C52He]
[SPN-C52H6]

















ka (M−1


ka (M−1


ka (M−1




Name
s−1)
kd (s−1)
KD (M)
s−1)
kd (s−1)
KD (M)
s−1)
kd (s−1)
KD (M)





5A-3
1.80E+05
4.91E−05
2.72E−10
1.36E+05
4.24E−05
3.12E−10
1.33E+05
1.00E−05
7.50E−11


5A-63
2.87E+04
2.42E−04
8.42E−09



4.43E+05
1.00E−05
2.25E−11


3-31
1.00E+06
1.00E−05
1.00E−11
9.38E+05
1.00E−05
1.07E−11
9.25E+05
1.00E−05
1.08E−11


7-14
1.20E+06
1.00E−05
8.30E−12
1.01E+06
1.00E−05
9.94E−12
1.16E+06
1.00E−05
8.62E−12


7-26
1.17E+06
1.00E−05
8.52E−12
9.58E+05
1.00E−05
1.04E−11
1.04E+06
1.00E−05
9.65E−12


7-37
9.77E+05
1.67E−05
1.71E−11
9.78E+05
1.00E−05
1.02E−11
8.75E+05
1.15E−05
1.31E−11









Competition ELISAs were performed on the variant antibodies. The protocol is depicted in FIG. 10. Variant antibodies with high potency in order of potency included 6A-3, 6A-63, 6A-63 fc mutant, 5A-1, 16-3, 16-4, Antibody 251-Antibody 201-1 (Lot 19898), Antibody 251-Antibody 201-1 (Lot 19442), Antibody 251-Antibody 202-76_Antibody 201-1_Antibody 201-1 and Acro mAb. SARS-CoV2 strains tested include wildtype, D614G variant, 501.V2 variant and B.1.1.7 variant.


SARS-CoV-2 variant antibodies were assayed for Vero inhibition using FACS. Briefly, Vero cells stripped with Cell Stripper (˜20 minutes with 90% viability after removal). Cells were plated at 0.1×106 cells per well. Stock solution of the variant antibodies were at 100 nM titrated 1:3. SARS-CoV-2 S protein RBD, SPD-05259 were made up at 1 ug/mL. Variant antibody titrations were mixed 1:1 with 1 ug/mL S protein (50 uL IgG: 50 uL S protein). 100 uL of the mixture were added to cells and then incubated on ice for 1 hour. The cells were washed ix followed by addition of goat anti-mouse secondary made up at 1:200. The cells were then incubated on ice for 1 hour in the dark, washed three times, and the plates were then read. Results are depicted in FIGS. 11A-11D. FIGS. 12A-12D depict the results of an Acro S1-mFc binding competition assay comparing Antibody 181-8 mutant fc, 6A-3_fc_mutant and Acro neutralizing antibody.


The California variant S1 protein's ability to bind Vero cells was tested. As depicted in FIG. 13A, the CA sl variant binds strongly to Vero cells. FIG. 13B depicts the results of a competition assay of the panel of variants against the CCA S1 spike protein.


The crossreactors were also tested in a binding competition assay. SARS-CoV-2 antibody variants 3-28, 3-31, 7-9, 7-14, 7-26, 7-30, 7-37 and Acro neutralizing mAb were tested for cross-reactivity with Acro S1, Antibody 178-6 in the D614G SARS-CoV-2 variant, Antibody 178-09 in the B.1.1.7 UK variant, and Antibody 178-10 in the CA_W152C_L452R_D614G variant. Results are depicted in FIGS. 14A-14F.


The antibody variants were assayed for neutralization of SARS-CoV-2 virus harboring various mutations. Data is seen in FIGS. 15A-15H and FIGS. 24A-24B.


It took 20 days to deliver 275 anti S1 VHH-Fc variants from DNA synthesis to antibody production (FIG. 25).


Example 5. Bispecific Antibodies

Bispecific antibodies were generated similar to seen in FIGS. 16A-16B.


The bispecific antibodies were then assayed similar to Example 4 for binding using Carterra SPR. The bispecific antibodies were found to bind all variants tested. Data is seen in Table 9.











TABLE 9









SARS-CoV-2 S



SARS-CoV-2 S1
protein trimer



[S1N-C52H4]
[SPN-C52H7]














ka (M−1


ka (M−1




Variant
s−1)
kd (s−1)
KD (M)
s−1)
kd (s−1)
KD (M)





5A-3
4.25E+04
4.70E−04
1.10E−08
5.33E+04
1.00E−05
1.87E−10


5A-63
7.61E+04
2.66E−03
3.50E−08
1.37E+05
1.00E−05
7.31E−11


3-31
4.54E+04
1.87E−04
4.12E−09
6.00E+05
1.00E−05
1.67E−11


7-14
3.74E+04
4.64E−04
1.24E−08
7.03E+05
1.00E−05
1.42E−11


7-37
3.14E+04
6.51E−04
2.08E−08
6.80E+05
1.77E−05
2.60E−11


Bispecific
2.97E+05
5.39E−05
1.81E−10
4.83E+05
1.00E−05
2.07E−11


Antibody 1


Bispecific
2.93E+05
3.62E−04
1.24E−09
2.85E+05
1.00E−05
3.51E−11


Antibody 2













SARS-CoV-2 S protein trimer
SARS-CoV-2 S protein trimer



(B.1.617.2 Delta India variant)
(B.1.1.7 Alpha UK variant)



[SPN-C52he]
[SPN-C52H6]














ka (M−1


ka (M−1




Variant
s−1)
kd (s−1)
KD (M)
s−1)
kd (s−1)
KD (M)





5A-3
1.13E+05
7.64E−05
6.74E−10
7.02E+04
1.00E−05
1.43E−10


5A-63
2.17E+04
2.70E−04
1.25E−08
1.49E+05
1.00E−05
6.72E−11


3-31
7.44E+05
1.00E−05
1.34E−11
6.99E+05
1.00E−05
1.43E−11


7-14
8.18E+05
1.00E−05
1.22E−11
7.82E+05
1.00E−05
1.28E−11


7-37
8.44E+05
1.62E−05
1.91E−11
7.57E+05
1.52E−05
2.01E−11


Bispecific
1.95E+05
1.00E−05
5.12E−11
1.45E+05
1.00E−05
6.88E−11


Antibody 1


Bispecific
3.22E+05
3.71E−05
1.15E−10
1.74E+05
1.00E−05
5.74E−11


Antibody 2














SARS-CoV-2 S protein trimer
SARS-CoV-2 S protein trimer
SARS-CoV-2 S protein trimer



(B.1.351 Beta SA variant)
(P.1 Gamma Brazil variant)
(B.1.617.1 Kappa India variant)



[SPN-C52Hk]
[SPN-C52Hg]
[SPN-C52Hr]

















ka (M−1


ka (M−1


ka (M−1




Variant
s−1)
kd (s−1 )
KD (M)
s−1)
kd (s−1)
KD (M)
s−1)
kd (s−1)
KD (M)





5A-3
1.07E+05
1.00E−05
9.38E−11
9.42E+04
1.20E−05
1.28E−10
1.45E+05
8.17E−05
5.62E−10


5A-63
2.88E+05
1.00E−05
3.47E−11
2.70E+05
1.00E−05
3.70E−11
3.55E+04
2.85E−04
8.02E−09


3-31
8.51E+05
1.00E−05
1.17E−11
8.34E+05
1.00E−05
1.20E−11
7.77E+05
1.00E−05
1.29E−11


7-14
9.31E+05
1.60E−05
1.71E−11
8.77E+05
1.62E−05
1.85E−11
8.35E+05
1.00E−05
1.20E−11


7-37
9.44E+05
2.83E−05
3.00E−11
9.06E+05
2.92E−05
3.22E−11
8.62E+05
2.38E−05
2.76E−11


Bispecific
1.65E+05
1.00E−05
6.08E−11
2.00E+05
1.00E−05
5.00E−11
2.39E+05
1.00E−05
4.19E−11


Antibody 1


Bispecific
2.66E+05
1.00E−05
3.76E−11
2.97E+05
1.00E−05
3.37E−11
3.28E+05
6.09E−05
1.86E−10


Antibody 2









The bispecific antibodies were also assayed in competition assays for alpha. The data is seen in FIGS. 17A-17C and Table 10. As seen in the data, Bispecific Antibody 1 (Bi-Ab1) and Bispecific Antibody 2 (Bi-Ab2) demonstrated good competition with alpha with the bispecific antibodies demonstrating improved competition as compared to the monospecific antibodies.









TABLE 10







IC50 Data Against Alpha















5A-3



Bi-
Bi-
3-
(produc-



Ab1_ExpiCHO
Ab2_ExpiCHO
31_ExpiCHO
tion 2)















IC50
1.299
1.03
1.807
4.583









The bispecific antibodies were also assayed in competition assays for beta. The data is seen in FIGS. 18A-18C and Table 11. As seen in the data, Bispecific Antibody 1 (Bi-Ab1) and Bispecific Antibody 2 (Bi-Ab2) demonstrated good competition with beta with the bispecific antibodies demonstrating improved competition as compared to the monospecific antibodies.









TABLE 11







IC50 Data Against Beta















5A-3



Bi-
Bi-
3-
(produc-



Ab1_ExpiCHO
Ab2_ExpiCHO
31_ExpiCHO
tion 2)















IC50
4.617
6.126
1.242
6.008









The bispecific antibodies were also assayed in competition assays for epsilon (L452R). The data is seen in FIGS. 19A-19C and Table 12. As seen in the data, Bispecific Antibody 1 (Bi-Ab1) and Bispecific Antibody 2 (Bi-Ab2) demonstrated good competition with epsilon with the bispecific antibodies demonstrating improved competition as compared to the monospecific antibodies.









TABLE 12







IC50 Data Against Epsilon















5A-3



Bi-
Bi-
3-
(produc-



Ab1_ExpiCHO
Ab2_ExpiCHO
31_ExpiCHO
tion 2)















IC50
1.861
1.557
1.619
14.23









The bispecific antibodies were assayed in neutralization assays. As seen in FIGS. 20A-20B, Bispecific Antibody 2 (Bi-Ab2) demonstrated good activity against L452R pseudovirus variants of concern (VOCs). Bispecific Antibody 2 (Bi-Ab2) also demonstrated potent live virus neutralization against all tested VOCs (FIGS. 21A-21E).


Example 6: Exemplary Sequences









TABLE 13







Variable Domain Heavy Chain CDR Sequences














SEQ

SEQ

SEQ




ID

ID

ID



Variant
NO
CDRH1
NO
CDRH2
NO
CDRH3
















1-1
1
FTFSSYAMN
652
SAISGSGVSTYYA
1303
CAKGDSGSYYGSSYFDYW





1-2
2
FTFSSYGMS
653
SAISGSGGNTYYA
1304
CTRVRRGSGVAPYSSSWGRYYFD








YW





1-3
3
FRFSSYSMS
654
SAISGSGGSSYYA
1305
CAKDGSGTIFGVVIAKYYFDYW





1-4
4
FTFSAYAMS
655
SAISGSGGSTHYA
1306
CASWGPLWSGSPNDAFDIW





1-5
5
FFSSYAMG
656
SAISGSGYSTYYA
1307
CARVRSYDSTAYDEPLDALDIW





1-6
6
FTFSSFAMS
657
SAISGSGVSTYYA
1308
CGRDARSSGYNGYDLFDIW





1-7
7
FTFSAYAMS
658
SAISGSGGSYYA
1309
CAKGPLVGWYFDLW





1-8
8
FTFGSYAMS
659
SLISGSGGSTYYA
1310
CASWGPLWSGSPNDAFDIW





1-9
9
FTFSAYAMS
660
SAISGSGGSTFYA
1311
CTRQGDSSGWYDGWFDPW





1-10
10
FIFSSYAMS
661
SIISGSGGSTYYA
1312
CIATVVSPLDYW





1-11
11
FTFSDYAMS
662
STISGSGGSTYYA
1313
CARDESSSSLNWFDPW





1-12
12
FTFSSYAMI
663
SAISGSAGSTYYA
1314
CASPDPLGSVADLDYW





1-13
13
FTFGSYAMS
664
SAISGSGGTTYYA
1315
CARVWSSSSVFDYW





1-14
14
FTFSRYAMS
665
SAISGSGASTYYA
1316
CAKDRGGGSYYGTFDYW





1-15
15
STFSSYAMS
666
SAISGSGATYYA
1317
CTRVRVAGYSSSWYDAFDIW





1-16
16
FTFSSYAMT
667
SAISGSGGNTYYA
1318
CVKGTIPIFGVIRSAFDYW





1-17
17
FTFSSYVMS
668
SSISGSGGSTYYA
1319
CARGSGSYSFFDYW





1-18
18
FTFSSYAN
669
SAISGSGVSTYYA
1320
CATTPGPWIQLWFGGGFDYW





1-19
19
FTFSSYDMS
670
SAISGSAGSTTMR
1321
CAKDGLVVAGTFDYW





1-20
20
FTFSGYAMS
671
SALSGSGGSTYYA
1322
CARGALLEWLSRFDNW





1-21
21
FTLSSYAMS
672
SAISGSGGTTYYA
1323
CARDLGAADLIDYW





1-22
22
FIFSSYAMS
673
SAISGSGGTYYA
1324
CVRVPAAAGKGVPGIFDIW





1-23
23
FTFSSYAMG
674
SAIRGSGGSTYYA
1325
CARVRQGLRRTWYYFDYW





1-24
24
STFSSYAMS
675
SAIGGSGGSTYYA
1326
CAKEYSSSWFDPW





1-25
25
FTFSSYTMS
676
SAISVSGGSTYYA
1327
CAKREDYDFWSGRGAFDIW





1-26
26
FTFSSYAMY
677
SAISGSGGTYYA
1328
CAKDIGYSSSWSFDYW





1-27
27
FTFRSYAMS
678
SAISGSGRSTYY
1329
CARDDYSDYRPFDYW





1-28
28
FTFSSYTMS
679
SAISGSGGSIYYA
1330
CAHRPSLQWLDWWFDPW





1-29
29
FTFSSQAMS
680
SIISGSGGSTYYA
1331
CAKDGASGWPNWHFDLW





1-30
30
FTFSSYPMS
681
SAISGSGGRTYYA
1332
CAKGAAAGPFDYW





1-31
31
FTFSSYAMT
682
SAISGGTTYYA
1333
CAKEEYYYDSSGPNWFDPW





1-32
32
FTFSSYAMS
683
TAISVSGGSTYYA
1334
WAPQGGTTVPTGRFDPW





1-33
33
FTFSSYAMS
684
SAISGSSGSTYYA
1335
CSRGGGPAAGFHGLDVW





1-34
34
FTFSSYAVS
685
SAISASGGSTYYA
1336
CARAAKRQQLFPRNYFDYW





1-35
35
FTFSSYPMS
686
SAIRGSGGSTYYA
1337
CALHYGSGRSFDYW





1-36
36
FTFSSYGMS
687
SAISGSGGATYYA
1338
CARPGGRIVGALWGAFDYW





3-1
37
RTFCRYSMG
688
ATWRPANTNYA
1339
CAKNWGDAGTTWFEKSGW





3-2
38
NIFSRYIMG
689
AAISRTGGSTYYA
1340
CAIDPDGEW





3-3
39
RTLAGYTMG
690
AEIYPSGNGVYYA
1341
CAADVRDSIWRSW





3-4

STLSRYSMG
691
AAIARRERVYA
1342
CARLSCHDYSCYSAFDFW





3-5
41
SIFSSAAMG
692
AISWRTGTTYYA
1343
CAAAGSMGWNHLRDYDW





3-6
42
TFSGYLMG
693
AGIWRSGVSLYYA
1344
CAARSGWGAAMRSADFRW





3-7
43
RTFSSYDMG
694
AIIKSDGSTYYA
1345
CARSPRFSGVVVRPGLDLW





3-8
44
SISSYFMG
695
SSIGIAGTPTLYA
1346
CAACSDYYCSGVGAVW





3-9
45
PTFSTYAMG
696
AAVINGGTTNYA
1347
CAKDSWDSSGYSYHYYYYGMDV








W





3-10
46
IIGSFRTMG
697
GFTGSGRSQYYA
1348
CARGDIAVIQVLDYW





3-11
47
GTFASYGMG
698
AGIWEDSSAAHYA
1349
CAYSGIGTDW





3-12
48
LTFRNYAMG
699
AGITSGGTRNYA
1350
CAAGWGDSAW





3-13
49
SISTINVMG
700
AAISWGGGLTVY
1351
CAAFDGYTGSDW






A







3-14
50
GTLSSYIG
701
ATVRSGSITNYA
1352
CAADLTDIWEGIREYDEYAW





3-15
51
RTFRRYPMG
702
VAVTWSGGSTYY
1353
CAAGLRGRQYSW






A







3-16
52
STFSIDVMG
703
AAISWSGESTLYA
1354
CAAFDGYSGSDW





3-17
53
RTSSSAVMG
704
AAINRGGSTIYV
1355
CATGPYRSYFARSYLW





3-18
54
GTFSSYRMG
705
SAISWNDGGADY
1356
CAATQWGSSGWKQARWYDW






A







3-19
55
TIFASAMG
706
AFSSSGGSTYYA
1357
CAKDPIAAADPGDSVSFDYW





3-20
56
FGIDAMG
707
ATITEGGATNVGS
1358
CALNVWRTSSDW






TS







3-21
57
NIIGGNHMG
708
GAITSSRSTVYA
1359
CAAVTTQTYGYDW





3-22
58
RTFSRYDMG
709
GGTRSGSTNYA
1360
CARHSDYSGLSNFDYW





3-23
59
QPAPELRGYG
710
AAVIGSSGTTYYA
1361
CAKAKATVGLRAPFDYW




MG









3-24
60
INFSRYGMG
711
ASITYLGRTNYA
1362
CALRVRPYGQYDW





3-25
61
RTFRRYAMG
712
AAINWSGARTYY
1363
CAVSKPLNYYTYYDARRYDW






A







3-26
62
GTFGHYAMG
713
AAVSWSGSSTYY
1364
CAVSQPLNYYTYYDARRYDW






A







3-27
63
FTLDDYAMG
714
AAISWSTGSTYYA
1365
CAASQAPITIATMMKPFYDW





3-28
64
FTFRRYDMG
715
SAISGGLAYYA
1366
CAVDLSGDAVYDW





3-29
65
INFSRNAMG
716
ASITHQDRPIYA
1367
CALPVGPYGQYDW





3-30
66
RTFTTYGMG
717
ASITYLGRTYYA
1368
CALRVRPYGQYDW





3-31
67
STFSINAMG
718
AGITSSGGYTNYA
1369
CAADGVPEYSDYASGPVW





7-1
68
FTFSNYAMR
719
SAISGSGGSTYYA
1370
CARHTGRYSSGSTGWFHYW





7-2
69
FAFSRHAMS
720
SDIGGSGSTTYYA
1371
CARTTFDNWFDPW





7-3
70
RTFSINAMG
721
AGITRSAVSTITSE
1372
CAADGVPEYSDYASGPVW






GTANYA







7-4
71
FTFSSYGMN
722
SASSGSGGSTYYA
1373
ARREYIESGFDSW





7-5
72
RTFSTDAMG
723
AAISSGGSTNYA
1374
CAATRGRSTRLVLPSLVEW





7-6
73
RIFYPMG
724
AAVRWSSTGIYYT
1375
CAAALSEVWRGSENLREGYDW






QYA







7-7
74
FTFGSYDMG
725
TAINWSGARTAYA
1376
CAARSVYSYEYNW





7-8
75
STFTINAMG
726
SGISHNGGTTNYA
1377
CAADGVPEYSDYASGPVW





7-9
76
GTFSSIGMG
727
AAISWDGGATAY
1378
CAKEDVGKPFDW






A







7-10
77
RTYAMG
728
AEINWSGSSTYYA
1379
CAVDGPFGW





7-11
78
LPFSTKSMG
729
AAIHWSGLTSYA
1380
CAADRAADFFAQRDEYDW





7-12
79
RTIVPYTMG
730
AAISPSAFTEYA
1381
CAARRWGYDW





7-13
80
LRLNMHRMG
731
AAISGWSGGTNYA
1382
CAKIGTLWW





7-14
81
STFSINAMG
732
AGISRGGTTNYA
1383
CAADGVPEYSDYASGPVW





7-15
82
STLPYHAMG
733
ASISRFFGTAYYA
1384
CAPTFAAGASEYHW





7-16
83
FTFTSYAIS
734
SAISGSGGSTDYA
1385
CARGAYGSGTYDYW





7-17
84
FSLDYYGMG
735
AAITSGGTPHYA
1386
CASAYNPGIGYDW





7-18
85
LTDRRYTMG
736
ASITLGGSTAYA
1387
CAKEDVGKPFDW





7-19
86
RTFRRYTMG
737
ASITSSGVNAYA
1388
CAKEDVGKPFDW





7-20
87
PTFSIYAMG
738
AGISWNGGSTNYA
1389
CALRRRFGGQEW





7-21
88
RTISRYTMG
739
ASITSGGSTAYA
1390
CAKEDVGKPFDW





7-22
89
RTITRYTMG
740
ASITSGGSTAYA
1391
CAKQDVGKPFDW





7-23
90
FTFENHAMG
741
AEIYPSGSTIYA
1392
CAARILSRNW





7-24
91
FTFSRHAMN
742
STITGSGGSTNYA
1393
CAREVGLYYYGSGS








SSRRLLGRIDYYFDYW





7-25
92
FTFDDYSMG
743
ASIEWDGSTYYA
1394
CAAFDGYTGSDW





7-26
93
STFSINAMG
744
AGITSSGGYTNYA
1395
CAADGVPEYSDYASGPVW





7-27
94
QTFNMG
745
AEINWSGSSTYYA
1396
CAVDGPFGW





7-28
95
NTFSDNPMG
746
AILAWDSGSTYYA
1397
CTTDYSKLAITKLSYW





7-29
96
RTHSIYPMG
747
ASITSYGDTNYA
1398
CAARRWIPPGPIW





7-30
97
RTFSMHAMG
748
ASISSQGRTNYA
1399
CAAEVRNGSDYLPIDW





7-31
98
FTFSNYSMG
749
AAIHWNGDSTAY
1400
CAAQTEDSAQYIW






A







7-32
99
STFSVNAMG
750
AGVTRGGYTNYA
1401
CAADGVPEYSDYASGPVW





7-33
100
SIGSINAMG
751
AGISNGGTTNYA
1402
CAADGVPEYSDYASGPVW





7-34
101
RTFGSYDMG
752
AFIHRSGGSTYYA
1403
CATFPAIVTDSDYDLGNDW





7-35
102
GTFGHYAMG
753
AAVSWSGSSTYY
1404
CAVSQPLNYYTYYDARRYDW






A







7-36
103
FGFGSYDMG
754
TAINWSGARAYY
1405
CAARSVYSYDYNW






A







7-37
104
STLSINAMG
755
AGITRSGSVTNYA
1406
CAADGVPEYSDYASGPVW





7-38
105
RPFSEYTMG
756
SSIHWGGRGTNYA
1407
CAAELHSSDYTSPGAYAW





7-39
106
RTFSNYPMG
757
AAITWSGDSTNYA
1408
CALPSNIITTDYLRVYW





7-40
107
RTFRRYTMG
758
ASITKFGSTNYA
1409
CAKEDVGKPFDW





7-41
108
RTFSTYVMG
759
ASISSRGITHYA
1410
CAKEDVGKPFDW





7-42
109
FTLDYYGMG
760
AAITSGGTPHYG
1411
CASAYNPGIGYDW





7-43
110
FTFGHYAMG
761
AAVSWSGSTTYY
1412
CAVSHPLNYYTYYDARRYDW






A







7-44
111
FTFEDYAMG
762
AAITRGSNTTDYA
1413
CAARRWMGGSYFDPGNYDW





7-45
112
RTLSRYTMG
763
ASITSGGSTNYA
1414
CAKEDVGKPFDW





8-1
113
RTFASYAMG
764
GAISRSGDSTYYA
1415
CARAPFYCTTTKCQDNYYYMDV








W





8-2
114
GTYHAMG
765
AGITSDDRTNYA
1416
CARERRYYDSSGYPYYFDYW





8-3
115
TTLDYYAMG
766
AAISWSGGSTAYA
1417
CAREDYYDSSGYSW





8-4
116
GTLSRSRMG
767
AFIGSDTLYA
1418
CANLAYYDSSGYYDYW





8-5
117
GTFSFYNMG
768
AFISGNGGTSYA
1419
CAVVAMRMVTTEGPDVLDVW





8-6
118
FTFDYYAMG
769
SAIDSEGRTSYA
1420
CARWGPFDIW





8-7
119
FPFSIWPMG
770
AAVRWSSTGIYYT
1421
CTRSEYSSGWYDYW






QYA







8-8
120
FAESSSMG
771
AAISWSGDITIYA
1422
CARGAPYFDHGSKSYRLFYFDYW





8-9
121
FTFGTTTMG
772
AAISWSTGIAHYA
1423
CARGGPNYYASGRYPWFDPW





8-10
122
FIGNYHAMG
773
AAVTWSGGTTNY
1424
CAREGYYYDSSGYPYYFDYW






A







4A-1
123
RTFSDDTMG
774
GGISWSGGNTYYA
1425
CATDPPLFW





4A-2
124
RTFGDYIMG
775
AAINWSAGYTAY
1426
CARASPNTGWHFDRW






A







4A-3
125
RTFSDDAMG
776
AAINWSGGTTRYA
1427
CATDPPLFW





4A-4
126
RTFGDYIMG
777
AAINWIAGYTADA
1428
CAEPSPNTGWHFDHW





4A-5
127
RTFGDDTMG
778
AAINWSGGNTYY
1429
CATDPPLFW






A







4A-6
128
RTFGDDTMG
779
AAINWTGGYTPY
1430
CATDPPLFW






A







4A-7
129
RTFGDYIMG
780
AAINWSGGYTAY
1431
CATASPNTGWHFDHW






A







4A-8
130
RTFGDYIMG
781
GGINWSGGYTYY
1432
CATDPPLFW






A







4A-9
131
RTFGDYIMG
782
AAINWSGGYTHY
1433
CATDPPLFW






A







4A-10
132
RTFSDDTMG
783
AAIHWSGSSTRYA
1434
CATDPPLFW





4A-11
133
RTFGDYAMG
784
APINWSGGSTYYA
1435
CATDPPLFW





4A-12
134
RTFGDDTMG
785
AAINWSGGNTPYA
1436
CATDPPLFW





4A-13
135
RTFGDDTMG
786
AAINWSGDNTHY
1437
CATDPPLFW






A







4A-14
136
RTFSDDTMG
787
AAINWSGGTTRYA
1438
CATDPPLFW





4A-15
137
RTFSDDTMG
788
AAINWSGDSTYYA
1439
CATDPPLFW





4A-16
138
RTFSDYTMG
789
AAINWSGGYTYY
1440
CATDPPLFW






A







4A-17
139
RTFGDDTMG
790
AAINWSGGNTDY
1441
CATDPPLFW






A







4A-18
140
RTFGDYIMG
791
AAINWSGGYTPYA
1442
CATDPPLFW





4A-19
141
RTFSDDTMG
792
AAINWSGGSTYYA
1443
CATDPPLFW





4A-20
142
RTFGDDIMG
793
AAIHWSAGYTRY
1444
CATDPPLFWGHVDLW






A







4A-21
143
RTFSDDTMG
794
AGMTWSGSSTFY
1445
CATDPPLFW






A







4A-22
144
RTFGDYIMG
795
AAINWSGDNTHY
1446
CATDPPLFW






A







4A-23
145
RTFSDDAMG
796
AGISWNGGSIYYA
1447
CATDPPLFW





4A-24
146
RTFSDYTMG
797
AAINWSGGTTYY
1448
CATDPPLFW






A







4A-25
147
GTFSRYAMG
798
SAVDSGGSTYYA
1449
CAASPSLRSAWQW





4A-26
148
RTFSDDTMG
799
AAVNWSGGSTYY
1450
CATDPPLFW






A







4A-27
149
RTFGDYIMG
800
AAINWSAGYTAY
1451
CARATPNTGWHFDHW






A







4A-28
150
RTFGDDTMG
801
AAINWNGGNTHY
1452
CATDPPLFW






A







4A-29
151
RTFGDDTMG
802
AAINWSGGYTYY
1453
CATDPPLFW






A







4A-30
152
RTFGDYTMG
803
AAINWTGGYTYY
1454
CATDPPLFW






A







4A-31
153
RTFGDYIMG
804
AAINWSAGYTAY
1455
CATASPNTGWHFDHW






A







4A-32
154
FTFDDYEMG
805
AAISWRGGTTYYA
1456
CAADRRGLASTRAGDYDW





4A-33
155
FTFSRHDMG
806
AGINWESGSTNYA
1457
CAADRGVYGGRWYRTSQYTW





4A-34
156
RTFGDYIMG
807
AAINWSADYTAY
1458
CATDPPLFCWHFDHW






A







4A-35
157
QLANFASY
808
AAITRSGSSTVYA
1459
CATTMNPNPRW




AMG









4A-36
158
RTFGDYIMG
809
AAINWSAGYTAY
1460
CATAPPLFCWHFDHW






A







4A-37
159
RTFGDYGMG
810
ATINWSGALTHYA
1461
CATLPFYDFWSGYYTGYYYMDV








W





4A-38
160
RTFSDDTMG
811
AAITWSGGRTRYA
1462
CATDRPLFW





4A-39
161
RTFSNAAMG
812
ARILWTGASRNYA
1463
CATTENPNPRW





4A-40
162
RTFSDDTMG
813
AGINWSGNGVYY
1464
CATDPPLFW






A







4A-41
163
RTFGDYIMG
814
AAINWSGGTTPYA
1465
CATDPPLFCCHVDLW





4A-42
164
RTFGDDTMG
815
AAINWSGGYTPYA
1466
CATDPPLFWGHVDLW





4A-43
165
RTFSDDTMG
816
AAINWSGGSTDYA
1467
CATDPPLFW





4A-44
166
RTFGDYIMG
817
AAINWSAGYTAY
1468
CATARPNTGWHFDHW






A







4A-45
167
RTFSDDAMG
818
AAINWSGGSTRYA
1469
CATDPPLFW





4A-46
168
RTFGDYIMG
819
AAINWSAGYTPYA
1470
CATDPPLFWGHVDLW





4A-47
169
FTFGDYVMG
820
AAINWNAGYTAY
1471
CAKASPNTGWHFDHW






A







4A-48
170
RTFSDDAMG
821
GRINWSGGNTYY
1472
CATDPPLFW






A







4A-49
171
RTFGDYIMG
822
AAINWSAGYTAY
1473
CARASPNTGWHFDHW






A







4A-50
172
GTFSNSGMG
823
AVVNWSGRRTYY
1474
CAVPWMDYNRRDW






A







2A-1
173
FTFSNYATD
824
SIISGSGGATYYA
1475
CAKGGYCSSDTCWWEYWLDPW





2A-2
174
FTFSRHAMN
825
SGISGSGDETYYA
1476
CARDLPASYYDSSGYYWHNGMD








VW





2A-3
175
FTFSDFAMA
826
SAISGSGDITYYA
1477
CAREADCLPSPWYLDLW





2A-4
176
FTFSDFAMA
827
SAITGTGDITYYA
1478
CAREADGLHSPW





2A-5
177
FTFSDFAMA
828
SAISGSGDITYYA
1479
CAREADGLHSPWHFDLW





2A-6
178
FTFSDFAMA
829
SAISGSGDITYYA
1480
CAREADGLHSPWHFDLW





2A-7
179
FTFSDFAMA
830
SAITGSGDITYYA
1481
CAREADGLHSPWHFDLW





2A-8
180
FTFSDFAMA
831
SAISGSGDITYYA
1482
CAREADGLHSPWHFDLW





2A-9
181
FTFPRYAMS
832
STISGSGSTTYYA
1483
CARLIDAFDIW





2A-10
182
FTFSAFAMG
833
SAITASGDITYYA
1484
CARQSDGLPSPWHFDLG





2A-11
183
FTFSNYPMN
834
STISGSGGNTFYA
1485
CVRHDEYSFDYW





2A-12
184
FTFSDYPMN
835
STISGSGGITFYA
1486
CVRHDEYSFDYW





2A-13
185
FTFSDYPMN
836
SAISGSGDNTYYA
1487
CVRHDEYSFDYW





2A-14
186
FTFSDYPMN
837
SAITGSGDITYYA
1488
CVRHDEYSFDYW





2A-15
187
FTFSDYPMN
838
STISGSGGITFYA
1489
CVRHDEYSFDYW





3A-1
188
FMFGNYAMS
839
AAISGSGGSTYYA
1490
CAKDRGYSSSWYGGFDYW





3A-2
189
FTFRSHAMN
840
SAISGSGGSTNYA
1491
CARGLKFLEWLPSAFDIW





3A-3
190
FTFRNYAMA
841
SGISGSGGTTYYG
1492
CARGTRFLEWSLPLDVW





3A-4
191
FTFRNHAMA
842
SGISGSGGTTYYG
1493
CARGTRFLQWSLPLDVW





3A-5
192
FTITNYAMS
843
SGISGSGAGTYYA
1494
CARHAWWKGAGFFDHW





3A-6
193
FTIPNYAMS
844
SGISGAGASTYYA
1495
CARHTWWKGAGFFDHW





3A-7
194
FTIPNYAMS
845
SGISGSGASTYYA
1496
CARHTWWKGAGFFDHW





3A-8
195
FTITNYAMS
846
SGISGSGASTYYA
1497
CARHTWWKGAGFFDHW





3A-9
196
FTITNYAMS
847
SGISGSGAGTYYA
1498
CARHTWWKGAGFFDHW





3A-10
197
FTFRSHAMS
848
SSISGGGASTYYA
1499
CARVKYLTTSSGWPRPYFDNW





3A-11
198
FTIRNYAMS
849
SSISGGGASTYYA
1500
CARVKYLTTSSGWPRPYFDNW





3A-12
199
FTFRSHAMS
850
SSISGGGASTYYA
1501
CARVKYLTTSSGWPRPYFDNW





3A-13
200
FTFRSHAMS
851
SSISGGGASTYYA
1502
CARVKYLTTSSGWPRPYFDNW





3A-14
201
FTFRSYAMS
852
SSISGGGASTYYA
1503
CARVKYLTTSSGWPRPYFDNW





3A-15
202
FTFSAYSMS
853
SAISGSGGSRYYA
1504
CGRSKWPQANGAFDIW





2A-1
203
FTFSNYATD
854
SIISGSGGATYYA
1505
CAKGGYCSSDTCWWEYWLDPW





2A-10
204
FTFSAFAMG
855
SAITASGDITYYA
1506
CARQSDGLPSPWHFDLG





2A-5
205
FTFSDFAMA
856
SAISGSGDITYYA
1507
CAREADGLHSPWHFDLW





2A-2
206
FTFSRHAMN
857
SGISGSGDETYYA
1508
CARDLPASYYDSSGYYWHNGMD








VW





2A-4
207
FTFSDFAMA
858
SAISGSGDITYYA
1509
CAREADGLHSPWHFDLW





2A-6
208
FTFSNYPMN
859
STISGSGGNTFYA
1510
CVRHDEYSFDYW





2A-11
209
FTFSDFAMA
860
SAITGSGDITYYA
1511
CAREADGLHSPWHFDLW





2A-12
210
FTFSDYPMN
861
STISGSGGITFYA
1512
CVRHDEYSFDYW





2A-13
211
FTFSDYPMN
862
SAISGSGDNTYYA
1513
CVRHDEYSFDYW





2A-14
212
FTFSDFAMA
863
SAITGTGDITYYA
1514
CAREADGLHSPW





2A-7
213
FTFSDYPMN
864
SAITGSGDITYYA
1515
CVRHDEYSFDYW





2A-8
214
FTFSDFAMA
865
SAISGSGDITYYA
1516
CAREADGLHSPWHFDLW





2A-15
215
FTFSDFAMA
866
SAISGSGDITYYA
1517
CAREADGLHSPWHFDLW





2A-9
216
FTFPRYAMS
867
STISGSGSTTYYA
1518
CARLIDAFDIW





2A-16
217
FTFSSYAMS
868
SVISGSGGSTYYA
1519
CAREGYRDYLWYFDLW





2A-17
218
FTFSNYAMS
869
SAISGSAGSTYYA
1520
CARVRQGLRRTWYYFDYW





2A-18
219
FTFSSYAMY
870
SAISGSAGSTYYA
1521
CARDTNDFWSGYSIFDPW





2A-19
220
FTFSSYTMS
871
SVISGSGGSTYYA
1522
CAREGYRDYLWYFDLW





2A-2
221
FTFSSYDMS
872
SVISGSGGSTYYA
1523
CAKGPLVGWYFDLW





2A-21
222
FTFPRYAMS
873
STISGSGSTTYYA
1524
CARLIDAFDIW





2A-22
223
FTFTTYALS
874
SGISGSGDETYYA
1525
CTTGDDFWSGGNWFDPW





2A-23
224
FTFSRHAMN
875
SGITGSGDETYYA
1526
CARDLPASYYDSSGYYWHNGMD








VW





2A-24
225
FVFSSYAMS
876
SAISGSGGSSYYA
1527
CARVGGGYWYGIDVW





2A-25
226
FTLSSYVMS
877
SGISGGGASTYYA
1528
CARGYSRNWYPSWFDPW





2A-26
227
FTFSTYAMS
878
SSIGGSGSTTYYA
1529
CAGGWYLDYW





2A-27
228
FTYSNYAMT
879
SAISGSSGSTYYA
1530
CASLCIVDPFDIW





2A-28
229
FTFSNYPMN
880
STISGSGGNTFYA
1531
CVRHDEYSFDYW





3A-10
230
FTFRSHAMS
881
SSISGGGASTYYA
1532
CARVKYLTTSSGWPRPYFDNW





3A-4
231
FTFSAYSMS
882
SAISGSGGSRYYA
1533
CGRSKWPQANGAFDIW





3A-7
232
FMFGNYAMS
883
AAISGSGGSTYYA
1534
CAKDRGYSSSWYGGFDYW





3A-1
233
FTFRNHAMA
884
SGISGSGGTTYYG
1535
CARGTRFLQWSLPLDVW





3A-5
234
FTIPNYAMS
885
SGISGAGASTYYA
1536
CARHTWWKGAGFFDHW





3A-6
235
FTFRNYAMA
886
SGISGSGGTTYYG
1537
CARGTRFLEWSLPLDVW





3A-15
236
FTIRNYAMS
887
SSISGGGASTYYA
1538
CARVKYLTTSSGWPRPYFDNW





3A-3
237
FTIPNYAMS
888
SGISGSGASTYYA
1539
CARHTWWKGAGFFDHW





3A-11
238
FTITNYAMS
889
SGISGSGAGTYYA
1540
CARHAWWKGAGFFDHW





3A-8
239
FTFRSHAMS
890
SSISGGGASTYYA
1541
CARVKYLTTSSGWPRPYFDNW





3A-2
240
FTITNYAMS
891
SGISGSGASTYYA
1542
CARHTWWKGAGFFDHW





3A-12
241
FTFRSHAMN
892
SAISGSGGSTNYA
1543
CARGLKFLEWLPSAFDIW





3A-14
242
FTFRSHAMS
893
SSISGGGASTYYA
1544
CARVKYLTTSSGWPRPYFDNW





3A-9
243
FTFRSYAMS
894
SSISGGGASTYYA
1545
CARVKYLTTSSGWPRPYFDNW





3A-13
244
FTITNYAMS
895
SGISGSGAGTYYA
1546
CARHTWWKGAGFFDHW





3A-16
245
FTFTNFAMS
896
SAISGRGGGTYYA
1547
CARDAHGYYYDSSGYDDW





3A-17
246
FTFRSYPMS
897
STISGSGGITYYA
1548
CAKGVYGSTVTTCHW





3A-18
247
FTLTSYAMS
898
SAISGSGVDTYYA
1549
CARPTNWGFDYW





3A-19
248
FTFINYAMS
899
STISTSGGNTYYA
1550
CARADSNWASSAYW





3A-2
249
FPFSTYAMS
900
SGISVSGGFTYYA
1551
CARDPYSYGYYYYYGMDVW





3A-21
250
FTFSTYAMG
901
SGISGGGVSTYYA
1552
CARARNWGPSDYW





3A-22
251
FIFSDYAMT
902
SAISGSAFYA
1553
CARDATYSSSWYNWFDPW





3A-23
252
FTFSDYAMT
903
SDISGSGGSTYYA
1554
CARGTVTSFDFW





3A-24
253
FTFSIYAMG
904
SFISGSGGSTYYA
1555
CAKDYHSASWFSAAADYW





3A-25
254
FTFASYAMT
905
SAISESGGSTYYA
1556
CAREGQEYSSGSSYFDYW





3A-26
255
FTFSEYAMS
906
SAITGSGGSTYYG
1557
CARGSQTPYCGGDCPETFDYW





3A-27
256
FTFDDYAMS
907
SGISGGGTSTYYA
1558
CARDLYSSGWYGFDYW





3A-28
257
FTFNNYAMN
908
SAISGSVGSTYYA
1559
CARDNYDFWSGYYTNWFDPW





3A-29
258
FTFTNHAMS
909
SAISGSGSNIYYA
1560
CARDSLSVTMGRGVVTYYYYGM








DFW





4A-51
259
PGTAIMG
910
ARISTSGGSTKYA
1561
CARTTVTTPPLIW





4A-52
260
RSFSNSVMG
911
ARITWNGGSTYYA
1562
CATTENPNPRW





4A-53
261
RTFGDDTMG
912
AAVSWSGSGVYY
1563
CATDPPLFW






A







4A-54
262
RTFSDARMG
913
GAVSWSGGTTVY
1564
CATTEDPYPRW






A







4A-49
263
RTFGDYIMG
914
AAINWSAGYTAY
1565
CARASPNTGWHFDHW






A







4A-55
264
SGLSINAMG
915
AAISWSGGSTYTA
1566
CAAYQAGWGDW






YA







4A-39
265
RTFSNAAMG
916
ARILWTGASRNYA
1567
CATTENPNPRW





4A-56
266
FSLDYYGMG
917
AAISWNGDFTAYA
1568
CAKRANPTGAYFDYW





4A-33
267
FTFSRHDMG
918
AGINWESGSTNYA
1569
CAADRGVYGGRWYRTSQYTW





4A-57
268
LTFRNYAMG
919
AAIGSGGYTDYA
1570
CAVKPGWVARDPSQYNW





4A-25
269
GTFSRYAMG
920
SAVDSGGSTYYA
1571
CAASPSLRSAWQW





4A-58
270
FTLDYYDMG
921
AAVTWSGGSTYY
1572
CAADRRGLASTRAADYDW






A







4A-59
271
RTFGDYIMG
922
AAINWSAGYTPYA
1573
CATAPPLFCWHFDLW





4A-6
272
RTFGDDIMG
923
AAIHWSAGYTRY
1574
CATDPPLFWGHVDLW






A







4A-61
273
RTFGDYIMG
924
AAINWSADYTPYA
1575
CATAPPNTGWHFDHW





4A-3
274
RTFGDYIMG
925
AAINWSAGYTAY
1576
CATATPNTGWHFDHW






A







4A-62
275
RTFSDDTMG
926
AAINWSGGSTDYA
1577
CATDPPLFW





4A-43
276
RTFGDDTMG
927
AGINWSGGNTYY
1578
CATDPPLFW






A







4A-5
277
RTFGDYIMG
928
AAINWTGGYTSY
1579
CATDPPLFW






A







4A-42
278
RTFGDDTMG
929
AAINWSGGNTYY
1580
CATDPPLFW






A







4A-63
279
RTFSDYTMG
930
AAINWSGGYTYY
1581
CATDPPLFW






A







4A-6
280
RTFGDYGMG
931
ATINWSGALTHYA
1582
CATLPFYDFWSGYYTGYYYMDV








W





4A-40
281
RTFSDDTMG
932
AGVTWSGSSTFYA
1583
CATDPPLFW





4A-21
282
RTFSDDIMG
933
AAISWSGGNTHYA
1584
CATDPPLFW





4A-64
283
RTFGDYIMG
934
AAINWSAGYTAY
1585
CATASPNTGWHFDHW






A







4A-47
284
FTFDDDYVMG
935
AAVSGSGDDTYY
1586
CAADRRGLASTRAADYDW






A







4A-65
285
RTFGDYIMG
936
AAINWSAGYTAY
1587
CATEPPLSCWHFDLW






A







4A-18
286
RTFGDYIMG
937
AAINWSGGYTPYA
1588
CATAPPNTGWHFDHW





4A-66
287
RTFGDDTMG
938
AAINWSAGYTPYA
1589
CATDPPLFCCHFDLW





4A-36
288
RTFSDDTMG
939
AAISWSGGTTRYA
1590
CATDPPLFW





4A-67
289
RTFSDDTMG
940
AAINWSGDSTYYA
1591
CATDPPLFW





4A-16
290
RTFSDDTMG
941
AAINWSGGTTRYA
1592
CATDPPLFW





4A-11
291
RTFSDDAMG
942
AAIHWSGSSTRYA
1593
CATDPPLFW





4A-68
292
RTFSDDTMG
943
GTINWSGGSTYYA
1594
CATDPPLFW





4A-34
293
RTFGDYIMG
944
AAINWSGGYTPYA
1595
CATDPPLFW





4A-28
294
RTFGDDTMG
945
AAINWNGGNTHY
1596
CATDPPLFW






A







4A-69
295
RTFSDDAMG
946
AAINWSGGTTRYA
1597
CATDPPLFW





4A-7
296
RTFGDYIMG
947
AAINWSAGYTPYA
1598
CATDPPLFWGHVDLW





4A-71
297
RTFSDDTMG
948
ASINWSGGSTYYA
1599
CATDPPLFW





4A-23
298
RTFSDDAMG
949
AGISWNGGSIYYA
1600
CATDPPLFW





4A-9
299
FTFDDYEMG
950
AAISWRGGTTYYA
1601
CAADRRGLASTRAGDYDW





4A-72
300
RTFGDDTMG
951
AAINWSGGYTPYA
1602
CATDPPLFWGHVDLW





4A-73
301
RTFSDDAMG
952
AAINWSGGSTRYA
1603
CATDPPLFW





4A-29
302
VTLDDYAMG
953
AVINWSGGSTDYA
1604
CARGGGWVPSSTSESLNWYFDRW





4A-41
303
RTFGDYIMG
954
AAINWSGGTTPYA
1605
CATDPPLFCCHVDLW





4A-74
304
LTFSDDTMG
955
AAVSWSGGNTYY
1606
CATDPPLFW






A







4A-75
305
RTFGDDTMG
956
AAINWTGGYTPY
1607
CATDPPLFW






A







4A-31
306
RTFGDYIMG
957
ATINWTAGYTYY
1608
CATDPPLFCWHFDHW






A







4A-32
307
RTFGDDTMG
958
AAINWSGGNTDY
1609
CATDPPLFW






A







4A-15
308
RTFGDYTMG
959
AAINWSGGNTYY
1610
CATDPPLFW






A







4A-14
309
RTFSDDTMG
960
AGINWSGNGVYY
1611
CATDPPLFW






A







4A-76
310
RTFGDYAMG
961
APINWSGGSTYYA
1612
CATDPPLFW





4A-50
311
GTFSNSGMG
962
AVVNWSGRRTYY
1613
CAVPWMDYNRRDW






A







4A-17
312
QLANFASYAM
963
AAITRSGSSTVYA
1614
CATTMNPNPRW




G









4A-37
313
RTFSDDIMG
964
AAINWTGGSTYY
1615
CATDPPLFW






A







4A-44
314
RTFGDYIMG
965
AAINWSAGYTAY
1616
CATARPNTGWHFDHW






A







4A-77
315
RTFSDDTMG
966
GSINWSGGSTYYA
1617
CATDPPLFW





4A-78
316
RTFSDDTMG
967
AGMTWSGSSTFY
1618
CATDPPLFW






A







4A-79
317
RTFGDYIMG
968
AAINWSGDYTDY
1619
CATDPPLFW






A







4A-8
318
RTFGDYIMG
969
GGINWSGGYTYY
1620
CATDPPLFW






A







4A-81
319
RTFSDDTMG
970
AAVNWSGGSTYY
1621
CATDPPLFW






A







4A-82
320
RTFGDYAMG
971
AAINWSGGYTRY
1622
CATDPPLFW






A







4A-83
321
RTFGDDTMG
972
AAINWSGGYTPYA
1623
CATDPPLFW





4A-35
322
RTFGDYIMG
973
AAINWSAGYTAY
1624
CARASPNTGWHFDRW






A







4A-45
323
RTFGDYIMG
974
AAINWSGGYTHY
1625
CATDPPLFW






A







4A-84
324
RTFSDDTMG
975
AAITWSGGRTRYA
1626
CATDRPLFW





4A-85
325
RTFGDYIMG
976
AAINWSGGYTAY
1627
CATASPNTGWHFDHW






A







4A-86
326
RTFSDDTMG
977
AAIHWSGSSTRYA
1628
CATDPPLFW





4A-87
327
RTFSDYTMG
978
AAINWSGGTTYY
1629
CATDPPLFW






A







4A-88
328
RTFGDDTMG
979
AAINWSGDNTHY
1630
CATDPPLFW






A







4A-89
329
FAFGDNWIG
980
ASISSGGTTAYA
1631
CAHRGGWLRPWGYW





4A-9
330
RTFSDDAMG
981
GRINWSGGNTYY
1632
CATDPPLFW






A







4A-91
331
RTFSDDTMG
982
GGISWSGGNTYYA
1633
CATDPPLFW





4A-92
332
RTFSDDTMG
983
AAINWSGGSTYYA
1634
CATDPPLFW





4A-46
333
RTFGDDTMG
984
AAINWSGGYTYY
1635
CATDPPLFW






A







4A-20
334
RTFGDYIMG
985
AAINWSADYTAY
1636
CATDPPLFCWHFDHW






A







4A-93
335
RTFSDDAMG
986
AAINWSGSSTYYA
1637
CATDPPLFW





4A-4
336
RTFGDYIMG
987
AAINWIAGYTADA
1638
CAEPSPNTGWHFDHW





4A-2
337
RTFGDDTMG
988
AAINWSGGNTPYA
1639
CATDPPLFW





4A-94
338
RTFSDDTMG
989
AAINWSGDNTHY
1640
CATDPPLFW






A







4A-95
339
RTFGDYIMG
990
AAINWSAGYTAY
1641
CATAPPLFCWHFDHW






A







4A-12
340
FTFGDYVMG
991
AAINWNAGYTAY
1642
CAKASPNTGWHFDHW






A







4A-30
341
RTFGDYTMG
992
AAINWTGGYTYY
1643
CATDPPLFW






A







4A-27
342
RTFGDYIMG
993
AAINWSAGYTAY
1644
CARATPNTGWHFDHW






A







4A-22
343
RTFGDYIMG
994
AAINWSGDNTHY
1645
CATDPPLFW






A







4A-96
344
RTFGDYIMG
995
AAINWSAGYTPYA
1646
CATDPPLFCCHFDHW





4A-97
345
RTFGDYIMG
996
AAINWSAGYTAY
1647
CATAPPNTGWHFDHW






A







4A-98
346
FTWGDYTMG
997
AAINWSGGNTYY
1648
CAADRRGLASTRAADYDW






A







4A-99
347
IPSTLRAMG
998
AAVSSLGPFTRYA
1649
CAAKPGWVARDPSQYNW





4A-100
348
FSFDDDYVMG
999
AAINWSGGSTYYA
1650
CAADRRGLASTRAADYDW





4A-101
349
RTFSNAAMG
1000
ARILWTGASRSYA
1651
CATTENPNPRW





4A-102
350
GTFGVYHMG
1001
AAINMSGDDSAY
1652
CAILVGPGQVEFDHW






A







4A-103
351
FTFSSYYMG
1002
ARISGSTFYA
1653
CAALPFVCPSGSYSDYGDEYDW





4A-104
352
RTFSGDFMG
1003
GRINWSGGNTYY
1654
CPTDPPLFW






A







4A-105
353
STLRDYAMG
1004
AAITWSGGSTAYA
1655
CASLLAGDRYFDYW





4A-106
354
FTFDDYTMG
1005
AAITDNGGSKYYA
1656
CAADRRGLASTRAADYDW





4A-107
355
GTFSSYGMG
1006
AAINWSGASTYYA
1657
CARDWRDRTWGNSLDYW





4A-108
356
FSFDDDYVMG
1007
AAISWSEDNTYYA
1658
CAADRRGLASTRAADYDW





4A-109
357
FSFDDDYVMG
1008
AAVSGSGDDTYY
1659
CAADRRGLASTRAADYDW






A







4A-110
358
NIAAINVMG
1009
AAISASGRRTDYA
1660
CARRVYYYDSSGPPGVTFDIW





4A-111
359
IITSRYVMG
1010
AAISTGGSTIYA
1661
CARQDSSSPYFDYW





4A-112
360
FSFDDDYVMG
1011
AAISNSGLSTYYA
1662
CAADRRGLASTRAADYDW





4A-113
361
SISSINVMG
1012
ATMRWSTGSTYY
1663
CAQRVRGFFGPLRTTPSWYEW






A







4A-114
362
LTFILYRMG
1013
AAINNFGTTKYA
1664
CARTHYDFWSGYTSRTPNYFDYW





4A-115
363
GTFSVYHMG
1014
AAISWSGGSTAYA
1665
CAAVNTWTSPSFDSW





4A-116
364
RAFSTYGMG
1015
AGINWSGDTPYYA
1666
CAREVGPPPGYFDLW





4A-117
365
RTFSDIAMG
1016
ASINWGGGNTYY
1667
CAAKGIWDYLGRRDFGDW






A







4A-118
366
RTFSSARMG
1017
AAISWSGDNTHYA
1668
CATTENPNPRW





4A-119
367
FAFSSYAMG
1018
ATINGDDYTYYA
1669
CVATPGGYGLW





4A-120
368
ITFRRHDMG
1019
AAIRWSSSSTVYA
1670
CAADRGVYGGRWYRTSQYTW





4A-121
369
TAASFNPMG
1020
AAITSGGSTNYA
1671
CAAIAYEEGVYRWDW





4A-122
370
NINIINYMG
1021
AAIHWNGDSTAY
1672
CASGPPYSNYFAYW






A







4A-123
371
FTFDDYAMG
1022
AAISGSGGSTAYA
1673
CAKIMGSGRPYFDHW





4A-124
372
NIFTRNVMG
1023
AAITSSGSTNYA
1674
CARPSSDLQGGVDYW





4A-125
373
RTFSSIAMG
1024
ASINWGGGNTIYA
1675
CAAKGIWDYLGRRDFGDW





4A-126
374
IPSTLRAMG
1025
AAVSSLGPFTRYA
1676
CAAKPGWVARDPSEYNW





4A-127
375
FTLDDSAMG
1026
AAITNGGSTYYA
1677
CARFARGSPYFDFW





4A-128
376
SISSFNAMG
1027
AAIDWDGSTAYA
1678
CARGGGYYGSGSFEYW





4A-129
377
NIFSDNIIG
1028
AYYTSGGSIDYA
1679
CARGTAVGRPPPGGMDVW





4A-130
378
SISSIGAMG
1029
AAISSSGSSTVYA
1680
CARVPPGQAYFDSW





4A-131
379
FTFDDYGMG
1030
ATITWSGDSTYYA
1681
CAKGGSWYYDSSGYYGRW





4A-132
380
RTFSNYTMG
1031
SAISWSTGSTYYA
1682
CAADRYGPPWYDW





4A-133
381
STNYMG
1032
AAISMSGDDTIYA
1683
CARIGLRGRYFDLW





4A-134
382
GTFSSVGMG
1033
AVINWSGARTYY
1684
CAVPWMDYNRRDW






A







4A-135
383
RIFTNTAMG
1034
AAINWSGGSTAYA
1685
CARTSGSYSFDYW





4A-136
384
EEFSDHWMG
1035
GAIHWSGGRTYY
1686
CAADRRGLASTRAADYDW






A







4A-137
385
RTFSSIAMG
1036
AAINWSGARTAY
1687
CAAKGIWDYLGRRDFGDW






A







4A-138
386
STSSLRTMG
1037
AAISSRDGSTIYA
1688
CARDDSSSPYFDYW





4A-139
387
GGTFGSYAMG
1038
AAISIASGASGGTT
1689
CATTMNPNPRW






NYA







4A-140
388
RTFSNAAMG
1039
ARITWNGGSTFYA
1690
CATTENPNPRW





4A-141
389
IILSDNAMG
1040
AAISWLGESTYYA
1691
CAADRRGLASTRAADYDW





4A-142
390
RTFGDYIMG
1041
AAINWNGGYTAY
1692
CATTSPNTGWHYYRW






A







4A-143
391
FNFNWYPMG
1042
AAISWTGVSTYTA
1693
CARWGPGPAGGSPGLVGFDYW






YA







4A-144
392
SIRSVSVMG
1043
AAISWSGVGTAYA
1694
CAAYQRGWGDW





4A-145
393
MTFRLYAMG
1044
GAINWLSESTYYA
1695
CAAKPGWVARDPSEYNW





4A-146
394
RTFSDDAMG
1045
AAINWSGGSTYYA
1696
CATDPPLFW





4A-147
395
GTFSVYAMG
1046
AAISMSGDDAAY
1697
CAKISKDDGGKPRGAFFDSW






A







4A-148
396
FALGYYAMG
1047
AAISSRDGSTAYA
1698
CARLATGPQAYFHHW





4A-149
397
FNLDDYAMG
1048
AAISWDGGATAY
1699
CARVGRGTTAFDSW






A







4A-150
398
NTFSGGFMG
1049
ASIRSGARTYYA
1700
CAQRVRGFFGPLRTTPSWYEW





4A-151
399
SIRSINIMG
1050
AAISWSGGSTVYA
1701
CASLLAGDRYFDYW





5A-1
400
GTFSSIGMG
1051
AAISWDGGATAY
1702
CAKEDVGKPFDW






A







5A-2
401
LRFDDYAMG
1052
AIKFSGGTTDYA
1703
CASWDGLIGLDAYEYDW





5A-3
402
SIFSIDVMG
1053
AGISWSGDSTLYA
1704
CAAFDGYTGSDW





5A-4
403
FTLADYAMG
1054
AVITCSGGSTDYA
1705
CAADDCYIGCGW





5A-5
404
RTFSSIAMG
1055
AEITEGGISPSGDN
1706
CAAELHSSDYTSPGAESDYGW






IYYA







5A-6
405
PTFSSYAMMG
1056
AAINNFGTTKYA
1707
CAASASDYGLGLELFHDEYNW





5A-7
406
STGYMG
1057
AAIHSGGSTNYA
1708
CATVATALIW





5A-8
407
RPFSEYTMG
1058
SSIHWGGRGTNYA
1709
CAAELHSSDYTSPGAYAW





5A-9
408
LTLSTYGMG
1059
AHIPRSTYSPYYA
1710
CAAIGDGAVW





5A-10
409
FTFNNHNMG
1060
AAISSYSHTAYA
1711
CALQPFGASNYRW





5A-11
410
GIYRVMG
1061
ASISSGGGINYA
1712
CAAESWGRQW





5A-12
411
YTDSNLWMG
1062
AINRSTGSTSYA
1713
CATSGSGSPNW





5A-13
412
FTFDYYTMG
1063
AAIRSSGGLFYA
1714
CAAYLDGYSGSW





5A-14
413
GIFSINVMG
1064
SAIRWNGGNTAY
1715
CAGFDGYTGSDW






A







5A-15
414
FTFDGAAMG
1065
ATIRWTNSTDYA
1716
CARGRYGIVERW





5A-16
415
RTHSIYPMG
1066
AAIHSGGATVYA
1717
CAARRWIPPGPIW





5A-17
416
PTFSIYAMG
1067
AGIRWSDVYTQY
1718
CALDIDYRDW






A







5A-18
417
LTFDDNIHVM
1068
AAIHWSGGSTIYA
1719
CAADVYPQDYGLGYVEGKMYYG




G



MDW





5A-19
418
LTLDYYAMG
1069
ASINWSGGSTYYA
1720
CAAYGSGEFDW





5A-20
419
RTIVPYTMG
1070
AAISPSAFTEYA
1721
CAARRWGYDW





5A-21
420
GTFTTYHMG
1071
AHISTGGATNYA
1722
CATFPAIVTDSDYDLGNDW





5A-22
421
FTFNVFAMG
1072
AAINWSDSRTDYA
1723
CASGSDNRARELSRYEYVW





5A-23
422
SIFSIDVMG
1073
AAISWSGESTLYA
1724
CAAFDGYSGSDW





5A-24
423
FTFSSYSMG
1074
AAISSYSHTAYA
1725
CALQPFGASSYRW





5A-25
424
NTFSINVMG
1075
AAIHWSGDSTLYA
1726
CAAFDGYSGNHW





5A-26
425
RTISSYIMG
1076
ARIYTGGDTIYA
1727
CAARTSYNGRYDYIDDYSW





5A-27
426
RANSINWMG
1077
ATITPGGNTNYA
1728
CAAAAGSTWYGTLYEYDW





5A-28
427
GTFSVFAMG
1078
AEITAGGSTYYA
1729
CAVDGPFGW





5A-29
428
FTFDDYPMG
1079
ASVLRGGYTWYA
1730
CAKDWATGLAW





5A-30
429
FALGYYAMG
1080
AGIRWTDAYTEY
1731
CAADVSPSYGSRWYW






A







5A-31
430
RTLDIHVMG
1081
AVINWTGESTLYA
1732
CAAFDGYTGNYW





5A-32
431
FTPDNYAMG
1082
AALGWSGVTTYH
1733
CASDESDAANW






YYA







5A-33
432
FTFDDYAMG
1083
ATIMWSGNTTYY
1734
CATNDDDV






A







5A-34
433
RTFSRYIMG
1084
AAISWSGGDNTYY
1735
CAAYRIVVGGTSPGDWRW






A







5A-35
434
PTFSIYAMG
1085
AGISWNGGSTNYA
1736
CALRRRFGGQEW





5A-36
435
RTFSLNAMG
1086
AAISCGGGSTYA
1737
CAADNDMGYCSW





5A-37
436
STFSINAMG
1087
GGISRSGATTNYA
1738
CAADGVPEYSDYASGPVW





5A-38
437
RTFSMHAMG
1088
ASISSQGRTNYA
1739
CAAEVRNGSDYLPIDW





5A-39
438
VTLDLYAMG
1089
AGIRWTDAYTEY
1740
CAVDIDYRDW






A







5A-40
439
LPFTINVMG
1090
AAIHWSGLTTFYA
1741
CAELDGYFFAHW





5A-41
440
RAFSNYAMG
1091
AWINNRGTTDYA
1742
CASTDDYGVDW






DSGSTYYA







5A-42
441
FTPDDYAMG
1092
ASIGYSGRSNSYN
1743
CAIAHGSSTYNW






YYA







5A-43
442
FTLNYYGMG
1093
AAITSGGAPHYA
1744
CASAYDRGIGYDW





5A-44
443
LPFSTKSMG
1094
AAIHWSGLTSYA
1745
CAADRAADFFAQRDEYDW





5A-45
444
RTFSINAMG
1095
AAISWSGESTQYA
1746
CAAFDGGSGTQW





5A-46
445
EEFSDHWMG
1096
AAIHWSGDSTHRN
1747
CATVGITLNW






YA







5A-47
446
FTFGSYDMG
1097
TAINWSGARTAYA
1748
CAARSVYSYEYNW





5A-48
447
LPLDLYAMG
1098
AGIRWSDAYTEYA
1749
CALDIDYRHW





5A-49
448
RTSTVNGMG
1099
ASISQSGAATAYA
1750
CAADRTYSYSSTGYYW





5A-50
449
FSLDYYGMG
1100
AAITSGGTPHYA
1751
CASAYNPGIGYDW





5A-51
450
RPNSINWMG
1101
ATITPGGNTNYA
1752
CAAAAGTTWYGTLYEYDW





5A-52
451
EKFSDHWMG
1102
ATITFSGARTAYA
1753
CAALIKPSSTDRIFEEW





5A-53
452
LTVVPYAMG
1103
AAIRRSAVTNYA
1754
CAARRWGYHYW





5A-54
453
TTFNFNVMG
1104
AVISWTGESTLYA
1755
CAAFDGYTGRDW





5A-55
454
IDVNRNAMG
1105
AAITWSGGWRYY
1756
CATTFGDAGIPDQYDFGW






A







5A-56
455
RTFSSNMG
1106
ARIFGGDRTLYA
1757
CADINGDW





5A-57
456
GTFSMGWIR
1107
GCIGWITYYA
1758
CAPFGW





5A-58
457
CTLDYYAMG
1108
AGIRWTDAYTEY
1759
CAADVSPSYGGRWYW






A







5A-59
458
LTFSLYRMC
1109
SCISNIDGSTYYA
1760
CAADLLGDSDYEPSSGFGW





5A-60
459
RSFSSHRMG
1110
AAIMWSGSHRNY
1761
CAAIAYEEGVYRWDW






A







5A-61
460
RIIVPNTMG
1111
TGISPSAFTEYA
1762
CAAHGWGCHW





5A-62
461
SIFIISMG
1112
TGINWSGGSTTYA
1763
CAASAIGSGALRRFEYDW





5A-63
462
FSLDYYDMG
1113
AALGWSGGSTDY
1764
CAAGNGGRYGIVERW






A







5A-64
463
TSISNRVMG
1114
ARIYTGGDTLYA
1765
CAARKIYRSLSYYGDYDW





5A-65
464
NIDRLYAMG
1115
AAIDSDGSTDYA
1766
CAALIDYGLGFPIEW





5A-66
465
NTFTINVMG
1116
AAINWNGGTTLY
1767
CAAFDGYSGIDW






A







5A-67
466
FNVNDYAMG
1117
AGITSSVGVTNYA
1768
CAADIFFVNW





5A-68
467
FTFDHYTMG
1118
AAISGSENVTSYA
1769
CAAEPYIPVRTMRHMTFLTW





6A-1
468
RTFGNYNMG
1119
ATINSLGGTSYA
1770
CARVDYYMDVW





6A-2
469
FTMSSSWMG
1120
TVISGVGTSYA
1771
CARGPDSSGYGFDYW





6A-3
470
FTFSPSWMG
1121
ATINEYGGRNYA
1772
CARVDRDFDYW





6A-4
471
FTRDYYTMG
1122
AAISRSGSLTSYA
1773
CANLAYYDSSGYYDYW





6A-5
472
RTFTMG
1123
ASTNSAGSTNYA
1774
CTTVDQYFDYW





6A-6
473
TTLDYYAMG
1124
AAISWSGGSTAYA
1775
CAREDYYDSSGYSW





6A-7
474
FTFSSYWMG
1125
ATINWSGVTAYA
1776
CARADDYFDYW





6A-8
475
FTLSGIWMG
1126
AIITTGGRTTYA
1777
CAGYSTFGSSSAYYYYSMDVG





6A-9
476
FTFDYYAMG
1127
SAIDSEGRTSYA
1778
CARWGPFDIW





6A-10
477
SIASIHAMG
1128
AAISRSGGFGSYA
1779
CARDDKYYDSSGYPAYFQHW





6A-11
478
LAFNAYAMG
1129
ATIGWSGANTYY
1780
CASDPPGW






A







6A-12
479
STYTTYSMG
1130
AAISGSENVTSYA
1781
CARVDDYMDVW





6A-13
480
LTFNDYAMG
1131
AHIPRSTYSPYYA
1782
CAFLVGPQGVDHGAFDVW





6A-14
481
ITFRFKAMG
1132
AAVSWDGRNTYY
1783
CASDYYYMDVW






A







6A-15
482
STVLINAMG
1133
AAVRWSDDYTYY
1784
CAKEGRAGSLDYW






A







6A-16
483
FTFDDAAMG
1134
AHISWSGGSTYYA
1785
CATFGATVTATNDAFDIW





6A-17
484
NTGSTGYMG
1135
AGVINDGSTVYA
1786
CARLATSHQDGTGYLFDYW





6A-18
485
LTFRNYAMG
1136
AGMMWSGGTTTY
1787
CAREGYYYDSSGYLNYFDYW






A







6A-19
486
SILSIAVMG
1137
AAISPSAVTTYYA
1788
CAIGYYDSSGYFDYW





6A-20
487
STLPYHAMG
1138
AAITWNGASTSYA
1789
CARDRYYDTSASYFESETW





6A-21
488
TLFKINAMG
1139
AAITSSGSNIDYTY
1790
CARSNTGWYSFDYW






YA







6A-22
489
RTFSEVVMG
1140
ATIHSSGSTSYA
1791
CVRVTSDYSMDSW





6A-23
490
SIFSMNTMG
1141
ALINRSGGGINYA
1792
CVRLSSGYYDFDYW





6A-24
491
FTLDYYAMG
1142
AAINWSGDNTHY
1793
CARAPFYCTTTKCQDNYYYMDV






A

W





6A-25
492
LTFGTYTMG
1143
AAISRFGSTYYA
1794
CARGGDYDFWSVDYMDVW





6A-26
493
DTFSTSWMG
1144
ATINTGGGTNYA
1795
CARVTTSFDYW





6A-27
494
ITFRFKAMG
1145
ASISRSGTTYYA
1796
CATDYSAFDMW





6A-28
495
DTYGSYWMG
1146
ATITSDDRTNYA
1797
CARVTSSLSGMDVW





6A-29
496
YTLKNYYAM
1147
AAIIWTGESTLDA
1798
CAREGYYDSSGYYW




G









6A-30
497
FAFGDSWMG
1148
ATINWSGVTAYA
1799
CARADGYFDYW





6A-31
498
DTFSANRMG
1149
ASITWSSANTYYA
1800
CATFNWNDEGFDFW





6A-32
499
FTLDYYDMG
1150
ALISWSGGSTYYA
1801
CATDFYGWGTRERDAFDIW





6A-33
500
TFQRINHMG
1151
ATINTGGQPNYA
1802
CASLIAAQDYYFDYW





6A-34
501
SAFRSNAMG
1152
AHISWSSKSTYYA
1803
CATYCSSTSCFDYW





6A-35
502
FTLAYYAMG
1153
AAISMSGDDTIYA
1804
CARELGYSSTVWPW





6A-36
503
FDFSVSWMG
1154
TAITWSGDSTNYA
1805
CASLLHTGPSGGNYFDYW





6A-37
504
HTFSTSWMG
1155
ATINSLGGTNYA
1806
CARVSSGDYGMDVW





6A-38
505
NTFSGGFMG
1156
AVISSLSSKSYA
1807
CAKVDSGYDYW





6A-39
506
FTFSPSWMG
1157
AAISWSGGSTAYA
1808
CHGLGEGDPYGDYEGYFDLW





6A-40
507
FTFSDYWMG
1158
ARVWWNGGSAY
1809
CAREVLRQQVVLDYW






YA







6A-41
508
FTFSTSWMG
1159
ASINEYGGRNYA
1810
CAGLHYYYDSSGYNPTEYYGMDV








W





6A-42
509
DTYGSYWMG
1160
AVITSGGSTNYA
1811
CTHVQNSYYYAMDVW





6A-43
510
RTFSSYAMMG
1161
ASVNWDASQINY
1812
CTTLGAVYFDSSGYHDYFDYW






A







6A-44
511
GTFGVYHMG
1162
GRITWTDGSTYYA
1813
CFGLLEVYDMTFDYW





6A-45
512
NMFSINAMG
1163
TLISWSSGRTSYA
1814
CASLGYCSGGSCFDYW





6A-46
513
LTFSAMG
1164
ALIRRDGSTIYA
1815
CAALGILFGYDAFDIW





6A-47
514
RTFSMHAMG
1165
ASITYGGNINYA
1816
CAKEGYYDSTGYRTYFQQW





6A-48
515
FTVSNYAMG
1166
ASVNWSGGTTSY
1817
CATTGTVTLGYW






A







6A-49
516
STVLINAMG
1167
AAISWSPGRTDYA
1818
CARDCSGGSCYSGDYW





6A-50
517
FSFDRWAMG
1168
ASLATGGNTNYA
1819
CARVTNYDAFDIW





6A-51
518
YTYSSYVMG
1169
AAISRFGSTYYA
1820
CARDSGEHFWDSGYIDHW





6A-52
519
DTYGSYWMG
1170
AAITSGGSTVYA
1821
CARVDSRFDYW





6A-53
520
ISINTNVMG
1171
AAISTGSVTIYA
1822
CARVDDFGYFDLW





6A-54
521
FEFENHWMG
1172
AHITAGGLSNYA
1823
CGRHWGIYDSSGFSSFDYW





6A-55
522
FTMSSSWMG
1173
ARITSGGSTGYA
1824
CASVDGYFDYW





6A-56
523
NIFRSNMG
1174
AGITWNGDTTYY
1825
CARALGVTYQFDYW






A







6A-57
524
LTFDDHSMG
1175
AAVPLSGNTYYA
1826
CASFSGGPADFDYW





6A-58
525
RAVSTYAMG
1176
AAISGSENVTSYA
1827
CLSVTGDTEDYGVFDTW





6A-59
526
ISGSVFSRTPM
1177
SSIYSDGSNTYYA
1828
CAHWSWELGDWFDPW




G









6A-60
527
DTYGSYWMG
1178
ATISQSGAATAYA
1829
CAGLLRYSGTYYDAFDVW





6A-61
528
DTYGSYWMG
1179
AAINWSGGSTNYA
1830
CAGLGWNYMDYW





6A-62
529
STFSGNWMG
1180
AVISWTGGSTYYA
1831
CATHNSLSGFDYW





6A-63
530
QTFNMG
1181
AAIGSGGSTSYA
1832
CWRLGNDYFDYW





6A-64
531
IPSIHAMG
1182
AAINWSHGVTYY
1833
CGGGYGYHFDYW






A







6A-65
532
LPFSTLHMG
1183
ASLSIFGATGYA
1834
CWMYYYDSSGYYGNYYYGMDV








W





6A-66
533
LTFSLFAMG
1184
AAISSGGSTDYA
1835
CARGNTKYYYDSSGYSSAFDYW





6A-67
534
SFSNYAMG
1185
AAISSSGALTSYA
1836
CWIVGPGPLDGMDVW





6A-68
535
FTLSDRAMG
1186
AHITAGGLSNYA
1837
CVHLASQTGAGYFDLW





6A-69
536
GTFSSVGMG
1187
AGISRSGGTYYA
1838
CARYDFWSGYPYW





6A-70
537
FNLDDYADM
1188
AAIGWGGGSTRY
1839
CAREILWFGEFGEPNVW




G

A







6A-71
538
ITFSNDAMG
1189
AIITSSDTNDTTNY
1840
CARLHYYDSSGYFDYW






A







6A-72
539
STLSINAMG
1190
AAIDWSGGSTAYA
1841
CARDSSATRTGPDYW





6A-73
540
HTFSGYAMG
1191
AVITREGSTYYA
1842
CARLGGEGFDYW





6A-74
541
FAFGDSWMG
1192
AAITSGGSTDYA
1843
CARGLLWFGELFGYW





6A-75
542
GTFSTYWMG
1193
AAISRSGGNTYYA
1844
CVRHSGTDGDSSFDYW





6A-76
543
LAFDFDGMG
1194
AAINSGGSTYYA
1845
CARFFRAHDYW





6A-77
544
FTFDRSWMG
1195
AAVTEGGTTSYA
1846
CARADYDFDYW





6A-78
545
RTYDAMG
1196
ASVTSGGYTHYA
1847
CAKFGRKIVGATELDYW





6A-79
546
SISSIDYMG
1197
SWISSSDGSTYYA
1848
CARSPSFSQIYYYYYMDVW





6A-80
547
GTFSFYNMG
1198
AFISGNGGTSYA
1849
CAVVAMRMVTTEGPDVLDVW





6A-81
548
FIGNYHAMG
1199
AAVTWSGGTTNY
1850
CAREGYYYDSSGYPYYFDYW






A







6A-82
549
SSLDAYGMG
1200
AAISWGGGSIYYA
1851
CARLSQGMVALDYW





6A-83
550
SIASIHAMG
1201
AAITWSGAITSYA
1852
CAKDGGYGELHYGMEVW





6A-84
551
FTPDDYAMG
1202
AAINSGGSYTYYA
1853
CARDRGPW





6A-85
552
GTFSVFAMG
1203
SAINWSGGSLLYA
1854
CALFGDFDYW





6A-86
553
PISGINRMG
1204
AVITSNGRPSYA
1855
CVRLSSGYFDFDYW





6A-87
554
TSIMVGAMG
1205
AIIRGDGRTSYA
1856
CARFAGWDAFDIW





6A-88
555
RTFSTHWMG
1206
AVINWSGGSIYYA
1857
CARLSSDGYNYFDFW





6A-89
556
TIFASAMG
1207
AVVNWNGSSTVY
1858
CTTVDQYFNYW






A







6A-90
557
FPFSIWPMG
1208
AAVRWSSTYYA
1859
CATGECDGGSCSLAYW





6A-91
558
RTFGNYAMG
1209
ASISSSGVSKHYA
1860
CVRFGSSWARDLDQW





6A-92
559
FLFDSYASMG
1210
ATIWRRGNTYYA
1861
CTETGTAAW






NYA







6A-93
560
LPFSTKSMG
1211
AAISMSGLTSYA
1862
CLKVLGGDYEADNWFDYW





6A-94
561
NIFRIETMG
1212
AGIIRSGGETLYA
1863
CARSLYYDRSGSYYFDYW





6A-95
562
IPSSIRAMG
1213
AVIRWTGGSTYYA
1864
CARDIGYYDSSGYYNDGGFDYW





6A-96
563
FTLSGNWMG
1214
AIITSGGRTNYA
1865
CAGHATFGGSSSSYYYGMDVW





6A-97
564
FTFSSLAMG
1215
AAITWSGDITNYA
1866
CLRLSSSGFDHW





6A-98
565
TFGHYAMG
1216
AAINWSSRSTVYA
1867
CAKSDGLMGELRSASAFDIW





6A-99
566
IPFRSRTMG
1217
AGISRSGASTAYA
1868
CTHANDYGDYW





6A-100
567
GTFSTSWMG
1218
AHITAGGLSNYA
1869
CARLLVREDWYFDLW





6A-101
568
GTFSLFAMG
1219
AAISWTGDSTYYK
1870
CAYNNSSGEYW






YYA







6A-102
569
SSFSAYAMG
1220
SAIDSEGTTTYA
1871
CAGDYNFWSGFDHW





6A-103
570
RTSSPIAMG
1221
AVRWSDDYTYYA
1872
CAKKLGGYYAFDIW





6A-104
571
LTFNQYTMG
1222
ASITDGGSTYYA
1873
CARDSRYMDVW





6A-105
572
PTFSSMG
1223
AAISWDGGATAY
1874
CAIEIVVGGIYW






A







6A-106
573
IPSTLRAMG
1224
AATSWSGGSKYY
1875
CATDLYYMDVW






A







6A-107
574
GVGFSVTNMG
1225
AVISSSSSTNYA
1876
CTTFNWNDEGFDYW





6A-108
575
GTFGSYGMG
1226
AAIRWSGGITYYA
1877
CARERYWNPLPYYYYGMDVW





6A-109
576
GTFSTYAMG
1227
ASIDWSGLTSYA
1878
CARGPFYMYCSGTKCYSTNWFDP








W





6A-110
577
PIYAVNRMG
1228
AGIWRSGGHRDY
1879
CARGEIDILTGYWYDYW






A







6A-111
578
FTFSNYWMG
1229
GGISRSGVSTSYA
1880
CTTLLYYYDSSGYSFDAFDIW





6A-112
579
GTFSAYHMG
1230
TIIDNGGPTSYA
1881
CTALLYYFDNSGYNFDPFDIW





9A-1
580
RTFSRLAMG
1231
AAISRSGRSTSYA
1882
CAARRSQILFTSRTDYEW





9A-2
581
SFSIAAMG
1232
ATINYSGGGTYYA
1883
CAAVNTFDESAYAAFACYDVVW





9A-3
582
RTFSRYAMG
1233
AAISRSGKSTYYA
1884
CAASSVFSDLRYRKNPKW





9A-4
583
RTFSKYAMG
1234
ALITPSSRTTYYA
1885
CAIAGRGRW





9A-5
584
RTFRRYAMG
1235
ASINWGGGNTYY
1886
CAKTKRTGIFTTARMVDW






A







9A-6
585
RTFSRFAMG
1236
AAIRWSGGRTVY
1887
CAIEPGTIRNWRNRVPFARGNFGW






A







9A-7
586
LGIAFSRRTA
1237
AAISWRGGNTYY
1888
CAARRWIPPGPIW




MG

A







9A-8
587
RTFRRYPMG
1238
AAISRSGGSTYYA
1889
CAAKRLRSFASGGSYDW





9A-9
588
GTLRGYGMG
1239
ASISRSGGSTYYA
1890
CAARRRVTLFTSRADYDW





9A-10
589
RMFSSRSMG
1240
ALINRSGGSQFYA
1891
CAARRWIPPGPIW





9A-11
590
RTFGRRAMG
1241
AGISRGGGTNYA
1892
CAAKGIWDYLGRRDFGDW





10A-1
591
LSSPPFDDFPM
1242
SSIYSDDGDSMYA
1893
CARQTFDFWSASLGGNFWYFDLW




G









10A-2
592
GTFSSYSMG
1243
SAISWIIGSGGTTN
1894
CTAGAGDSW






YA







10A-3
593
SIFSTRTMG
1244
ASITKFGSTNYA
1895
CTRGGGRFFDWLYLRW





10A-4
594
RTLWRSNMG
1245
ASISSFGSTKYA
1896
CARGHGRYFDWLLFARPPDYW





10A-5
595
RSLGIYRMG
1246
AAITSGGRKNYA
1897
CAKRTIFGVGRWLDPW





10A-6
596
TTLTFRIMG
1247
PAISSTGLASYT
1898
CSKDRAPNCFACCPNGFDVW





10A-7
597
SRFSGRFNI
1248
ARIGYSGQSISYA
1899
CARGRFLGGTEW




LNMG









10A-8
598
TLFKINAMG
1249
AQINRHGVTYYA
1900
CARGRTIFFGGGRYFDYW





10A-9
599
IPFRSRTMG
1250
AGITGSGRSQYYA
1901
CARGARIFGSVAPWRGGNYYGMD








VW





10A-10
600
FTFSSFRMG
1251
AGISRGGSTNYA
1902
CARASGLWFRRPHVW





10A-11
601
RNFRRNSMG
1252
AGISWSGARTHYA
1903
CARVSRRPRSPPGYYYGMDVW





10A-12
602
RNLRMYRMG
1253
ATIRWSDGSTYYA
1904
CTRARLRYFDWLFPTNFDYW





10A-13
603
GLTFSSNTMG
1254
ASISSSGRTSYA
1905
CARRVRRLWFRSYFDLW





10A-14
604
FTLAYYAMG
1255
AAISWSGRNINYA
1906
CARERARWFGKFSVSW





10A-15
605
RTFSSFPMG
1256
AAISWSGSTSYA
1907
SACGRLGFGAW





10A-16
606
ISSSKRNMG
1257
ATWTSRGITTYA
1908
CARGGPPRLWGSYRRKYFDYW





10A-17
607
RTFSIYAMG
1258
ARITRGGITKYA
1909
CARGLGWLLGYYW





10A-18
608
RMYNSYSMG
1259
ARISPGGTFYA
1910
CTTSARSGWFWRYFDSW





10A-19
609
RTFRSYGMG
1260
ASISRSGTTMYA
1911
CARRGLLQWFGAPNSWFDPW





10A-20
610
RTIRTMG
1261
ATINSRGITNYA
1912
CTTERDGLLWFRELFRPSW





10A-21
611
RSFSFNAMG
1262
ARISRFGRTNYA
1913
CAKVHSYVWGGHSDYW





10A-22
612
RTYYAMG
1263
GAIDWSGRRITYA
1914
CARVRFSRLGGVIGRPIDSW





10A-23
613
RAFRRYTMG
1264
ASITKFGSTNYA
1915
CAKDRGVLWFGELWYW





10A-24
614
RTFSNYRMG
1265
ASINRGGSTKYA
1916
CASGKGGSATIFHLSRRPLYFDYW





10A-25
615
ITFSPYAMG
1266
ATINWSGGYTVY
1917
CAKRKNRGPLWFGGGGWGYW






A







10A-26
616
RTFSGFTMS
1267
AGIITNGSTNYA
1918
CARRVAYSSFWSGLRKHMDVW




STWMG









10A-27
617
RTFRRYSMG
1268
ASITPGGNTNYA
1919
CASRRRWLTPYIFW





10A-28
618
SIFSIGMG
1269
ARIWWRSGATYY
1920
CAAISIFGRLKW






A







10A-29
619
RTFTSYRMG
1270
AEISSSGGYTYYA
1921
CARVGPLRFLAQRPRLRPDYW





10A-30
620
RTFSSFRF
1271
ALIFSGGSTYYA
1922
CAREWGRWLQRGSYW




RAMG









10A-31
621
RTFGSYGMG
1272
ATISIGGRTYYA
1923
CARGSGSGFMWYHGNNNYDRWR








YW





10A-32
622
RTFRSYPMG
1273
ASINRGGSTNYA
1924
CARGRYDFWSGYYRWFDPW





10A-33
623
RTFSRSDMG
1274
AAISWSGGSTSYA
1925
CATVPPPRRFLEWLPRRLTYIW





10A-34
624
RTFRRYTMG
1275
ASMRGSRSYYA
1926
CARMSGFPFLDYW





10A-35
625
SIFRLSTMG
1276
ASISSFGSTYYA
1927
CARTRGIFLWFGESFDYW





10A-36
626
IAFRIRTMG
1277
ASITSGGSTNYA
1928
CARGGPRFGGFRGYFDPW





10A-37
627
FTFTSYRMG
1278
AGISRFFGTAYYA
1929
CARVTRWFGGLDVW





10A-38
628
RTFSRYVMG
1279
ASISRFGRTNYA
1930
CARHHGLGILWWGTMDVW





10A-39
629
RTFSMG
1280
ASISRFGRTNYA
1931
CAKRSTWLPQHFDSW





10A-40
630
RTFSTYTMG
1281
ARIWRSGGNTYY
1932
CARGVRGVFRAYFDHW






A







10A-41
631
RNLRMYRMG
1282
ALISRVGVTSYA
1933
CARGTSFFNFWSGSLGRVGFDSW





10A-42
632
ITIRTHAMG
1283
ATISRSGGNTYYA
1934
CTTAGVLRYFDWFRRPYW





10A-43
633
RTFRRYHMG
1284
AAITSGGRTNYA
1935
CTTDGLRYFDWFPWASAFDIW





10A-44
634
RTFRRYTMG
1285
AVISWSGGSTKYA
1936
CARKGRWSGMNVW





10A-45
635
RTFSWYPMG
1286
ASISWGGARTYYA
1937
CARSTGPRGSGRYRAHWFDSW





10A-46
636
RTFTSYRMG
1287
AAITWNSGRTRYA
1938
CSPSSWPFYFGAW





10A-47
637
RPLRRYVMG
1288
AAITNGGSTKYA
1939
CARGTPWRLLWFGTLGPPPAFDY








W





10A-48
638
RTFRRYAMG
1289
AAINRSGSTEYA
1940
CARQHQDFWTGYYTVW





10A-49
639
RTFRRYTMG
1290
ASISRSGTTYYA
1941
CAKEGWRWLQLRGGFDYW





10A-50
640
RTLSTYNMG
1291
ASISRFGRTNYA
1942
CARRGKLSAAMHWFDPW





10A-51
641
RFFSTRVMG
1292
ARIWPGGSTYYA
1943
CARDRGIFGVSRW





10A-52
642
RFFSICSMG
1293
AGINWRSGGSTYY
1944
CARGSGWWEYW






A







10A-53
643
RMFSSRSNMG
1294
ASISSGGTTAYA
1945
CARGFGRRFLEWLPRFDYW





10A-54
644
RTFSSARMG
1295
AGINMISSTKYA
1946
CAHFRRFLPRGYVDYW





10A-55
645
RTFRRYTMG
1296
ARIAGGSTYYA
1947
CARQQYYDFWSGYFRSGYFDLW





10A-56
646
HTFRNYGMG
1297
AAITSSGSTNYA
1948
CATVPPPRRFLEWLPRRLTYTW





10A-57
647
RTFSRYAMG
1298
ASITKFGSTNYA
1949
CAKERESRFLKWRKTDW





10A-58
648
RNLRMYRMG
1299
ASISRFGRTNYA
1950
CARHDSIGLFRHGMDVW





10A-59
649
RTFRRYAMG
1300
ARISSGGSTSYA
1951
CARDRGFGFWSGLRGYFDLW





10A-60
650
IPASMYLG
1301
AAITSGGRTSYA
1952
CAKRKKRGPLWFGGGGWGYW





10A-61
651
IPFRSRT
1302
AQITRGGSTNYA
1953
CARRHWFGFDYW




FSAYAMG
















TABLE 14







Variable Domain Light Chain Sequences














SEQ ID

SEQ ID

SEQ ID



Variant
NO
CDRL1
NO
CDRL2
NO
CDRL3





2A-1
1954
RASQSIHRFLN
2040
AASNLHS
2126
CQQSYGLPPTF





2A-2
1955
RASQTINTYLN
2041
SASTLQS
2127
CQQSYSTFTF





2A-3
1956
RASQNIHTYLN
2042
AASTFAK
2128
CQQSYSAPPYTF





2A-4
1957
RASQSIDTYLN
2043
AASALAS
2129
CQQSYSAPPYTF





2A-5
1958
RASQSIHTYLN
2044
AASALAS
2130
CQQSYSAPPYTF





2A-6
1959
RASQSIDTYLN
2045
AASALAS
2131
CQQSYSAPPYTF





2A-7
1960
RASQSIDTYLN
2046
AASALAS
2132
CQQSYSAPPYTF





2A-8
1961
RASQSIDTYLN
2047
AASALAS
2133
CQQSYSAPPYTF





2A-9
1962
RASQRIGTYLN
2048
AASNLEG
2134
CQQNYSTTWTF





2A-10
1963
RASQSIHISLN
2049
LASPLAS
2135
CQQSYSAPPYTF





2A-11
1964
RASQSIGNYLN
2050
GVSSLQS
2136
CQQSHSAPLTF





2A-12
1965
RASQSIDNYLN
2051
GVSALQS
2137
CQQSHSAPPYFF





2A-13
1966
RASQSIDTYLN
2052
GASALES
2138
CQQSHSAPPYFF





2A-14
1967
RASQSIDTYLN
2053
GVSALQS
2139
CQQSYSAPPYFF





2A-15
1968
RASQSIDNYLN
2054
GVSALQS
2140
CQQSHSAPLTF





3A-1
1969
RASQTIYSYLN
2055
ATSTLQG
2141
CQHRGTF





3A-2
1970
RTSQSINTYLN
2056
GASNVQS
2142
CQQSYRIPRTF





3A-3
1971
RASRSISRYLN
2057
AASSLQA
2143
CQQSYSSLLTF





3A-4
1972
RASRSIRRYLN
2058
ASSSLQA
2144
CQQSYSTLLTF





3A-5
1973
RASQSIGRYLN
2059
AASSLKS
2145
CQQSYSLPRTF





3A-6
1974
RASQSIGKYLN
2060
ASSSLQS
2146
CQQSYSPPFTF





3A-7
1975
RASQSIGRYLN
2061
ASSSLQS
2147
CQQSYSLPRTF





3A-8
1976
RASQSIGRYLN
2062
AASSLKS
2148
CQQSYSLPLTF





3A-9
1977
RASQSIGRYLN
2063
AASSLKS
2149
CQQSYSLPRTF





3A-10
1978
RASQSIRKYLN
2064
ASSTLQR
2150
CQQSLSTPFTF





3A-11
1979
RASQSIGKYLN
2065
ASSTLQR
2151
CQQSLSPPFTF





3A-12
1980
RASQSIGKYLN
2066
ASSTLQR
2152
CQQSLSTPFTF





3A-13
1981
RASQSIGKYLN
2067
ASSTLQR
2153
CQQSFSPPFTF





3A-14
1982
RASQSIGKYLN
2068
ASSTLQR
2154
CQQSFSTPFTF





3A-15
1983
RASQNIKTYLN
2069
AASKLQS
2155
CQQSYSTSPTF





2A-1
1984
RASQSIHRFLN
2070
AASNLHS
2156
CQQSYGLPPTF





2A-10
1985
RASQSIHISLN
2071
LASPLAS
2157
CQQSYSAPPYTF





2A-5
1986
RASQSIHTYLN
2072
AASALAS
2158
CQQSYSAPPYTF





2A-2
1987
RASQTINTYLN
2073
SASTLQS
2159
CQQSYSTFTF





2A-4
1988
RASQSIDTYLN
2074
AASALAS
2160
CQQSYSAPPYTF





2A-6
1989
RASQSIGNYLN
2075
GVSSLQS
2161
CQQSHSAPLTF





2A-11
1990
RASQSIDTYLN
2076
AASALAS
2162
CQQSYSAPPYTF





2A-12
1991
RASQSIDNYLN
2077
GVSALQS
2163
CQQSHSAPPYFF





2A-13
1992
RASQSIDTYLN
2078
GASALES
2164
CQQSHSAPPYFF





2A-14
1993
RASQSIDTYLN
2079
AASALAS
2165
CQQSYSAPPYTF





2A-7
1994
RASQSIDTYLN
2080
GVSALQS
2166
CQQSYSAPPYFF





2A-8
1995
RASQSIDTYLN
2081
AASALAS
2167
CQQSYSAPPYTF





2A-15
1996
RASQSIDNYLN
2082
GVSALQS
2168
CQQSHSAPLTF





2A-9
1997
RASQRIGTYLN
2083
AASNLEG
2169
CQQNYSTTWTF





2A-16
1998
TGTSSDVGSYDLVS
2084
EGNKRPS
2170
CCSYAGSSVVF





2A-17
1999
TGTSSDVGSSNLVS
2085
EGSKRPS
2171
CCSYAGSLYVF





2A-18
2000
TGTSSDIGSYNLVS
2086
EGTKRPS
2172
CCSYAGSRTYVF





2A-19
2001
TGTSTDVGSYNLVS
2087
EGTKRPS
2173
CCSYAGSYTSVVF





2A-2
2002
TGTSSNVGSYNLVS
2088
EGTKRPS
2174
CCSYAGSSSFVVF





2A-21
2003
RASQSIHTYLN
2089
AASALAS
2175
CQQSYSAPPYTF





2A-22
2004
RASQSIHTYLN
2090
AASALAS
2176
CQQSYSAPPYTF





2A-23
2005
RASQTINTFLN
2091
SASTLQS
2177
CQQSYSTFTF





2A-24
2006
RASQTIRTYLN
2092
DASTLQR
2178
CQQSYRTPPWTF





2A-25
2007
RSSQSISSYLN
2093
GASRLRS
2179
CQQGYSAPWTF





2A-26
2008
RASQSISGSLN
2094
AESRLHS
2180
CQQSYSPPQTF





2A-27
2009
RASRSISTYLN
2095
AASNLQG
2181
CQQSHSIPRTF





2A-28
2010
RASQSIHTYLN
2096
AASALAS
2182
CQQSYSAPPYTF





3A-10
2011
RASQSIRKYLN
2097
ASSTLQR
2183
CQQSLSTPFTF





3A-4
2012
RASQNIKTYLN
2098
AASKLQS
2184
CQQSYSTSPTF





3A-7
2013
RASQTIYSYLN
2099
ATSTLQG
2185
CQHRGTF





3A-1
2014
RASRSIRRYLN
2100
ASSSLQA
2186
CQQSYSTLLTF





3A-5
2015
RASQSIGKYLN
2101
ASSSLQS
2187
CQQSYSPPFTF





3A-6
2016
RASRSISRYLN
2102
AASSLQA
2188
CQQSYSSLLTF





3A-15
2017
RASQSIGKYLN
2103
ASSTLQR
2189
CQQSLSPPFTF





3A-3
2018
RASQSIGRYLN
2104
ASSSLQS
2190
CQQSYSLPRTF





3A-11
2019
RASQSIGRYLN
2105
AASSLKS
2191
CQQSYSLPRTF





3A-8
2020
RASQSIGKYLN
2106
ASSTLQR
2192
CQQSLSTPFTF





3A-2
2021
RASQSIGRYLN
2107
AASSLKS
2193
CQQSYSLPLTF





3A-12
2022
RTSQSINTYLN
2108
GASNVQS
2194
CQQSYRIPRTF





3A-14
2023
RASQSIGKYLN
2109
ASSTLQR
2195
CQQSFSPPFTF





3A-9
2024
RASQSIGKYLN
2110
ASSTLQR
2196
CQQSFSTPFTF





3A-13
2025
RASQSIGRYLN
2111
AASSLKS
2197
CQQSYSLPRTF





3A-16
2026
RASQIIGSYLN
2112
TTSNLQS
2198
CQQSYITPWTF





3A-17
2027
RASQSISRYIN
2113
EASSLES
2199
CQQSHITPLTF





3A-18
2028
RASQSIYTYLN
2114
SASNLHS
2200
CQQSDTTPWTF





3A-19
2029
RASQSIATYLN
2115
GASSLEG
2201
CQQTFSSPFTF





3A-2
2030
RASQNINTYLN
2116
SASSLQS
2202
CQQSSLTPWTF





3A-21
2031
RASQGIATYLN
2117
YASNLQS
2203
CQQSYSTRFTF





3A-22
2032
RASERISNYLN
12118
TASNLES
2204
CQQSYTPPRTF





3A-23
2033
RASQSISSSLN
2119
AASRLQD
2205
CQQSYSTPRSF





3A-24
2034
RASQSISSHLN
2120
RASTLQS
2206
CQQTYNTPQTF





3A-25
2035
RASQSISSYLI
2121
AASRLHS
2207
CQQGYNTPRTF





3A-26
2036
RASPSISTYLN
2122
TASRLQT
2208
CQQTYSTPSSF





3A-27
2037
RASQNIAKYLN
2123
GASGLQS
2209
CQQSHSPPITF





3A-28
2038
RASQSIGTYLN
2124
AASNLHS
2210
CQESYSAPYTF





3A-29
2039
RASQSISPYLN
2125
KASSLQS
2211
CQQSSSTPYTF
















TABLE 15







Variable Domain Heavy Chain Sequences










SEQ




ID



Variant
NO
Sequence





1-1
2212
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSAISGSGVSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGDSGSYYGSSYFDYWGQGTLV




TVSS





1-2
2213
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYGMSWVRQAPGKGLEWVSAISGSGGNTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRVRRGSGVAPYSSSWGRYYFDY




WGQGTLVTVSS





1-3
2214
EVQLLESGGGLVQPGGSLRLSCAASGFRFSSYSMSWVRQAPGKGLEWVSAISGSGGSSYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDGSGTIFGVVIAKYYFDYWGQ




GTLVTVSS





1-4
2215
EVQLLESGGGLVQPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLEWVSAISGSGGSTHY




ADSVKGRFTISRDNSKNTLYLQNSLRAEDTAVYYCASWGPLWSGSPNDAFDIWGQGTLV




TVSS





1-5
2216
EVQLLESGGGLVQPGGSLRLSCAASGFFSSYAMGWVRQAPGKGLEWVSAISGSGYSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVRSYDSTAYDEPLDALDIWGQ




GTLVTVSS





1-6
2217
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSFAMSWVRQAPGKGLEWVSAISGSGVSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCGRDARSSGYNGYDLFDIWGQGTL




VTVSS





1-7
2218
EVQLLESGGGLVQPGGSLRLSCAASGFTFSAYAMSWRQAPGKGLEWVSAISGSGGSYYA




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGPLVGWYFDLWGQGTLVTVSS





1-8
2219
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMSWVRQAPGKGLEWVSLISGSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASWGPLWSGSPNDAFDIWGQGTL




VTVSS





1-9
2220
EVQLLESGGGLVQPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLEWVSAISGSGGSTFY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRQGDSSGWYDGWFDPWGQGTL




VTVSS





1-10
2221
EVQLLESGGGLVQPGGSLRLSCAASGFIFSSYAMSWVRQAPGKGLEWVSIISGSGGSTYYA




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCIATVVSPLDYWGQGTLVTVSS





1-11
2222
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYAMSWVRQAPGKGLEWVSTISGSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDESSSSLNWFDPWGQGTLVTV




SS





1-12
2223
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMIWVRQAPGKGLEWVSAISGSAGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASPDPLGSVADLDYWGQGTLVTV




SS





1-13
2224
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMSWVRQAPGKGLEWVSAISGSGGTTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVWSSSSVFDYWGQGTLVTVS




S





1-14
2225
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYAMSWRQAPGKGLEWVSAISGSGASTYYA




DSVKGRFTISRDNKNTLYLQMNSLRAEDTAVYYCAKDRGGGSYYGTFDYWGQGTLVTV




SS





1-15
2226
EVQLLESGGGLVQPGGSLRLSCAASGSTFSSYAMSWVRQAPGKGLEWVSAISGSGATYYA




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRVRVAGYSSSWYDAFDIWGQGTL




VTVSS





1-16
2227
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMTWVRQAPGKGLEWVSAISGSGGNTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVKGTIPIFGVIRSAFDYWGQGTL




VTVSS





1-17
2228
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYVMSWVRQAPGKGLEWVSSISGSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGSGSYSFFDYWGQGTLVTVSS





1-18
2229
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYANWVRQAPGKGLEWVSAISGSGVSTYYA




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATTPGPWIQLWFGGGFDYWGQGTL




VTVSS





1-19
2230
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYDMSWVRQAPGKGLEWVSAISGSAGSTTM




RDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDGLVVAGTFDYWGQGTLVTVS




S





1-20
2231
EVQLLESGGGLVQPGGSLRLSCAASGFTFSGYAMSWVRQAPGKGLEWVSALSGSGGSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGALLEWLSRFDNWGQGTLVT




VSS





1-21
2232
EVQLLESGGGLVQPGGSLRLSCAASGFTLSSYAMSWVRQAPGKGLEWVSAISGSGGTTYY




ADSVKGFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLGAADLIDYWGQGTLVTVSS





1-22
2233
EVQLLESGGGLVQPGGSLRLSCAASGFIFSSYAMSWVRQAPGKGLEWISAISGSGGTYYA




DSVKGRFTISRDNSKNTLYLQMNSPRAEDTAVYYCVRVPAAAGKGVPGIFDIWGQGTLVT




VSS





1-23
2234
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMGWVRQAPGKGLEWVSAIRGSGGSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVRQGLRRTWYYFDYWGQGT




LVTVSS





1-24
2235
EVQLLESGGGLVQPGGSLRLSCAASGSTFSSYAMSWVRQAPGKGLEWVSAIGGSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKEYSSSWFDPWGQGTLVTVSS





1-25
2236
EVQLLESGGGLVQPGGSLSCAASGFTFSSYTMSWVRQAPGKGLEWVSAISVSGGSTYYAD




SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKREDYDFWSGRGAFDIWGQGTLVT




IS





1-26
2237
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMYWVRQAPGKGLEWVSAISGSGGTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDIGYSSSWSFDYWGQGTLVTV




SS





1-27
2238
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYAMSWVRQAPGKGLEWVSAISGSGRSTYY




ASVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDDYSDYRPFDYWGQGTLVTVSS





1-28
2239
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYTMSWVRQAPGKGLEWVSAISGSGGSIYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAHRPSLQWLDWWFDPWGQGTLV




TVSS





1-29
2240
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSQAMSWVRQAPGKGLEWVSIISGSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDGASGWPNWHFDLWGQGTLV




TVSS





1-30
2241
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQAPGKGLEWVSAISGSGGRTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGAAAGPFDYWGQGTLVTVSS





1-31
2242
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMTWVRQAPGKGLEWVSAISGGTTYYA




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKEEYYYDSSGPNWFDPWGQGTLV




TVSS





1-32
2243
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVTAISVSGGSTYY




ADSVKGRFTISRDNSKNTLYLQNSLKTQETAGYYWAPQGGTTVPTGRFDPWGQRTLVTV




SS





1-33
2244
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSSGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCSRGGGPAAGFHGLDVWGQGTLVT




VSS





1-34
2245
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAVSWVRQAPGKGLEWVSAISASGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARAAKRQQLFPRNYFDYWGQGTL




VTVSS





1-35
2246
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQAPGKGLEWVSAIRGSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALHYGSGRSFDYWGQGTLVTVSS





1-36
2247
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYGMSWVRQAPGKGLEWVSAISGSGGATYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPGGRIVGALWGAFDYWGQGTL




VTVSS





3-1
2248
EVQLVESGGGLVQPGGSLRLSCAASGRTFCRYSMGWFRQAPGKERELVATWRPANTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKNWGDAGTTWFEKSGWGQGTLV




TSS





3-2
2249
EVQLVESGGGLVQPGGSLRLSCAASGNIFSRYIMGWFRQAPGKERELVAAISRTGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIDPDGEWGQGTLVTVSS





3-3
2250
EVQLVESGGGLVQPGGSLRLSCAASGRTLAGYTMGWFRQAPGKERELLAEIYPSGNGVY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVRDSIWRSWGQGTLVTVSS





3-4
2251
EVQLVESGGGLVQPGGSLRLSCAASGSTLSRYSMGWFRQAPGKEREFVAAIARRERVYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLSCHDYSCYSAFDFWGQGTLVTV




SS





3-5
2252
EVQLVESGGGLVQPGGSLRLSCAASGSIFSSAAMGWFRQAPGKEREFEAISWRTGTTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAGSMGWNHLRDYDWGQGTLVT





3-6
2253
EVQLVESGGGLVQPGGSLRLSCAATFSGYLMGWFRQAPGKEREFVAGIWRSGVSLYYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARSGWGAAMRSADFRWGQGTLVT




VSS





3-7
2254
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYDMGWFRQAPGKERERVAIIKSDGSTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARSPRFSGVVVRPGLDLWGQGTLV




TVSS





3-8
2255
EVQLVESGGGLVQPGGSLRLSCAASGSISSYFMGWFRQAPGKEREWVSSIGIAGTPTLYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAACSDYYCSGVGAVWGQGTLVTVSS





3-9
2256
EVQLVESGGGLVQPGGSLRLSCAASGPTFSTYAMGWFRQAPGKEREFVAAVINGGTTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKDSWDSSGYSYHYYYYGMDVW




GQGTLVTVSS





3-10
2257
EVQLVESGGGLVQPGGSLRLSCAASGIIGSFRTMGWFRQAPGKERELAGFTGSGRSQYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDIAVIQVLDYWGQGTLVTVSS





3-11
2258
EVQLVESGGGLVQPGGSLRLSCAASGGTFASYGMGWFRQAPGKEREWVAGIWEDSSAA




HYAESVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAYSGIGTDWGQGTLVTVSS





3-12
2259
EVQLVESGGGLVQPGGSLRLSCAASGLTFRNYAMGWFRQAPGKERELVAGITSGGTRNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGWGDSAWGQGTLVTVSS





3-13
2260
EVQLVESGGGLVQPGGSLRLSCAASGSISTIKVMGWFRQAPGKEREFVAAISWGGGLTVY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYTGSDWGQGTLVTVSS





3-14
2261
EVQLVESGGGLVQPGGSLRLSCAASGGTLSSYIGWFRQAPGKERELVATVRSGSITNYADS




VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADLTDIWEGIREYDEYAWGQGTLVT




VSS





3-15
2262
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYPMGWFRQAPGKEREFVVAVTWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGLRGRQYSWGQGTLVTVSS





3-16
2263
EVQLVESGGGLVQPGGSLRLSCAASGSTFSIDVMGWFRQAPGKEREFVAAISWSGESTLY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYSGSDWGQGTLVTVSS





3-17
2264
EVQLVESGGGLVQPGGSLRLSCAASGRTSSSAVMGWFRQAPGKEREFVAAINRGGSTIYV




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATGPYRSYFARSYLWGQGTLVTVS




S





3-18
2265
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSYRMGWFRQAPGKEREWVSAISWNDGGAD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAATQWGSSGWKQARWYDWGQ




GTLVTVSS





3-19
2266
EVQLVESGGGLVQPGGSLRLSCAASGTIFASAMGWFRQAPGKERELVAFSSSGGSTYYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKDPIAAADPGDSVSFDYWGQGTLV




TVSS





3-20
2267
EVQLVESGGGLVQPGGSLRLSCAASGFGIDAMGWFRQAPGKEREFVATITEGGATNVGST




SYSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALNVWRTSSDWGQGTLVTVSS





3-21
2268
EVQLVESGGGLVQPGGSLRLSCAASGNIIGGNHMGWFRQAPGKEREFVGAITSSRSTVYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVTTQTYGYDWGQGTLVTVSS





3-22
2269
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRYDMGWFRQAPGKEREFVGGTRSGSTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARHSDYSGLSNFDYWGQGTLVTVS




S





3-23
2270
EVQLVESGGGLVQPGGSLRLSCAAGRQPAPELRGYGMGWFRQAPGKEREFVAAVIGSSG




TTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKAKATVGLRAPFDYWGQ




GTLVTVSS





3-24
2271
EVQLVESGGGLVQPGGSLRLSCAASGINFSRYGMGWFRQAPGKEREFVASITYLGRTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALRVRPYGQYDWGQGTLVTVSS





3-25
2272
YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVSKPLNYYTYYDARRYDWGQ




GTLVTVSS





3-26
2273
EVQLVESGGGLVQPGGSLRLSCAASGGTFGHYAMGWFRQAPGKEREFVAAVSWSGSSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVSQPLNYYTYYDARRYDWGQ




GTLVTVSS





3-27
2274
EVQLVESGGGLVQPGGSLRLSCAASGFTLDDYAMGWFRQAPGKEREFVAAISWSTGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAASQAPITIATMMKPFYDWGQG




TLVTVS





3-28
2275
EVQLVESGGGLVQPGGSLRLSCAASGFTFRRYDMGWFRQAPGKEREFVSAISGGLAYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVDLSGDAVYDWGQGTLVTVSS





3-29
2276
EVQLVESGGGLVQPGGSLRLSCAASGINFSRNAMGWFRQAPGKERELVASITHQDRPIYA




DSEKGLFTITEDNKKNTDHLMMNLLKPEDTAVYYCALPVGPYGQYDWGQGTLVTWS





3-30
2277
DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALRVRPYGQYDWGQGTLVTVSS





3-31
2278
EVQLVESGGGLVQPGGSLRLSCAASGSTFSINAMGWFRQAPGKEREFVAGITSSGGYTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWGQGTLV




TVSS





7-1
2279
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMRWVRQAPGKGLEWVSAISGSGGSTY




YADSVRGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTGRYSSGSTGWFHYWGQGT




LVTVSS





7-2
2280
EVQLVESGGGLVQPGGSLRLSCAASGFAFSRHAMSWFRQAPGKEREFVSDIGGSGSTTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTTFDNWFDPWGQGTLVTVSS





7-3
2281
EVQLVESGGGLVQPGGSLRLSCAASGRTFSINAMGWFRQAPGKEREFVAGITRSAVSTITS




EGTANYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVW




GQGTLVTVSS





7-4
2282
EVQLLESGGGLVQPGESLRLSCAASGFTFSSYGMNWVRQAPGKGLEWVSASSGSGGSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAYYCARREYIESGFDSWGQGTLVTVSS





7-5
2283
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTDAMGWFRQAPGKEREFVAAISSGGSTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAATRGRSTRLVLPSLVEWGQGTLV




TVSS





7-6
2284
EVQLVESGGGLVQPGGSLRLSCAASGRIFYPMGWFRQAPGKEREFVAAVRWSSTGIYYTQ




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAALSEVWRGSENLREGYDWG




QGTLVTVSS





7-7
2285
EVQLVESGGGLVQPGGSLRLSCAASGFTFGSYDMGWFRQAPGKEREFVTAINWSGARTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARSVYSYEYNWGQGTLVTVSS





7-8
2286
EVQLVESGGGLVQPGGSLRLSCAASGSTFTINAMGWFRQAPGKEREFVSGISHNGGTTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWGQGTLV




TVSS





7-9
2287
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGATAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVSS





7-10
2288
EVQLVESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAEINWSGSSTYYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVDGPFGWGQGTLVTVSS





7-11
2289
EVQLVESGGGLVQPGGSLRLSCAASGLPFSTKSMGWFRQAPGKEREFVAAIHWSGLTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRAADFFAQRDEYDWGQGTLV




TVSS





7-12
2290
EVQLVESGGGLVQPGGSLRLSCAASGRTIVPYTMGWFRQAPGKEREFVAAISPSAFTEYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRWGYDWGQGTLVTVSS





7-13
2291
EVQLVESGGGLVQPGGSLRLSCAASGLRLNMHRMGWFRQAPGKEREFVAAISGWSGGTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKIGTLWWGQGTLVTVSS





7-14
2292
EVQLVESGGGLVQPGGSLRLSCAASGSTFSINAMGWFRQAPGKEREFVAGISRGGTTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWGQGTLVT




VSS





7-15
2293
EVQLVESGGGLVQPGGSLRLSCAASGSTLPYHAMGWFRQAPGKEREFVASISRFFGTAYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAPTFAAGASEYHWGQGTLVTVSS





7-16
2294
EVQLVESGGGLVQPGGSLRLSCAASGFTFTSYAISWFRQAPGKEREFVSAISGSGGSTDYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGAYGSGTYDYWGQGTLVTVSS





7-17
2295
EVQLVESGGGLVQPGGSLRLSCAASGFSLDYYGMGWFRQAPGKEREFVAAITSGGTPHY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASAYNPGIGYDWGQGTLVTVSS





7-18
2296
EVQLVESGGGLVQPGGSLRLSCAASGLTDRRYTMGWFRQAPGKEREFVASITLGGSTAYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVSS





7-19
2297
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYTMGWFRQAPGKEREFVASITSSGVNAYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVSS





7-20
2298
EVQLVESGGGLVQPGGSLRLSCAASGPTFSIYAMGWFRQAPGKEREFVAGISWNGGSTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALRRRFGGQEWGQGTLVTVSS





7-21
2299
EVQLVESGGGLVQPGGSLRLSCAASGRTISRYTMGWFRQAPGKEREFVASITSGGSTAYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVSS





7-22
2300
EVQLVESGGGLVQPGGSLRLSCAASGRTITRYTMGWFRQAPGKEREFVASITSGGSTAYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKQDVGKPFDWGQGTLVTVSS





7-23
2301
EVQLVESGGGLVQPGGSLRLSCAASGFTFENHAMGWFRQAPGKEREFVAEIYPSGSTIYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARILSRNWGQGTLVTVSS





7-24
2302
EVQLVESGGGLVQPGGSLRLSCAASGSTFSINAMGWFRQAPGKEREFVAGITSSGGYTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREVGLYYYGSGSSSRRLLGRIDY




YFDYWGQGTLVTVSS





7-25
2303
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYSMGWFRQAPGKEREFVASIEWDGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYTGSDWGQGTLVTVSS





7-26
2304
EVQLVESGGGLVQPGGSLRLSCAASGSTFSINAMGWFRQAPGKEREFVAGITSSGGYTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWGQGTLV




TVSS





7-27
2305
EVQLVESGGGLVQPGGSLRLSCAASGQTFNMGWFRQAPGKEREFVAEINWSGSSTYYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVDGPFGWGQGTLVTVSS





7-28
2306
EVQLVESGGGLVQPGGSLRLSCAASGNTFSDNPMGWFRQAPGKEREFVAILAWDSGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTDYSKLAITKLSYWGQGTLVT





7-29
2307
EVQLVESGGGLVQPGGSLRLSCAASGRTHSIYPMGWFRQAPGKEREFVASITSYGDTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRWIPPGPIWGQGTLVTVSS





7-30
2308
EVQLVESGGGLVQPGGSLRLSCAASGRTFSMHAMGWFRQAPGKEREFVASISSQGRTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEVRNGSDYLPIDWGQGTLVTV




SS





7-31
2309
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYSMGWFRQAPGKEREFVAAIHWNGDSTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTA VYYCAAQTEDSAQYIWGQGTLVTVSS





7-32
2310
EVQLVESGGGLVQPGGSLRLSCAASGSTFSVNAMGWFRQAPGKEREFVAGVTRGGYTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWGQGTLV




TVSS





7-33
2311
EVQLVESGGGLVQPGGSLRLSCAASGSIGSINAMGWFRQAPGKEREFVAGISNGGTTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWGQGTLVT




VSS





7-34
2312
EVQLVESGGGLVQPGGSLRLSCAASGRTFGSYDMGWFRQAPGKEREFVAFIHRSGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATFPAIVTDSDYDLGNDWGQGTL




VTVSS





7-35
2313
EVQLVESGGGLVQPGGSLRLSCAASGGTFGHYAMGWFRQAPGKEREFVAAVSWSGSSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVSQPLNYYTYYDARRYDWGQ




GTLVTVSS





7-36
2314
EVQLVESGGGLVQPGGSLRLSCAASGFGFGSYDMGWFRQAPGKEREFVTAINWSGARAY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARSVYSYDYNWGQGTLVTVSS





7-37
2315
EVQLVESGGGLVQPGGSLRLSCAASGSTLSINAMGWFRQAPGKEREFVAGITRSGSVTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWGQGTLV




TVSS





7-38
2316
EVQLVESGGGLVQPGGSLRLSCAASGRPFSEYTMGWFRQAPGKEREFVSSIHWGGRGTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAELHSSDYTSPGAYAWGQGTLV




TVSS





7-39
2317
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYPMGWFRQAPGKEREFVAAITWSGDSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALPSNIITTDYLRVYWGQGTLVT




VSS





7-40
2318
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYTMGWFRQAPGKEREFVASITKFGSTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVSS





7-41
2319
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTYVMGWFRQAPGKEREFVASISSRGITHYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVSS





7-42
2320
EVQLVESGGGLVQPGGSLRLSCAASGFTLDYYGMGWFRQAPGKEREFVAAITSGGTPHY




GDSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASAYNPGIGYDWGQGTLVTVSS





7-43
2321
EVQLVESGGGLVQPGGSLRLSCAASGFTFGHYAMGWFRQAPGKEREFVAAVSWSGSTTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVSHPLNYYTYYDARRYDWGQ




GTLVTVSS





7-44
2322
EVQLVESGGGLVQPGGSLRLSCAASGFTFEDYAMGWFRQAPGKEREGVAAITRGSNTTD




YADSVKGRFTISADNSKNTAYLQMNSLKPKDTAVYYCAARRWMGGSYFDPGNYDWGQ




GTLVTVSS





7-45
2323
EVQLVESGGGLVQPGGSLRLSCAASGRTLSRYTMGWFRQAPGKEREFVASITSGGSTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVSS





8-1
2324
EVQLVESGGGLVQPGGSLRLSCAASGRTFASYAMGWFRQAPGKEREFVGAISRSGDSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARAPFYCTTTKCQDNYYYMDVW




GQGTLVTVSS





8-2
2325
EVQLVESGGGLVQPGGSLRLSCAASGGTYHAMGWFRQAPGKEREFVAGITSDDRTNYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARERRYYDSSGYPYYFDYWGQGTLV




TVSS





8-3
2326
EVQLVESGGGLVQPGGSLRLSCAASGTTLDYYAMGWFRQAPGKEREFVAAISWSGGSTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREDYYDSSGYSWGQGTLVTVS




S





8-4
2327
EVQLVESGGGLVQPGGSLRLSCAASGGTLSRSRMGWFRQAPGKEREFVAFIGSDTLYADS




VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCANLAYYDSSGYYDYWGQGTLVTVSS





8-5
2328
EVQLVESGGGLVQPGGSLRLSCAASGGTFSFYNMGWFRQAPGKEREFVAFISGNGGTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVVAMRMVTTEGPDVLDVWGQGT




LVTVSS





8-6
2329
EVQLVESGGGLVQPGGSLRLSCAASGFTFDYYAMGWFRQAPGKEREFVSAIDSEGRTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARWGPFDIWGQGTLVTVSS





8-7
2330
EVQLVESGGGLVQPGGSLRLSCAASGFPFSIWPMGWFRQAPGKEREFVAAVRWSSTGIYY




TQYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTRSEYSSGWYDYWGQGTLVT




VSS





8-8
2331
EVQLVESGGGLVQPGGSLRLSCAASGFAESSSMGWFRQAPGKEREFVAAISWSGDITIYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGAPYFDHGSKSYRLFYFDYWGQG




TLVTVSS





8-9
2332
EVQLVESGGGLVQPGGSLRLSCAASGFTFGTTTMGWFRQAPGKEREFVAAISWSTGIAHY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGPNYYASGRYPWFDPWGQG




TLVTVSS





8-10
2333
EVQLVESGGGLVQPGGSLRLSCAASGFIGNYHAMGWFRQAPGKEREFVAAVTWSGGTTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREGYYYDSSGYPYYFDYWGQ




GTLVTVSS





2A-1
2334
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYATDWVRQAPGKGLEWVSIISGSGGATYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGGYCSSDTCWWEYWLDPWGQ




GTLVTVSS





2A-10
2335
EVQLLESGGGLVQPGGSLRLSCAASGFTFSAFAMGWVRQAPGKGLEWVSAITASGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARQSDGLPSPWHFDLGGQGTLVT




VSS





2A-5
2336
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQGTLVT




VSS





2A-2
2337
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRHAMNWVRQAPGKGLEWVSGISGSGDETY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPASYYDSSGYYWHNGMD




VWGQGTLVTVSS





2A-4
2338
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQGTLVT




VSS





2A-6
2339
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYPMNWVRQAPGKGLEWVSTISGSGGNTFY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTVSS





2A-11
2340
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAITGSGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQGTLVT




VSS





2A-12
2341
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYPMNWVRQAPGKGLEWVSTISGSGGITFY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTVSS





2A-13
2342
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYPMNWVRQAPGKGLEWVSAISGSGDNTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTVSS





2A-14
2343
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAITGTGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWGQGTLVTVSS





2A-7
2344
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYPMNWVRQAPGKGLEWVSAITGSGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTVSS





2A-8
2345
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQGTLVT




VSS





2A-15
2346
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQGTLVT




VSS





2A-9
2347
EVQLLESGGGLVQPGGSLRLSCAASGFTFPRYAMSWVRQAPGKGLEWVSTISGSGSTTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLIDAFDIWGQGTLVTVSS





2A-16
2348
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSVISGSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGYRDYLWYFDLWGQGTLVT




VSS





2A-17
2349
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMSWVRQAPGKGLEWVSAISGSAGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVRQGLRRTWYYFDYWGQGTL




VTVSS





2A-18
2350
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMYWVRQAPGKGLEWVSAISGSAGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTNDFWSGYSIFDPWGQGTLV




TVSS





2A-19
2351
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYTMSWVRQAPGKGLEWVSVISGSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGYRDYLWYFDLWGQGTLVT




VSS





2A-2
2352
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYDMSWVRQAPGKGLEWVSVISGSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGPLVGWYFDLWGQGTLVTVSS





2A-21
2353
EVQLLESGGGLVQPGGSLRLSCAASGFTFPRYAMSWVRQAPGKGLEWVSTISGSGSTTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLIDAFDIWGQGTLVTVSS





2A-22
2354
EVQLLESGGGLVQPGGSLRLSCAASGFTFTTYALSWVRQAPGKGLEWVSGISGSGDETYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTTGDDFWSGGNWFDPWGQGTLV




TVSS





2A-23
2355
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRHAMNWVRQAPGKGLEWVSGITGSGDETY




YADSVKGRFTISRDNSKNTLYLQMNSLKAEDTAVYYCARDLPASYYDSSGYYWHNGMD




VWGQGTLVTVSS





2A-24
2356
EVQLLESGGGLVQPGGSLRLSCAASGFVFSSYAMSWVRQAPGKGLEWVSAISGSGGSSYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVGGGYWYGIDVWGQGTLVTV




SS





2A-25
2357
EVQLLESGGGLVQPGGSLRLSCAASGFTLSSYVMSWVRQAPGKGLEWVSGISGGGASTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGYSRNWYPSWFDPWGQGTL




VTVSS





2A-26
2358
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEWVSSIGGSGSTTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGGWYLDYWGQGTLVTVSS





2A-27
2359
EVQLLGSGGGLVQPGGSLRLSCAASGFTYSNYAMTWVRQAPGKGLEWVSAISGSSGSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASLCIVDPFDIWGQGTLVTVSS





2A-28
2360
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYPMNWVRQAPGKGLEWVSTISGSGGNTFY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTVSS





3A-10
2361
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMSWVRQAPGKGLEWVSSISGGGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDNWGQG




TLVTVSS





3A-4
2362
EVQLLESGGGLVQPGGSLRLSCAASGFTFSAYSMSWVRQAPGKGLEWVSAISGSGGSRYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCGRSKWPQANGAFDIWGQGTLVTV




SS





3A-7
2363
EVQLLESGGGLVQPGGSLRLSCAASGFMFGNYAMSWVRQAPGKGLEWVAAISGSGGSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGYSSSWYGGFDYWGQGT




LVTVSS





3A-1
2364
EVQLLESGGGLVQPGGSLRLSCAASGFTFRNHAMAWVRQAPGKGLEWVSGISGSGGTTY




YGDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGTRFLQWSLPLDVWGQGTLV




TVSS





3A-5
2365
EVQLLESGGGLVQPGGSLRLSCAASGFTIPNYAMSWVRQAPGKGLEWVSGISGAGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQGTLVT




VSS





3A-6
2366
EVQLLESGGGLVQPGGSLRLSCAASGFTFRNYAMAWVRQAPGKGLEWVSGISGSGGTTY




YGDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGTRFLEWSLPLDVWGQGTLV




TVSS





3A-15
2367
EVQLLESGGGLVQPGGSLRLSCAASGFTIRNYAMSWVRQAPGKGLEWVSSISGGGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDNWGQG




TLVTVSS





3A-3
2368
EVQLLESGGGLVQPGGSLRLSCAASGFTIPNYAMSWVRQAPGKGLEWVSGISGSGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQGTLVT




VSS





3A-11
2369
EVQLLESGGGLVQPGGSLRLSCAASGFTITNYAMSWVRQAPGKGLEWVSGISGSGAGTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHAWWKGAGFFDHWGQGTLVT




VSS





3A-8
2370
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMSWVRQAPGKGLEWVSSISGGGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDNWGQG




TLVTVSS





3A-2
2371
EVQLLESGGGLVQPGGSLRLSCAASGFTITNYAMSWVRQAPGKGLEWVSGISGSGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQGTLVT




VSS





3A-12
2372
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMNWVRQAPGKGLEWVSAISGSGGSTN




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGLKFLEWLPSAFDIWGQGTL




VTVSS





3A-14
2373
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMSWVRQAPGKGLEWVSSISGGGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDNWGQG




TLVTVSS





3A-9
2374
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYAMSWVRQAPGKGLEWVSSISGGGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDNWGQG




TLVTVSS





3A-13
2375
EVQLLESGGGLVQPGGSLRLSCAASGFTITNYAMSWVRQAPGKGLEWVSGISGSGAGTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQGTLVT




VSS





3A-16
2376
EVQLLESGGGLVQPGGSLRLSCAASGFTFTNFAMSWVRQAPGKGLEWVSAISGRGGGTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDAHGYYYDSSGYDDWGQGT




LVTVSS





3A-17
2377
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYPMSWVRQAPGKGLEWVSTISGSGGITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGVYGSTVTTCHWGQGTLVTVS




S





3A-18
2378
EVQLLESGGGLVQPGGSLRLSCAASGFTLTSYAMSWVRQAPGKGLEWVSAISGSGVDTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPTNWGFDYWGQGTLVTVSS





3A-19
2379
EVQLLESGGGLVQPGGSLRLSCAASGFTFINYAMSWVRQAPGKGLEWVSTISTSGGNTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADSNWASSAYWGQGTLVTVSS





3A-2
2380
EVQLLESGGGLVQPGGSLRLSCAASGFPFSTYAMSWVRQAPGKGLEWVSGISVSGGFTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDPYSYGYYYYYGMDVWGQGT




LVTVSS





3A-21
2381
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMGWVRQAPGKGLEWVSGISGGGVSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARARNWGPSDYWGQGTLVTVS




S





3A-22
2382
EVQLLESGGGLVQPGGSLRLSCAASGFIFSDYAMTWVRQAPGKGLEWVSAISGSAFYADS




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDATYSSSWYNWFDPWGQGTLVTV




SS





3A-23
2383
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYAMTWVRQAPGKGLEWVSDISGSGGSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGTVTSFDFWGQGTLVTVSS





3A-24
2384
EVQLLESGGGLVQPGGSLRLSCAASGFTFSIYAMGWVRQAPGKGLEWVSFISGSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDYHSASWFSAAADYWGQGTL




VTVSS





3A-25
2385
EVQLLESGGGLVQPGGSLRLSCAASGFTFASYAMTWVRQAPGKGLEWVSAISESGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGQEYSSGSSYFDYWGQGTLV




TVSS





3A-26
2386
EVQLLESGGGLVQPGGSLRLSCAASGFTFSEYAMSWVRQAPGKGLEWVSAITGSGGSTYY




GDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGSQTPYCGGDCPETFDYWGQG




TLVTVSS





3A-27
2387
EVQLLESGGGLVQPGGSLRLSCAASGFTFDDYAMSWVRQAPGKGLEWVSGISGGGTSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLYSSGWYGFDYWGQGTLV




TVSS





3A-28
2388
EVQLLESGGGLVQPGGSLRLSCAASGFTFNNYAMNWVRQAPGKGLEWVSAISGSVGSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDNYDFWSGYYTNWFDPWGQ




GTLVTVSS





3A-29
2389
EVQLLESGGGLVQPGGSLRLSCAASGFTFTNHAMSWVRQAPGKGLEWVSAISGSGSNIYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDSLSVTMGRGVVTYYYYGMD




FWGQGTLVTVSS





4A-51
2390
EVQLVESGGGLVQPGGSLRLSCAASGPGTAIMGWFRQAPGKEREFVARISTSGGSTKYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTTVTTPPLIWGQGTLVTVSS





4A-52
2391
EVQLVESGGGLVQPGGSLRLSCAASGRSFSNSVMGWFRQAPGKEREFVARITWNGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTVSS





4A-53
2392
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAVSWSGSGVY




YADSVKGRFTITADNSKNTAYLQMNSLKPENTAVYYCATDPPLFWGQGTLVTVSS





4A-54
2393
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDARMGWFRQAPGKEREFVGAVSWSGGTTV




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTEDPYPRWGQGTLVTVSS





4A-49
2394
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARASPNTGWHFDHWGQGTLVT




VSS





4A-55
2395
EVQLVESGGGLVQPGGSLRLSCAASGSGLSINAMGWFRQAPGKERESVAAISWSGGSTYT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAYQAGWGDWGQGTLVTVSS





4A-39
2396
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNAAMGWFRQAPGKEREFVARILWTGASRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTVSS





4A-56
2397
EVQLVESGGGLVQPGGSLRLSCAASGFSLDYYGMGWFRQAPGKERESVAAISWNGDFTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKRANPTGAYFDYWGQGTLVT




VSS





4A-33
2398
EVQLVESGGGLVQPGGSLRLSCAASGFTFSRHDMGWFRQAPGKEREFVAGINWESGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRGVYGGRWYRTSQYTWGQ




GTLVTVSS





4A-57
2399
EVQLVESGGGLVQPGGSLRLSCAASGLTFRNYAMGWFRQAPGKEREFVAAIGSGGYTDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVKPGWVARDPSQYNWGQGTLV




TVSS





4A-25
2400
EVQLVESGGGLVQPGGSLRLSCAASGGTFSRYAMGWFRQAPGKEREWVSAVDSGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAASPSLRSAWQWGQGTLVTVSS





4A-58
2401
EVQLVESGGGLVQPGGSLRLSCAASGFTLDYYDMGWFRQAPGKEREFVAAVTWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQGT




LVTVSS





4A-59
2402
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSAGYTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPLFCWHFDLWGQGTLVTV




SS





4A-6
2403
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDIMGWFRQAPGKEREFVAAIHWSAGYTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGHVDLWGQGTLVT




VSS





4A-61
2404
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSADYTPY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPNTGWHFDHWGQGTLVTVS




S





4A-3
2405
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATATPNTGWHFDHWGQGTLVT




VSS





4A-62
2406
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGGSTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-43
2407
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAGINWSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-5
2408
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWTGGYTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-42
2409
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKERECVAAINWSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-63
2410
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDYTMGWFRQAPGKEREFVAAINWSGGYTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-6
2411
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYGMGWFRQAPGKEREFVATINWSGALTH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATLPFYDFWSGYYTGYYYMDV




WGQGTLVTVSS





4A-40
2412
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFLAGVTWSGSSTF




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-21
2413
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDIMGWFRQAPGKEREFVAAISWSGGNTHY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-64
2414
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATASPNTGWHFDHWGQGTLVT




VSS





4A-47
2415
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDDYVMGWFRQAPGKEREFVAAVSGSGDDT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQG




TLVTVSS





4A-65
2416
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATEPPLSCWHFDLWGQGTLVTV




SS





4A-18
2417
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSGGYTPY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPNTGWHFDHWGQGTLVTVS




S





4A-66
2418
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREIVAAINWSAGYTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCCHFDLWGQGTLVTV




SS





4A-36
2419
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAISWSGGTTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-67
2420
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGDSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-16
2421
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGGTTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-11
2422
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAIHWSGSSTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-68
2423
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKERELVGTINWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-34
2424
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSGGYTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-28
2425
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKERELVAAINWNGGNT




HYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-69
2426
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGGTTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-7
2427
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGYTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGHVDLWGQGTLVT




VSS





4A-71
2428
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREWVASINWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-23
2429
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAGISWNGGSIY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-9
2430
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYEMGWFRQAPGKEREFVAAISWRGGTTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAGDYDWGQGT




LVTVSS





4A-72
2431
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGYTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGHVDLWGQGTLVT




VSS





4A-73
2432
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGGSTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-29
2433
EVQLVESGGGLVQPGGSLRLSCAASGVTLDDYAMGWFRQAPGKEREFVAVINWSGGSTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGGWVPSSTSESLNWYFDRW




GQGTLVTVSS





4A-41
2434
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSGGTTPY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCCHVDLWGQGTLVTVS




S





4A-74
2435
EVQLVESGGGLVQPGGSLRLSCAASGLTFSDDTMGWFRQAPGKEREFVAAVSWSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-75
2436
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWTGGYTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-31
2437
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVATINWTAGYTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCWHFDHWGQGTLVTV




SS





4A-32
2438
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGNTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-15
2439
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYTMGWFRQAPGKEREFVAAINWSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-14
2440
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAGINWSGNGVY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-76
2441
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYAMGWFRQAPGKERELVAPINWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-50
2442
EVQLVESGGGLVQPGGSLRLSCAASGGTFSNSGMGWFRQAPGKERELVAVVNWSGRRTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVPWMDYNRRDWGQGTLVTVS




S





4A-17
2443
EVQLVESGGGLVQPGGSLRLSCAASGQLANFASYAMGWFRQAPGKEREFVAAITRSGSST




VYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTMNPNPRWGQGTLVTVSS





4A-37
2444
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDIMGWFRQAPGKEREFVAAINWTGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-44
2445
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATARPNTGWHFDHWGQGTLVT




VSS





4A-77
2446
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREWVGSINWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-78
2447
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAGMTWSGSSTF




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-79
2448
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERECVAAINWSGDYTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-8
2449
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVGGINWSGGYTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-81
2450
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAVNWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-82
2451
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYAMGWFRQAPGKEREFVAAINWSGGYTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-83
2452
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGYTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-35
2453
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARASPNTGWHFDRWGQGTLVT




VSS





4A-45
2454
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSGGYTH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-84
2455
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAITWSGGRTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDRPLFWGQGTLVTVSS





4A-85
2456
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSGGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATASPNTGWHFDHWGQGTLVT




VSS





4A-86
2457
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAIHWSGSSTRY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-87
2458
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDYTMGWFRQAPGKEREWVAAINWSGGTTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-88
2459
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGDNTH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-89
2460
EVQLVESGGGLVQPGGSLRLSCAASGFAFGDNWIGWFRQAPGKEREWVASISSGGTTAY




ADNVKGRFTIIADNSKNTAYLQMNSLKPEDTAVYYCAHRGGWLRPWGYWGQGTLVTVS




S





4A-9
2461
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVGRINWSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-91
2462
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVGGISWSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-92
2463
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-46
2464
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGYTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-20
2465
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSADYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCWHFDHWGQGTLVTV




SS





4A-93
2466
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGSSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-4
2467
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREMVAAINWIAGYTA




DADSVRRLFTITADNNKNTAHLMMNLLKPENTAVYYCAEPSPNTGWHFDHWGQGTLVT




VSS





4A-2
2468
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGNTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-94
2469
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGDNTH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-95
2470
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPLFCWHFDHWGQGTLVTV




SS





4A-12
2471
EVQLVESGGGLVQPGGSLRLSCAASGFTFGDYVMGWFRQAPGKEREIVAAINWNAGYTA




YADSVRGLFTITADNSKNTAYLQMNSLKPEDTAVYYCAKASPNTGWHFDHWGQGTLVT




VSS





4A-30
2472
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYTMGWFRQAPGKEREFVAAINWTGGYTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-27
2473
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYTA




YADSVKGLFTITADNSKNTAYLQMNILKPEDTAVYYCARATPNTGWHFDHWGQGTLVT




VSS





4A-22
2474
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSGDNTH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-96
2475
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYTPY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCCHFDHWGQGTLVTVS




S





4A-97
2476
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPNTGWHFDHWGQGTLVT




VSS





4A-98
2477
EVQLVESGGGLVQPGGSLRLSCAASGFTWGDYTMGWFRQAPGKEREFVAAINWSGGNT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQG




TLVTVSS





4A-99
2478
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPGKEREFVAAVSSLGPFTRY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKPGWVARDPSQYNWGQGTLV




TVSS





4A-100
2479
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAINWSGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQG




TLVTVSS





4A-101
2480
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNAAMGWFRQAPGKEREFVARILWTGASRS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTVSS





4A-102
2481
EVQLVESGGGLVQPGGSLRLSCAASGGTFGVYHMGWFRQAPGKEREGVAAINMSGDDS




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAILVGPGQVEFDHWGQGTLVT




VSS





4A-103
2482
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMGWFRQAPGKEREFVARI --




SGSTFYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAALPFVCPSGSYSDYGDE




YDWGQGTLVTVSS





4A-104
2483
EVQLVESGGGLVQPGGSLRLSCAASGRTFSGDFMGWFRQAPGKEREFVGRINWSGGNTY




YADSVRGLFTITADNNKNTAYLMMNLLKPEDTAVYYCPTDPPLFWGLGTLVTWSS





4A-105
2484
EVQLVESGGGLVQPGGSLRLSCAASGSTLRDYAMGWFRQAPGKERESVAAITWSGGSTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASLLAGDRYFDYWGQGTLVTVS




S





4A-106
2485
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYTMGWFRQAPGKEREFVAAITDNGGSKY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQGT




LVTVSS





4A-107
2486
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSYGMGWFRQAPGKEREFVAAINWSGASTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDWRDRTWGNSLDYWGQGTL




VTVSS





4A-108
2487
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAISWSEDNT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQG




TLVTVSS





4A-109
2488
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAVSGSGDDT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQG




TLVTVSS





4A-110
2489
EVQLVESGGGLVQPGGSLRLSCAASGNIAAINVMGWFRQAPGKEREFVAAISASGRRTDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARRVYYYDSSGPPGVTFDIWGQG




TLVTVSS





4A-111
2490
EVQLVESGGGLVQPGGSLRLSCAASGIITSRYVMGWFRQAPGKEREGVAAISTGGSTIYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARQDSSSPYFDYWGQGTLVTVSS





4A-112
2491
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAISNSGLSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQGT




LVTVSS





4A-113
2492
EVQLVESGGGLVQPGGSLRLSCAASGSISSINVMGWFRQAPGKEREFVATMRWSTGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAQRVRGFFGPLRTTPSWYEWGQG




TLVTVSS





4A-114
2493
EVQLVESGGGLVQPGGSLRLSCAASGLTFILYRMGWFRQAPGKEREFVAAINNFGTTKYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTHYDFWSGYTSRTPNYFDYWGQ




GTLVTVSS





4A-115
2494
EVQLVESGGGLVQPGGSLRLSCAASGGTFSVYHMGWFRQAPGKEREPVAAISWSGGSTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVNTWTSPSFDSWGQGTLVTV




SS





4A-116
2495
EVQLVESGGGLVQPGGSLRLSCAASGRAFSTYGMGWFRQAPGKEREFVAGINWSGDTPY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREVGPPPGYFDLWGQGTLVTV




SS





4A-117
2496
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDIAMGWFRQAPGKEREFVASINWGGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWGQGT




LVTVSS





4A-118
2497
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSARMGWFRQAPGKEREFVAAISWSGDNTH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTVSS





4A-119
2498
EVQLVESGGGLVQPGGSLRLSCAASGFAFSSYAMGWFRQAPGKEREWVATINGDDYTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVATPGGYGLWGQGTLVTVSS





4A-120
2499
EVQLVESGGGLVQPGGSLRLSCAASGITFRRHDMGWFRQAPGKEREFVAAIRWSSSSTVY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRGVYGGRWYRTSQYTWGQG




TLVTVSS





4A-121
2500
EVQLVESGGGLVQPGGSLRLSCAASGTAASFNPMGWFRQAPGKEREFVAAITSGGSTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAIAYEEGVYRWDWGQGTLVTVSS





4A-122
2501
EVQLVESGGGLVQPGGSLRLSCAASGNINIINYMGWFRQAPGKEREGVAAIHWNGDSTAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASGPPYSNYFAYWGQGTLVTVSS





4A-123
2502
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYAMGWFRQAPGKERESVAAISGSGGSTAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKIMGSGRPYFDHWGQGTLVTVS




S





4A-124
2503
EVQLVESGGGLVQPGGSLRLSCAASGNIFTRNVMGWFRQAPGKEREFVAAITSSGSTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARPSSDLQGGVDYWGQGTLVTVSS





4A-125
2504
ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWGQGTL




VTVSS





4A-126
2505
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPGKEREFVAAVSSLGPFTRY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKPGWVARDPSEYNWGQGTLV




TVSS





4A-127
2506
EVQLVESGGGLVQPGGSLRLSCAASGFTLDDSAMGWFRQAPGKEREWVAAITNGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARFARGSPYFDFWGQGTLVTVSS





4A-128
2507
EVQLVESGGGLVQPGGSLRLSCAASGSISSFNAMGWFRQAPGKERESVAAIDWDGSTAYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGGYYGSGSFEYWGQGTLVTVS




S





4A-129
2508
EVQLVESGGGLVQPGGSLRLSCAASGNIFSDNIIGWFRQAPGKEREMVAYYTSGGSIDYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGTAVGRPPPGGMDVWGQGTLVT




VSS





4A-130
2509
EVQLVESGGGLVQPGGSLRLSCAASGSISSIGAMGWFRQAPGKEREGVAAISSSGSSTVYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVPPGQAYFDSWGQGTLVTVSS





4A-131
2510
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYGMGWFRQAPGKERELVATITWSGDSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKGGSWYYDSSGYYGRWGQGT




LVTVSS





4A-132
2511
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYTMGWFRQAPGKEREWVSAISWSTGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRYGPPWYDWGQGTLVTVS




S





4A-133
2512
EVQLVESGGGLVQPGGSLRLSCAASGSTNYMGWFRQAPGKEREGVAAISMSGDDTIYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARIGLRGRYFDLWGQGTLVTVSS





4A-134
2513
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSVGMGWFRQAPGKERELVAVINWSGARTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVPWMDYNRRDWGQGTLVTVS




S





4A-135
2514
EVQLVESGGGLVQPGGSLRLSCAASGRIFTNTAMGWFRQAPGKEREGVAAINWSGGSTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTSGSYSFDYWGQGTLVTVSS





4A-136
2515
EVQLVESGGGLVQPGGSLRLSCAASGEEFSDHWMGWFRQAPGKEREFVGAIHWSGGRTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQGT




LVTVSS





4A-137
2516
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSIAMGWFRQAPGKEREFVAAINWSGARTAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWGQGTL




VTVSS





4A-138
2517
EVQLVESGGGLVQPGGSLRLSCAASGSTSSLRTMGWFRQAPGKEREGVAAISSRDGSTIYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDDSSSPYFDYWGQGTLVTVSS





4A-139
2518
EVQLVESGGGLVQPGGSLRLSCAASGGGTFGSYAMGWFRQAPGKEREFVAAISIASGASG




GTTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTMNPNPRWGQGTLVTV




SS





4A-140
2519
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNAAMGWFRQAPGKEREFVARITWNGGSTF




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTVSS





4A-141
2520
EVQLVESGGGLVQPGGSLRLSCAASGIILSDNAMGWFRQAPGKEREFVAAISWLGESTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQGTL




VTVSS





4A-142
2521
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWNGGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTSPNTGWHYYRWGQGTLVT




VSS





4A-143
2522
EVQLVESGGGLVQPGGSLRLSCAASGFNFNWYPMGWFRQAPGKERESVAAISWTGVSTY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARWGPGPAGGSPGLVGFDY




WGQGTLVTVSS





4A-144
2523
EVQLVESGGGLVQPGGSLRLSCAASGSIRSVSVMGWFRQAPGKEREAVAAISWSGVGTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAYQRGWGDWGQGTLVTVSS





4A-145
2524
EVQLVESGGGLVQPGGSLRLSCAASGMTFRLYAMGWFRQAPGKEREFVGAINWLSESTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKPGWVARDPSEYNWGQGTL




VTVSS





4A-146
2525
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTMVTVSS





4A-147
2526
EVQLVESGGGLVQPGGSLRLSCAASGGTFSVYAMGWFRQAPGKEREGVAAISMSGDDAA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKISKDDGGKPRGAFFDSWGQG




TLVTVSS





4A-148
2527
EVQLVESGGGLVQPGGSLRLSCAASGFALGYYAMGWFRQAPGKERESVAAISSRDGSTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLATGPQAYFHHWGQGTLVT




VSS





4A-149
2528
EVQLVESGGGLVQPGGSLRLSCAASGFNLDDYAMGWFRQAPGKERESVAAISWDGGATA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVGRGTTAFDSWGQGTLVTVS




S





4A-150
2529
EVQLVESGGGLVQPGGSLRLSCAASGNTFSGGFMGWFRQAPGKEREFVASIRSGARTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAQRVRGFFGPLRTTPSWYEWGQGT




LVTVSS





4A-151
2530
EVQLVESGGGLVQPGGSLRLSCAASGSIRSINIMGWFRQAPGKEREAVAAISWSGGSTVYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASLLAGDRYFDYWGQGTLVTVSS





5A-1
2531
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGATAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVSS





5A-2
2532
EVQLVESGGGLVQPGGSLRLSCAASGLRFDDYAMGWFRQAPGKERELVAIKFSGGTTDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASWDGLIGLDAYEYDWGQGTLVT




VSS





5A-3
2533
EVQLVESGGGLVQPGGSLRLSCAASGSIFSIDVMGWFRQAPGKEREFVAGISWSGDSTLYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYTGSDWGQGTLVTVSS





5A-4
2534
EVQLVESGGGLVQPGGSLRLSCAASGFTLADYAMGWFRQAPGKEREFVAVITCSGGSTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADDCYIGCGWGQGTLVTVSS





5A-5
2535
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSIAMGWFRQAPGKERELVAEITEGGISPSGD




NIYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAELHSSDYTSPGAESDYG




WGQGTLVTVSS





5A-6
2536
EVQLVESGGGLVQPGGSLRLSCAASGPTFSSYAMMGWFRQAPGKEREWVAAINNFGTTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAASASDYGLGLELFHDEYNWGQ




GTLVTVSS





5A-7
2537
EVQLVESGGGLVQPGGSLRLSCAASGSTGYMGWFRQAPGKEREFVAAIHSGGSTNYADS




VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATVATALIWGQGTLVTVSS





5A-8
2538
EVQLVESGGGLVQPGGSLRLSCAASGRPFSEYTMGWFRQAPGKEREFVSSIHWGGRGTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAELHSSDYTSPGAYAWGQGTLV




TVSS





5A-9
2539
EVQLVESGGGLVQPGGSLRLSCAASGLTLSTYGMGWFRQAPGKEREFVAHIPRSTYSPYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAIGDGAVWGQGTLVTVSS





5A-10
2540
EVQLVESGGGLVQPGGSLRLSCAASGFTFNNHNMGWFRQAPGKEREFVAAISSYSHTAYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALQPFGASNYRWGQGTLVTVSS





5A-11
2541
EVQLVESGGGLVQPGGSLRLSCAASGGIYRVMGWFRQAPGKERELVASISSGGGINYADS




VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAESWGRQWGQGTLVTVSS





5A-12
2542
EVQLVESGGGLVQPGGSLRLSCAASGYTDSNLWMGWFRQAPGKEREFVAINRSTGSTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTA VYYCATSGSGSPNWGQGTLVTVSS





5A-13
2543
EVQLVESGGGLVQPGGSLRLSCAASGFTFDYYTMGWFRQAPGKEREFVAAIRSSGGLFYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAYLDGYSGSWGQGTLVTVSS





5A-14
2544
EVQLVESGGGLVQPGGSLRLSCAASGGIFSINVMGWFRQAPGKEREWVSAIRWNGGNTA




YADSVKGRFTITADNSKNTAYLQMNSLKPEDTAVYYCAGFDGYTGSDWGQGTLVTVSS





5A-15
2545
EVQLVESGGGLVQPGGSLRLSCAASGFTFDGAAMGWFRQAPGKEREFVATIRWTNSTDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGRYGIVERWGQGTLVTVSS





5A-16
2546
EVQLVESGGGLVQPGGSLRLSCAASGRTHSIYPMGWFRQAPGKERELVAAIHSGGATVYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRWIPPGPIWGQGTLVTVSS





5A-17
2547
EVQLVESGGGLVQPGGSLRLSCAASGPTFSIYAMGWFRQAPGKEREFVAGIRWSDVYTQY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALDIDYRDWGQGTLVTVSS





5A-18
2548
EVQLVESGGGLVQPGGSLRLSCAASGLTFDDNIHVMGWFPQAPGKEREFVAAIHWSGGST




IYADSVKGRFTINADNSKNTAYLQMNSLKPEDTAVYYCAADVYPQDYGLGYVEGKMYY




GMDWGQGTLVTVSS





5A-19
2549
EVQLVESGGGLVQPGGSLRLSCAASGLTLDYYAMGWFRQAPGKEREWVASINWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAYGSGEFDWGQGTLVTVSS





5A-20
2550
EVQLVESGGGLVQPGGSLRLSCAASGRTIVPYTMGWFRQAPGKERELVAAISPSAFTEYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRWGYDWGQGTLVTVSS





5A-21
2551
EVQLVESGGGLVQPGGSLRLSCAASGGTFTTYHMGWFRQAPGKEREFVAHISTGGATNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATFPAIVTDSDYDLGNDWGQGTL




VTVSS





5A-22
2552
EVQLVESGGGLVQPGGSLRLSCAASGFTFNVFAMGWFRQAPGKEREFVAAINWSDSRTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASGSDNRARELSRYEYVWGQGT




LVTVSS





5A-23
2553
EVQLVESGGGLVQPGGSLRLSCAASGSIFSIDVMGWFRQAPGKEREFVAAISWSGESTLYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYSGSDWGQGTLVTVSS





5A-24
2554
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMGWFRQAPGKEREFVAAISSYSHTAYA




DSVKGRFTIIADNSKNTAYLQMNSLKPEDTAVYYCALQPFGASSYRWGQGTLVTVSS





5A-25
2555
EVQLVESGGGLVQPGGSLRLSCAASGNTFSINVMGWFRQAPGKEREFVAAIHWSGDSTLY




ADSGKGRFTIIADNNKNTAYLQMISLKPEDTAVYYCAAFDGYSGNHWGQGTLVTVSS





5A-26
2556
EVQLVESGGGLVQPGGSLRLSCAASGRTISSYIMGWFRQAPGKERELVARIYTGGDTIYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARTSYNGRYDYIDDYSWGQGTLVT




VSS





5A-27
2557
EVQLVESGGGLVQPGGSLRLSCAASGRANSINWMGWFRQAPGKEREFVATITPGGNTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAAGSTWYGTLYEYDWGQGTL




VTVSS





5A-28
2558
EVQLVESGGGLVQPGGSLRLSCAASGGTFSVFAMGWFRQVPGKERELVAEITAGGSTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVDGPFGWGQGTLVTVSS





5A-29
2559
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYPMGWFRQAPGKEREGVASVLRGGYTW




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKDWATGLAWGQGTLVTVSS





5A-30
2560
EVQLVESGGGLVQPGGSLRLSCAASGFALGYYAMGWFRQAPGKEREFVAGIRWTDAYTE




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVSPSYGSRWYWGQGTLVT




VSS





5A-31
2561
EVQLVESGGGLVQPGGSLRLSCAASGRTLDIHVMGWFRQAPGKEREFVA VINWTGESTLY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYTGNYWGQGTLVTVSS





5A-32
2562
EVQLVESGGGLVQPGGSLRLSCAASGFTPDNYAMGWFRQAPGKEREFVAALGWSGVTTY




HYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASDESDAANWGQGTLVTVSS





5A-33
2563
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYAMGWFRQAPGKERELVATIMWSGNTTY




YADSVRRRFIIRDNNNKNTAHLQMNSLKPEDTAVYYCATNDDDVWGQGTLVTVSS





5A-34
2564
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRYIMGWFRQAPGKEREFVAAISWSGGDNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAYRIVVGGTSPGDWRWGQGT




LVTVSS





5A-35
2565
EVQLVESGGGLVQPGGSLRLSCAASGPTFSIYAMGWFRQAPGKERELVAGISWNGGSTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALRRRFGGQEWGQGTLVTVSS





5A-36
2566
EVQLVESGGGLVQPGGSLRLSCAASGRTFSLNAMGWFRQAPGKERELVAAISCGGGSTYA




DNGKGRFTIITDNSKNTAYLQMMNLKPEDTAAYYCAADNDMGYCSWGQGTLVTVSS





5A-37
2567
EVQLVESGGGLVQPGGSLRLSCAASGSTFSINAMGWFRQAPGKEREFVGGISRSGATTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWGQGTLV




TVSS





5A-38
2568
EVQLVESGGGLVQPGGSLRLSCAASGRTFSMHAMGWFRQAPGKERELVASISSQGRTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEVRNGSDYLPIDWGQGTLVTV




SS





5A-39
2569
EVQLVESGGGLVQPGGSLRLSCAASGVTLDLYAMGWFRQAPGKEREFVAGIRWTDAYTE




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVDIDYRDWGQGTLVTVSS





5A-40
2570
EVQLVESGGGLVQPGGSLRLSCAASGLPFTINVMGWFRQAPGKEREFVAAIHWSGLTTFY




ADSVKGLFTITEDNSKNTAHLMMNLLKPEDTAVYCCAELDGYFFAHWGQGTLVTVSS





5A-41
2571
EVQLVESGGGLVQPGGSLRLSCAASGRAFSNYAMGWFRQAPGKEREFVAWINNRGTTDY




ADSGSTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASTDDYGVDWGQGT




LVTVSS





5A-42
2572
EVQLVESGGGLVQPGGSLRLSCAASGFTPDDYAMGWFRQAPGKEREFVASIGYSGRSNSY




NYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIAHGSSTYNWGQGTLVTVS




S





5A-43
2573
EVQLVESGGGLVQPGGSLRLSCAASGFTLNYYGMGWFPQAPGKEREFVAAITSGGAPHY




ADSVKGRFTINADNSKNTAYLQMNSLKPEDTAVYYCASAYDRGIGYDWGQGTLVTVSS





5A-44
2574
EVQLVESGGGLVQPGGSLRLSCAASGLPFSTKSMGWFRQAPGKEREFVAAIHWSGLTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRAADFFAQRDEYDWGQGTLV




TVSS





5A-45
2575
EVQLVESGGGLVQPGGSLRLSCAASGRTFSINAMGWFPQAPGKERELVAAISWSGESTQY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGGSGTQWGQGTLVTVSS





5A-46
2576
EVQLVESGGGLVQPGGSLRLSCAASGEEFSDHWMGWFRQAPGKEREFVAAIHWSGDSTH




RNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATVGITLNWGQGTLVTVSS





5A-47
2577
EVQLVESGGGLVQPGGSLRLSCAASGFTFGSYDMGWFRQAPGKEREFVTAINWSGARTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARSVYSYEYNWGQGTLVTVSS





5A-48
2578
EVQLVESGGGLVQPGGSLRLSCAASGLPLDLYAMGWFPPAPGKELEFVAGIRWSDAYTEY




ADSVKGRFTINADNSKNPANLQMNSLKPEDTAVYYCALDIDYRHWGQGTLVTVSS





5A-49
2579
EVQLVESGGGLVQPGGSLRLSCAASGRTSTVNGMGWFRQAPGKEREFVASISQSGAATAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRTYSYSSTGYYWGQGTLVTV




SS





5A-50
2580
EVQLVESGGGLVQPGGSLRLSCAASGFSLDYYGMGWFRQAPGKEREFVAAITSGGTPHY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASAYNPGIGYDWGQGTLVTVSS





5A-51
2581
EVQLVESGGGLVQPGGSLRLSCAASGRPNSINWMGWFRQAPGKERQFVATITPGGNTNY




ADSVKGRFTISADNSKNTAYLLMNSLKPEDTAVYYCAAAAGTTWYGTLYEYDWGQGTL




VTVSS





5A-52
2582
EVQLVESGGGLVQPGGSLRLSCAASGEKFSDHWMGWFRQAPGKEREFVATITFSGARTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAALIKPSSTDRIFEEWGQGTLVT




VSS





5A-53
2583
EVQLVESGGGLVQPGGSLRLSCAASGLTVVPYAMGWFRQAPGKEREFVAAIRRSAVTNY




ADSVKGRFTIIADNSKNTAYLLMNSLKPEDTAVYYCAARRWGYHYWGQGTLVTVSS





5A-54
2584
EVQLVESGGGLVQPGGSLRLSCAASGTTFNFNVMGWFRQAPGKERELVAVISWTGESTLY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYTGRDWGQGTLVTVSS





5A-55
2585
EVQLVESGGGLVQPGGSLRLSCAASGIDVNRNAMGWFRQAPGKEREFVAAITWSGGWRY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTFGDAGIPDQYDFGWGQGTL




VTVSS





5A-56
2586
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSNMGWFRQAPGKEREFVARIFGGDRTLYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCADINGDWGQGTLVTVSS





5A-57
2587
EVQLVESGGGLVQPGGSLRLSCAASGGTFSMGWIRWVPQAQGKELEFMGCIGWITYYAD




YAKSRFSLFTDNADNTKNPPNMHMNPQKPEDTAVYYCAPFGWGQGTLVTVSS





5A-58
2588
EVQLVESGGGLVQPGGSLRLSCAASGCTLDYYAMGWFRQAPGKEREFVAGIRWTDAYTE




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVSPSYGGRWYWGQGTLVT




VSS





5A-59
2589
EVQLVESGGGLVQPGGSLRLSCAASGLTFSLYRMCWFRQAPGKEREEVSCISNIDGSTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADLLGDSDYEPSSGFGWGQGTLV




TVSS





5A-60
2590
EVQLVESGGGLVQPGGSLRLSCAASGRSFSSHRMGWFRQAPGKEREFVAAIMWSGSHRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAIAYEEGVYRWDWGQGTLVT




VSS





5A-61
2591
EVQLVESGGGLVQPGGSLRLSCAASGRIIVPNTMGWFRQAPGKERERVTGISPSAFTEYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAHGWGCHWGQGTLVTVSS





5A-62
2592
EVQLVESGGGLVQPGGSLRLSCAASGSIFIISMGWFRQAPGKEHEFVTGINWSGGSTTYAD




SVKGRFTINADNSKNTAYLQMNSLKPEDTAVYYCAASAIGSGALRRFEYDWGQGTLVTV




SS





5A-63
2593
EVQLVESGGGLVQPGGSLRLSCAASGFSLDYYDMGWFRQAPGKEREFVAALGWSGGSTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRYGIVERWGQGTLVT




VSS





5A-64
2594
EVQLVESGGGLVQPGGSLRLSCAASGTSISNRVMGWFRQAPGKERELVARIYTGGDTLYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARKIYRSLSYYGDYDWGQGTLVT




VSS





5A-65
2595
EVQLVESGGGLVQPGGSLRLSCAASGNIDRLYAMGWFRQAPGKEREGVAAIDSDGSTDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAALIDYGLGFPIEWGQGTLVTVSS





5A-66
2596
EVQLVESGGGLVQPGGSLRLSCAASGNTFTINVMGWFRQAPGKEREFVAAINWNGGTTL




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYSGIDWGQGTLVTVSS





5A-67
2597
EVQLVESGGGLVQPGGSLRLSCAASGFNVNDYAMGWFRQAPGKEREFVAGITSSVGVTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADIFFVNWGRGTLVTVSS





5A-68
2598
EVQLVESGGGLVQPGGSLRLSCAASGFTFDHYTMGWFRQAPGKEREFVAAISGSENVTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEPYIPVRTMRHMTFLTWGQGT




LVTVSS





6A-1
2599
EVQLVESGGGLVQPGGSLRLSCAASGRTFGNYNMGWFRQAPGKEREFVATINSLGGTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDYYMDVWGQGTLVTVSS





6A-2
2600
EVQLVESGGGLVQPGGSLRLSCAASGFTMSSSWMGWFRQAPGKEREFVTVISGVGTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGPDSSGYGFDYWGQGTLVTVSS





6A-3
2601
EVQLVESGGGLVQPGGSLRLSCAASGFTFSPSWMGWFRQAPGKEREFVATINEYGGRNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTA VYYCARVDRDFDYWGQGTLVTVSS





6A-4
2602
EVQLVESGGGLVQPGGSLRLSCAASGFTRDYYTMGWFRQAPGKEREFVAAISRSGSLTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCANLAYYDSSGYYDYWGQGTLVT




VSS





6A-5
2603
EVQLVESGGGLVQPGGSLRLSCAASGRTFTMGWFRQAPGKEREFVASTNSAGSTNYADS




VNGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTVDQYFDYWGQGTLVTVSS





6A-6
2604
EVQLVESGGGLVQPGGSLRLSCAASGTTLDYYAMGWFRQAPGKERELVAAISWSGGSTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREDYYDSSGYSWGQGTLVTVS




S





6A-7
2605
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMGWFRQAPGKEREFVATINWSGVTAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARADDYFDYWGQGTLVTVSS





6A-8
2606
EVQLVESGGGLVQPGGSLRLSCAASGFTLSGIWMGWFLQAPGKEHEFVAIITTGGRTTYA




DSXKGRFTSSSDNSKNTAYLQMNLLKPEDTAEYYCAGYSTFGSSSAYYYYSMDVGWGQ




GTLVTVSS





6A-9
2607
EVQLVESGGGLVQPGGSLRLSCAASGFTFDYYAMGWFRQAPGKEREFVSAIDSEGRTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARWGPFDIWGQGTLVTVSS





6A-10
2608
EVQLVESGGGLVQPGGSLRLSCAASGSIASIHAMGWFRQAPGKEREFVAAISRSGGFGSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDDKYYDSSGYPAYFQHWGQGT




LVTVSS





6A-11
2609
EVQLVESGGGLVQPGGSLRLSCAASGLAFNAYAMGWFRQAPGKEREEVATIGWSGANTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASDPPGWGQGTLVTVSS





6A-12
2610
EVQLVESGGGLVQPGGSLRLSCAASGSTYTTYSMGWFRQAPGKEREFVAAISGSENVTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDDYMDVWGQGTLVTVSS





6A-13
2611
EVQLVESGGGLVQPGGSLRLSCAASGLTFNDYAMGWFRQAPGKEREFVAHIPRSTYSPYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAFLVGPQGVDHGAFDVWGQGTL




VTVSS





6A-14
2612
EVQLVESGGGLVQPGGSLRLSCAASGITFRFKAMGWFRQAPGKEREFVAAVSWDGRNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASDYYYMDVWGQGTLVTVSS





6A-15
2613
EVQLVESGGGLVQPGGSLRLSCAASGSTVLINAMGWFRQAPGKEREFVAAVRWSDDYTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEGRAGSLDYWGQGTLVTVSS





6A-16
2614
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDAAMGWFRQAPGKEREFVAHISWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATFGATVTATNDAFDIWGQGTL




VTVSS





6A-17
2615
EVQLVESGGGLVQPGGSLRLSCAASGNTGSTGYMGWFRQAPGKEREMVAGVINDGSTVY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLATSHQDGTGYLFDYWGQGTL




VTVSS





6A-18
2616
EVQLVESGGGLVQPGGSLRLSCAASGLTFRNYAMGWFRQAPGKEREFIAGMMWSGGTTT




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREGYYYDSSGYLNYFDYWGQ




GTLVTVSS





6A-19
2617
EVQLVESGGGLVQPGGSLRLSCAASGSILSIAVMGWFRQAPGKEREFVAAISPSAVTTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIGYYDSSGYFDYWGQGTLVTVSS





6A-20
2618
EVQLVESGGGLVQPGGSLRLSCAASGSTLPYHAMGWFRQAPGKEREFVAAITWNGASTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDRYYDTSASYFESETWGQGT




LVTVSS





6A-21
2619
EVQLVESGGGLVQPGGSLRLSCAASGTLFKINAMGWFRQAPGKEREFVAAITSSGSNIDYT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARSNTGWYSFDYWGQGTLVT




VSS





6A-22
2620
EVQLVESGGGLVQPGGSLRLSCAASGRTFSEVVMGWFRQAPGKEREFVATIHSSGSTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVRVTSDYSMDSWGQGTLVTVSS





6A-23
2621
EVQLVESGGGLVQPGGSLRLSCAASGSIFSMNTMGWFRQAPGKEREFVALINRSGGGINY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVRLSSGYYDFDYWGQGTLVTVSS





6A-24
2622
EVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAMGWFRQAPGKEREFVAAINWSGDNTH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARAPFYCTTTKCQDNYYYMDV




WGQGTLVTVSS





6A-25
2623
EVQLVESGGGLVQPGGSLRLSCAASGLTFGTYTMGWFRQAPGKEREFVAAISRFGSTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGDYDFWSVDYMDVWGQGTL




VTVSS





6A-26
2624
EVQLVESGGGLVQPGGSLRLSCAASGDTFSTSWMGWFRQAPGKEREFVATINTGGGTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVTTSFDYWGQGTLVTVSS





6A-27
2625
EVQLVESGGGLVQPGGSLRLSCAASGITFRFKAMGWFRQAPGKEREFVASISRSGTTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDYSAFDMWGQGTLVTVSS





6A-28
2626
EVQLVESGGGLVQPGGSLRLSCAASGDTYGSYWMGWFRQAPGKEREFVATITSDDRTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVTSSLSGMDVWGQGTLVTVSS





6A-29
2627
EVQLVESGGGLVQPGGSLRLSCAASGYTLKNYYAMGWFRQAPGKERXLVAAIIWTGEST




LDADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREGYYDSSGYYWGQGTLVT




VSS





6A-30
2628
EVQLVESGGGLVQPGGSLRLSCAASGFAFGDSWMGWFRQAPGKEREFVATINWSGVTAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARADGYFDYWGQGTLVTVSS





6A-31
2629
EVQLVESGGGLVQPGGSLRLSCAASGDTFSANRMGWFRQAPGKEREFVASITWSSANTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATFNWNDEGFDFWGQGTLVTVS




S





6A-32
2630
EVQLVESGGGLVQPGGSLRLSCAASGFTLDYYDMGWFRQAPGKEREFVALISWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDFYGWGTRERDAFDIWGQGT




LVTVSS





6A-33
2631
EVQLVESGGGLVQPGGSLRLSCAASGTFQRINHMGWFRQAPGKEREFVATINTGGQPNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASLIAAQDYYFDYWGQGTLVTVSS





6A-34
2632
EVQLVESGGGLVQPGGSLRLSCAASGSAFRSNAMGWFRQAPGKEREFVAHISWSSKSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATYCSSTSCFDYWGQGTLVTVSS





6A-35
2633
EVQLVESGGGLVQPGGSLRLSCAASGFTLAYYAMGWFRQAPGKEREFVAAISMSGDDTIY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARELGYSSTVWPWGQGTLVTVSS





6A-36
2634
EVQLVESGGGLVQPGGSLRLSCAASGFDFSVSWMGWFRQAPGKEREFVTAITWSGDSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASLLHTGPSGGNYFDYWGQGTL




VTVSS





6A-37
2635
EVQLVESGGGLVQPGGSLRLSCAASGHTFSTSWMGWFRQAPGKEREFVATINSLGGTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVSSGDYGMDVWGQGTLVTVS




S





6A-38
2636
EVQLVESGGGLVQPGGSLRLSCAASGNTFSGGFMGWFRQAPGKEREFVA VISSLSSKSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKVDSGYDYWGQGTLVTVSS





6A-39
2637
EVQLVESGGGLVQPGGSLRLSCAASGFTFSPSWMGWFRQAPGKEREFVAAISWSGGSTAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCHGLGEGDPYGDYEGYFDLWGQG




TLVTVSS





6A-40
2638
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYWMGWFRQAPGKERELVARVWWNGGSA




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREVLRQQVVLDYWGQGTLV




TVSS





6A-41
2639
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGWFRQAPGKEREFVASINEYGGRNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAGLHYYYDSSGYNPTEYYGMDV




WGQGTLVTVSS





6A-42
2640
EVQLVESGGGLVQPGGSLRLSCAASGDTYGSYWMGWFRQAPGKEREFVAVITSGGSTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTHVQNSYYYAMDVWGQGTLVTV




SS





6A-43
2641
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYAMMGWFRQAPGKEREFVASVNWDASQI




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTLGAVYFDSSGYHDYFDYWG




QGTLVTVSS





6A-44
2642
EVQLVESGGGLVQPGGSLRLSCAASGGTFGVYHMGWFRQAPGKEREFIGRITWTDGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCFGLLEVYDMTFDYWGQGTLVT




VSS





6A-45
2643
EVQLVESGGGLVQPGGSLRLSCAASGNMFSINAMGWFRQAPGKEREFVTLISWSSGRTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASLGYCSGGSCFDYWGQGTLVTV




SS





6A-46
2644
EVQLVESGGGLVQPGGSLRLSCAASGLTFSAMGWFRQAPGKEREFVALIRRDGSTIYADS




VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAALGILFGYDAFDIWGQGTLVTVSS





6A-47
2645
EVQLVESGGGLVQPGGSLRLSCAASGRTFSMHAMGWFRQAPGKERELVASITYGGNINY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEGYYDSTGYRTYFQQWGQGT




LVTVSS





6A-48
2646
EVQLVESGGGLVQPGGSLRLSCAASGFTVSNYAMGWFRQAPGKEREFVASVNWSGGTTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTGTVTLGYWGQGTLVTVSS





6A-49
2647
EVQLVESGGGLVQPGGSLRLSCAASGSTVLINAMGWFRQAPGKEREFVAAISWSPGRTDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDCSGGSCYSGDYWGQGTLVTV




SS





6A-50
2648
EVQLVESGGGLVQPGGSLRLSCAASGFSFDRWAMGWFRQAPGKEREWVASLATGGNTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVTNYDAFDIWGQGTLVTVSS





6A-51
2649
EVQLVESGGGLVQPGGSLRLSCAASGYTYSSYVMGWFRQAPGKEREFVAAISRFGSTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDSGEHFWDSGYIDHWGQGTLVT




VSS





6A-52
2650
EVQLVESGGGLVQPGGSLRLSCAASGDTYGSYWMGWFRQAPGKEREVVAAITSGGSTVY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDSRFDYWGQGTLVTVSS





6A-53
2651
EVQLVESGGGLVQPGGSLRLSCAASGISINTNVMGWFRQAPGKEREFVAAISTGSVTIYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDDFGYFDLWGQGTLVTVSS





6A-54
2652
EVQLVESGGGLVQPGGSLRLSCAASGFEFENHWMGWFRQAPGKEREYVAHITAGGLSNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCGRHWGIYDSSGFSSFDYWGQGTL




VTVSS





6A-55
2653
EVQLVESGGGLVQPGGSLRLSCAASGFTMSSSWMGWFRQAPGKEREFVARITSGGSTGY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASVDGYFDYWGQGTLVTVSS





6A-56
2654
EVQLVESGGGLVQPGGSLRLSCAASGNIFRSNMGWFRQAPGKEREFVAGITWNGDTTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARALGVTYQFDYWGQGTLVTVSS





6A-57
2655
EVQLVESGGGLVQPGGSLRLSCAASGLTFDDHSMGWFRQAPGKEREFVAAVPLSGNTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASFSGGPADFDYWGQGTLVTVSS





6A-58
2656
EVQLVESGGGLVQPGGSLRLSCAASGRAVSTYAMGWFRQAPGKEREFVAAISGSENVTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCLSVTGDTEDYGVFDTWGQGTLVT




VSS





6A-59
2657
EVQLVESGGGLVQPGGSLRLSCAASGISGSVFSRTPMGWFRQAPGKEREWVSSIYSDGSNT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAHWSWELGDWFDPWGQGTLV




TVSS





6A-60
2658
EVQLVESGGGLVQPGGSLRLSCAASGDTYGSYWMGWFRQAPGKEREFVATISQSGAATA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAGLLRYSGTYYDAFDVWGQGT




LVTVSS





6A-61
2659
EVQLVESGGGLVQPGGSLRLSCAASGDTYGSYWMGWFRQAPGKEREFVAAINWSGGST




NYADSVKGRFTITADNNKNTAYLQMNSLKPEDTAVYYCAGLGWNYMDYWGQGTLVTV




SS





6A-62
2660
EVQLVESGGGLVQPGGSLRLSCAASGSTFSGNWMGWFRQAPGKEREFVAVISWTGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATHNSLSGFDYWGQGTLVTVSS





6A-63
2661
EVQLVESGGGLVQPGGSLRLSCAASGQTFNMGWFRQAPGKEREFVAAIGSGGSTSYADSV




KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





6A-64
2662
EVQLVESGGGLVQPGGSLRLSCAASGIPSIHAMGWFRQAPGKERELVAAINWSHGVTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCGGGYGYHFDYWGQGTLVTVSS





6A-65
2663
EVQLVESGGGLVQPGGSLRLSCAASGLPFSTLHMGWFRQAPGKEREFVASLSIFGATGYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWMYYYDSSGYYGNYYYGMDVWG




QGTLVTVSS





6A-66
2664
EVQLVESGGGLVQPGGSLRLSCAASGLTFSLFAMGWFRQAPGKERELVAAISSGGSTDYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGNTKYYYDSSGYSSAFDYWGQG




TLVTVSS





6A-67
2665
EVQLVESGGGLVQPGGSLRLSCAASGSFSNYAMGWFRQAPGKEREFVAAISSSGALTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWIVGPGPLDGMDVWGQGTLVTVSS





6A-68
2666
EVQLVESGGGLVQPGGSLRLSCAASGFTLSDRAMGWFRQAPGKEREYVAHITAGGLSNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVHLASQTGAGYFDLWGQGTLVTV




SS





6A-69
2667
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSVGMGWFRQAPGKEREFVAGISRSGGTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARYDFWSGYPYWGQGTLVTVSS





6A-70
2668
EVQLVESGGGLVQPGGSLRLSCAASGFNLDDYADMGWFRQAPGKEREFVAAIGWGGGST




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREILWFGEFGEPNVWGQGTL




VTVSS





6A-71
2669
EVQLVESGGGLVQPGGSLRLSCAASGITFSNDAMGWFRQAPGKEREFVAIITSSDTNDTTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLHYYDSSGYFDYWGQGTLVT




VSS





6A-72
2670
EVQLVESGGGLVQPGGSLRLSCAASGSTLSINAMGWFRQAPGKEREFVAAIDWSGGSTAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDSSATRTGPDYWGQGTLVTVS




S





6A-73
2671
EVQLVESGGGLVQPGGSLRLSCAASGHTFSGYAMGWFRQAPGKEREFVAVITREGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLGGEGFDYWGQGTLVTVSS





6A-74
2672
EVQLVESGGGLVQPGGSLRLSCAASGFAFGDSWMGWFRQAPGKERELVAAITSGGSTDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGLLWFGELFGYWGQGTLVTVS




S





6A-75
2673
EVQLVESGGGLVQPGGSLRLSCAASGGTFSTYWMGWFRQAPGKEREFVAAISRSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVRHSGTDGDSSFDYWGQGTLVT




VSS





6A-76
2674
EVQLVESGGGLVQPGGSLRLSCAASGLAFDFDGMGWFRQAPGKEREGVAAINSGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARFFRAHDYWGQGTLVTVSS





6A-77
2675
EVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMGWFRQAPGKEREFVAAVTEGGTTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARADYDFDYWGQGTLVTVSS





6A-78
2676
EVQLVESGGGLVQPGGSLRLSCAASGRTYDAMGWFRQAPGKEREFVASVTSGGYTHYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKFGRKIVGATELDYWGQGTLVTVS




S





6A-79
2677
EVQLVESGGGLVQPGGSLRLSCAASGSISSIDYMGWFRQAPGKEREGVSWISSSDGSTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTA VYYCARSPSFSQIYYYYYMDVWGQGTLV




TVSS





6A-80
2678
EVQLVESGGGLVQPGGSLRLSCAASGGTFSFYNMGWFRQAPGKEREFVAFISGNGGTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVVAMRMVTTEGPDVLDVWGQGT




LVTVSS





6A-81
2679
EVQLVESGGGLVQPGGSLRLSCAASGFIGNYHAMGWFRQAPGKEREFVAAVTWSGGTTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREGYYYDSSGYPYYFDYWGQ




GTLVTVSS





6A-82
2680
EVQLVESGGGLVQPGGSLRLSCAASGSSLDAYGMGWFRQAPGKEREFVAAISWGGGSIY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLSQGMVALDYWGQGTLVTV




SS





6A-83
2681
EVQLVESGGGLVQPGGSLRLSCAASGSIASIHAMGWFRQAPGKEREFVAAITWSGAITSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKDGGYGELHYGMEVWGQGTLVT




VSS





6A-84
2682
EVQLVESGGGLVQPGGSLRLSCAASGFTPDDYAMGWFRQAPGKEREFVAAINSGGSYTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDRGPWGQGTLVTVSS





6A-85
2683
EVQLVESGGGLVQPGGSLRLSCAASGGTFSVFAMGWFRQAPGKEREFVSAINWSGGSLLY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALFGDFDYWGQGTLVTVSS





6A-86
2684
EVQLVESGGGLVQPGGSLRLSCAASGPISGINRMGWFRQAPGKEREFVAVITSNGRPSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVRLSSGYFDFDYWGQGTLVTVSS





6A-87
2685
EVQLVESGGGLVQPGGSLRLSCAASGTSIMVGAMGWFRQAPGKEREFVAIIRGDGRTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARFAGWDAFDIWGQGTLVTVSS





6A-88
2686
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTHWMGWFRQAPGKEREFVAVINWSGGSIY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLSSDGYNYFDFWGQGTLVTV




SS





6A-89
2687
EVQLVESGGGLVQPGGSLRLSCAASGTIFASAMGWFRQAPGKEHQFVAVVNWNGSSTVY




ADNVKGRFTIIADNSKNTAYLQMNSLKPEDTAVYYCTTVDQYFNYWGQGTLVTVSS





6A-90
2688
EVQLVESGGGLVQPGGSLRLSCAASGFPFSIWPMGWFRQAPGKEREFVAAVRWSSTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATGECDGGSCSLAYWGQGTLVTVS




S





6A-91
2689
EVQLVESGGGLVQPGGSLRLSCAASGRTFGNYAMGWFRQAPGKEREFVASISSSGVSKHY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVRFGSSWARDLDQWGQGTLVTVS




S





6A-92
2690
EVQLVESGGGLVQPGGSLRLSCAASGFLFDSYASMGWFRQAPGKEREFVATlWRRGNTY




YANYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTETGTAAWGQGTLVTVSS





6A-93
2691
EVQLVESGGGLVQPGGSLRLSCAASGLPFSTKSMGWFRQAPGKEREFVAAISMSGLTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCLKVLGGDYEADNWFDYWGQGTLV




TVSS





6A-94
2692
EVQLVESGGGLVQPGGSLRLSCAASGNIFRIETMGWFRQAPGKEREFVAGIIRSGGETLYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARSLYYDRSGSYYFDYWGQGTLVT




VSS





6A-95
2693
EVQLVESGGGLVQPGGSLRLSCAASGIPSSIRAMGWFRQAPGKEREFVAVIRWTGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDIGYYDSSGYYNDGGFDYWG




QGTLVTVSS





6A-96
2694
EVQLVESGGGLVQPGGSLRLSCAASGFTLSGNWMGWFRQAPGKEREFVAIITSGGRTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAGHATFGGSSSSYYYGMDVWGQG




TLVTVSS





6A-97
2695
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSLAMGWFRQAPGKEREFVAAITWSGDITNY




ADSVKGRFTITADNSKNTAYLQMNSLKPEDTAVYYCLRLSSSGFDHWGQGTLVTVSS





6A-98
2696
EVQLVESGGGLVQPGGSLRLSCAASGTFGHYAMGWFRQAPGKEREFVAAINWSSRSTVY




ADSVKGRFTITADNSKNTAYLQMNSLKPEDTAVYYCAKSDGLMGELRSASAFDIWGQGT




LVTVSS





6A-99
2697
EVQLVESGGGLVQPGGSLRLSCAASGIPFRSRTMGWFRQAPGKEREFVAGISRSGASTAYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTHANDYGDYWGQGTLVTVSS





6A-100
2698
EVQLVESGGGLVQPGGSLRLSCAASGGTFSTSWMGWFRQAPGKEREYVAHITAGGLSNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLLVREDWYFDLWGQGTLVTVS




S





6A-101
2699
EVQLVESGGGLVQPGGSLRLSCAASGGTFSLFAMGWFRQAPGKEREFVAAISWTGDSTYY




KYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAYNNSSGEYWGQGTLVTVSS





6A-102
2700
EVQLVESGGGLVQPGGSLRLSCAASGSSFSAYAMGWFRQAPGKEREFVSAIDSEGTTTYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAGDYNFWSGFDHWGQGTLVTVSS





6A-103
2701
EVQLVESGGGLVQPGGSLRLSCAASGRTSSPIAMGWFRQAPGKEREPVAVRWSDDYTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKKLGGYYAFDIWGQGTLVTVSS





6A-104
2702
DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDSRYMDVWGQGTLVTVSS





6A-105
2703
EVQLVESGGGLVQPGGSLRLSCAASGPTFSSMGWFRQAPGKEREFVAAISWDGGATAYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIEIVVGGIYWGQGTLVTVSS





6A-106
2704
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPGKEREFVAATSWSGGSKY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDLYYMDVWGQGTLVTVSS





6A-107
2705
EVQLVESGGGLVQPGGSLRLSCAASGGVGFSVTNMGWFRQAPGKEREFVAVISSSSSTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTFNWNDEGFDYWGQGTLVTVSS





6A-108
2706
EVQLVESGGGLVQPGGSLRLSCAASGGTFGSYGMGWFRQAPGKEREFVAAIRWSGGITY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARERYWNPLPYYYYGMDVWGQ




GTLVTVSS





6A-109
2707
EVQLVESGGGLVQPGGSLRLSCAASGGTFSTYAMGWFRQVPGKEREFVASIDWSGLTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGPFYMYCSGTKCYSTNWFDPWG




QGTLVTVSS





6A-110
2708
EVQLVESGGGLVQPGGSLRLSCAASGPIYAVNRMGWFRQAPGKEREFVAGIWRSGGHRD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGEIDILTGYWYDYWGQGTLV




TVSS





6A-111
2709
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYWMGWFRQAPGKEREFVGGISRSGVSTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTLLYYYDSSGYSFDAFDIWGQGT




LVTVSS





6A-112
2710
EVQLVESGGGLVQPGGSLRLSCAASGGTFSAYHMGWFRQAPGKERELVTIIDNGGPTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTALLYYFDNSGYNFDPFDIWGQGTL




VTGSS





2A-H1
2711
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYATDWVRQAPGKGLEWVSIISGSGGATYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGGYCSSDTCWWEYWLDPWGQ




GTLVTVSS





2A-H2
2712
EVQLLESGGGLVQPGGSLRLSCAASGFTFSAFAMGWVRQAPGKGLEWVSAITASGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARQSDGLPSPWHFDLGGQGTLVT




VSS





2A-H3
2713
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQGTLVT




VSS





2A-H4
2714
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRHAMNWVRQAPGKGLEWVSGISGSGDETY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPASYYDSSGYYWHNGMD




VWGQGTLVTVSS





2A-H5
2715
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADCLPSPWYLDLWGQGTLVT




VSS





2A-H6
2716
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQGTLVT




VSS





2A-H7
2717
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYPMNWVRQAPGKGLEWVSTISGSGGNTFY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTVSS





2A-H8
2718
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAITGSGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQGTLVT




VSS





2A-H9
2719
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYPMNWVRQAPGKGLEWVSTISGSGGITFY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTVSS





2A-H10
2720
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYPMNWVRQAPGKGLEWVSAISGSGDNTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTVSS





2A-H11
2721
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAITGTGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWGQGTLVTVSS





2A-H12
2722
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYPMNWVRQAPGKGLEWVSAITGSGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTVSS





2A-H13
2723
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQGTLVT




VSS





2A-H14
2724
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQGTLVT




VSS





2A-H15
2725
EVQLLESGGGLVQPGGSLRLSCAASGFTFPRYAMSWVRQAPGKGLEWVSTISGSGSTTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLIDAFDIWGQGTLVTVSS





2A-L1
2726
DIQMTQSPSSLSASVGDRVTITCRASQSIHRFLNWYQQKPGKAPKLLIYAASNLHSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSYGLPPTFGQGTKVEIK





2A-L2
2727
DIQMTQSPSSLSASVGDRVTITCRASQSIHISLNWYQQKPGKAPKLLIYLASPLASGVPSRFS




GSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-L3
2728
DIQMTQSPSSLSASVGDRVTITCRASQSIHTYLNWYQQKPGKAPKLLIYAASALASGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-L4
2729
DIQMTQSPSSLSASVGDRVTITCRASQTINTYLNWYQQKPGKAPKLLIYSASTLQSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSYSTFTFGQGTKVEIK





2A-L5
2730
DIQMTQSPSSLSASVGDRVTITCRASQNIHTYLNWYQQKPGKAPKLLIYAASTFAKGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-L6
2731
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-L7
2732
DIQMTQSPSSLSASVGDRVTITCRASQSIGNYLNWYQQKPGKAPKLLIYGVSSLQSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPLTFGQGTKVEIK





2A-L8
2733
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-L9
2734
DIQMTQSPSSLSASVGDRVTITCRASQSIDNYLNWYQQKPGKAPKLLIYGVSALQSGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPPYFFGQGTKVEIK





2A-L10
2735
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYGASALESGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPPYFFGQGTKVEIK





2A-L11
2736
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-L12
2737
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYGVSALQSGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYFFGQGTKVEIK





2A-L13
2738
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-L14
2739
DIQMTQSPSSLSASVGDRVTITCRASQSIDNYLNWYQQKPGKAPKLLIYGVSALQSGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPLTFGQGTKVEIK





2A-L15
2740
DIQMTQSPSSLSASVGDRVTITCRASQRIGTYLNWYQQKPGKAPKLLIYAASNLEGGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQNYSTTWTFGQGTKVEIK





2A-H16
2741
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSVISGSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGYRDYLWYFDLWGQGTLVT




VSS





2A-H17
2742
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMSWVRQAPGKGLEWVSAISGSAGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVRQGLRRTWYYFDYWGQGTL




VTVSS





2A-H18
2743
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMYWVRQAPGKGLEWVSAISGSAGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTNDFWSGYSIFDPWGQGTLV




TVSS





2A-H19
2744
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYTMSWVRQAPGKGLEWVSVISGSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGYRDYLWYFDLWGQGTLVT




VSS





2A-H20
2745
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYDMSWVRQAPGKGLEWVSVISGSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGPLVGWYFDLWGQGTLVTVSS





2A-L16
2746
DIQMTQSPSSLSASVGDRVTITCTGTSSDVGSYDLVSWYQQKPGKAPKLLIYEGNKRPSGV




PSRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSSVVFGQGTKVEIK





2A-L17
2747
DIQMTQSPSSLSASVGDRVTITCTGTSSDVGSSNLVSWYQQKPGKAPKLLIYEGSKRPSGV




PSRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSLYVFGQGTKVEIK





2A-L18
2748
DIQMTQSPSSLSASVGDRVTITCTGTSSDIGSYNLVSWYQQKPGKAPKLLIYEGTKRPSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSRTYVFGQGTKVEIK





2A-L19
2749
DIQMTQSPSSLSASVGDRVTITCTGTSTDVGSYNLVSWYQQKPGKAPKLLIYEGTKRPSGV




PSRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSYTSVVFGQGTKVEIK





2A-L20
2750
DIQMTQSPSSLSASVGDRVTITCTGTSSNVGSYNLVSWYQQKPGKAPKLLIYEGTKRPSGV




PSRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSSSFVVFGQGTKVEIK





3A-H1
2751
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMSWVRQAPGKGLEWVSSISGGGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDNWGQG




TLVTVSS





3A-H2
2752
EVQLLESGGGLVQPGGSLRLSCAASGFTFSAYSMSWVRQAPGKGLEWVSAISGSGGSRYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCGRSKWPQANGAFDIWGQGTLVTV




SS





3A-H3
2753
EVQLLESGGGLVQPGGSLRLSCAASGFMFGNYAMSWVRQAPGKGLEWVAAISGSGGSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGYSSSWYGGFDYWGQGT




LVTVSS





3A-H4
2754
EVQLLESGGGLVQPGGSLRLSCAASGFTFRNHAMAWVRQAPGKGLEWVSGISGSGGTTY




YGDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGTRFLQWSLPLDVWGQGTLV




TVSS





3A-H5
2755
EVQLLESGGGLVQPGGSLRLSCAASGFTIPNYAMSWVRQAPGKGLEWVSGISGAGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQGTLVT




VSS





3A-H6
2756
EVQLLESGGGLVQPGGSLRLSCAASGFTFRNYAMAWVRQAPGKGLEWVSGISGSGGTTY




YGDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGTRFLEWSLPLDVWGQGTLV




TVSS





3A-H7
2757
EVQLLESGGGLVQPGGSLRLSCAASGFTIRNYAMSWVRQAPGKGLEWVSSISGGGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDNWGQG




TLVTVSS





3A-H8
2758
EVQLLESGGGLVQPGGSLRLSCAASGFTIPNYAMSWVRQAPGKGLEWVSGISGSGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQGTLVT




VSS





3A-H9
2759
EVQLLESGGGLVQPGGSLRLSCAASGFTITNYAMSWVRQAPGKGLEWVSGISGSGAGTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHAWWKGAGFFDHWGQGTLVT




VSS





3A-H10
2760
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMSWVRQAPGKGLEWVSSISGGGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDNWGQG




TLVTVSS





3A-H11
2761
EVQLLESGGGLVQPGGSLRLSCAASGFTITNYAMSWVRQAPGKGLEWVSGISGSGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQGTLVT




VSS





3A-H12
2762
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMNWVRQAPGKGLEWVSAISGSGGSTN




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGLKFLEWLPSAFDIWGQGTL




VTVSS





3A-H13
2763
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMSWVRQAPGKGLEWVSSISGGGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDNWGQG




TLVTVSS





3A-H14
2764
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYAMSWVRQAPGKGLEWVSSISGGGASTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDNWGQG




TLVTVSS





3A-H15
2765
EVQLLESGGGLVQPGGSLRLSCAASGFTITNYAMSWVRQAPGKGLEWVSGISGSGAGTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQGTLVT




VSS





3A-L1
2766
DIQMTQSPSSLSASVGDRVTITCRASQSIRKYLNWYQQKPGKAPKLLIYASSTLQRGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSLSTPFTFGQGTKVEIK





3A-L2
2767
DIQMTQSPSSLSASVGDRVTITCRASQNIKTYLNWYQQKPGKAPKLLIYAASKLQSGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTSPTFGQGTKVEIK





3A-L3
2768
DIQMTQSPSSLSASVGDRVTITCRASQTIYSYLNWYQQKPGKAPKLLIYATSTLQGGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQHRGTFGQGTKVEIK





3A-L4
2769
DIQMTQSPSSLSASVGDRVTITCRASRSIRRYLNWYQQKPGKAPKLLIYASSSLQAGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSYSTLLTFGQGTKVEIK





3A-L5
2770
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSSLQSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSYSPPFTFGQGTKVEIK





3A-L6
2771
DIQMTQSPSSLSASVGDRVTITCRASRSISRYLNWYQQKPGKAPKLLIYAASSLQAGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSYSSLLTFGQGTKVEIK





3A-L7
2772
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSLSPPFTFGQGTKVEIK





3A-L8
2773
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYASSSLQSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPRTFGQGTKVEIK





3A-L9
2774
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYAASSLKSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPRTFGQGTKVEIK





3A-L10
2775
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSLSTPFTFGQGTKVEIK





3A-L11
2776
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYAASSLKSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPLTFGQGTKVEIK





3A-L12
2777
DIQMTQSPSSLSASVGDRVTITCRTSQSINTYLNWYQQKPGKAPKLLIYGASNVQSGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSYRIPRTFGQGTKVEIK





3A-L13
2778
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSFSPPFTFGQGTKVEIK





3A-L14
2779
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSFSTPFTFGQGTKVEIK





3A-L15
2780
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYAASSLKSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPRTFGQGTKVEIK





3A-H16
2781
EVQLLESGGGLVQPGGSLRLSCAASGFTFTNFAMSWVRQAPGKGLEWVSAISGRGGGTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDAHGYYYDSSGYDDWGQGT




LVTVSS





3A-H17
2782
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYPMSWVRQAPGKGLEWVSTISGSGGITYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGVYGSTVTTCHWGQGTLVTVS




S





3A-H18
2783
EVQLLESGGGLVQPGGSLRLSCAASGFTLTSYAMSWVRQAPGKGLEWVSAISGSGVDTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPTNWGFDYWGQGTLVTVSS





3A-H19
2784
EVQLLESGGGLVQPGGSLRLSCAASGFTFINYAMSWVRQAPGKGLEWVSTISTSGGNTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADSNWASSAYWGQGTLVTVSS





3A-H20
2785
EVQLLESGGGLVQPGGSLRLSCAASGFPFSTYAMSWVRQAPGKGLEWVSGISVSGGFTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDPYSYGYYYYYGMDVWGQGT




LVTVSS





3A-H21
2786
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMGWVRQAPGKGLEWVSGISGGGVSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARARNWGPSDYWGQGTLVTVS




S





3A-H22
2787
EVQLLESGGGLVQPGGSLRLSCAASGFIFSDYAMTWVRQAPGKGLEWVSAISGSAFYADS




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDATYSSSWYNWFDPWGQGTLVTV




SS





3A-H23
2788
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYAMTWVRQAPGKGLEWVSDISGSGGSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGTVTSFDFWGQGTLVTVSS





3A-H24
2789
EVQLLESGGGLVQPGGSLRLSCAASGFTFSIYAMGWVRQAPGKGLEWVSFISGSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDYHSASWFSAAADYWGQGTL




VTVSS





3A-H25
2790
EVQLLESGGGLVQPGGSLRLSCAASGFTFASYAMTWVRQAPGKGLEWVSAISESGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGQEYSSGSSYFDYWGQGTLV




TVSS





3A-H26
2791
EVQLLESGGGLVQPGGSLRLSCAASGFTFSEYAMSWVRQAPGKGLEWVSAITGSGGSTYY




GDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGSQTPYCGGDCPETFDYWGQG




TLVTVSS





3A-H27
2792
EVQLLESGGGLVQPGGSLRLSCAASGFTFDDYAMSWVRQAPGKGLEWVSGISGGGTSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLYSSGWYGFDYWGQGTLV




TVSS





3A-H28
2793
EVQLLESGGGLVQPGGSLRLSCAASGFTFNNYAMNWVRQAPGKGLEWVSAISGSVGSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDNYDFWSGYYTNWFDPWGQ




GTLVTVSS





3A-H29
2794
EVQLLESGGGLVQPGGSLRLSCAASGFTFTNHAMSWVRQAPGKGLEWVSAISGSGSNIYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDSLSVTMGRGVVTYYYYGMD




FWGQGTLVTVSS





3A-L16
2795
DIQMTQSPSSLSASVGDRVTITCRASQIIGSYLNWYQQKPGKAPKLLIYTTSNLQSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSYITPWTFGQGTKVEIK





3A-L17
2796
DIQMTQSPSSLSASVGDRVTITCRASQSISRYINWYQQKPGKAPKLLIYEASSLESGVPSRFS




GSGSGTDFTLTISSLQPEDFATYYCQQSHITPLTFGQGTKVEIK





3A-L18
2797
DIQMTQSPSSLSASVGDRVTITCRASQSIYTYLNWYQQKPGKAPKLLIYSASNLHSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSDTTPWTFGQGTKVEIK





3A-L19
2798
DIQMTQSPSSLSASVGDRVTITCRASQSIATYLNWYQQKPGKAPKLLIYGASSLEGGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQTFSSPFTFGQGTKVEIK





3A-L20
2799
DIQMTQSPSSLSASVGDRVTITCRASQNINTYLNWYQQKPGKAPKLLIYSASSLQSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSSLTPWTFGQGTKVEIK





3A-L21
2800
DIQMTQSPSSLSASVGDRVTITCRASQGIATYLNWYQQKPGKAPKLLIYYASNLQSGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTRFTFGQGTKVEIK





3A-L22
2801
DIQMTQSPSSLSASVGDRVTITCRASERISNYLNWYQQKPGKAPKLLIYTASNLESGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSYTPPRTFGQGTKVEIK





3A-L23
2802
DIQMTQSPSSLSASVGDRVTITCRASQSISSSLNWYQQKPGKAPKLLIYAASRLQDGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPRSFGQGTKVEIK





3A-L24
2803
DIQMTQSPSSLSASVGDRVTITCRASQSISSHLNWYQQKPGKAPKLLIYRASTLQSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQTYNTPQTFGQGTKVEIK





3A-L25
2804
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLIWYQQKPGKAPKLLIYAASRLHSGVPSRFS




GSGSGTDFTLTISSLQPEDFATYYCQQGYNTPRTFGQGTKVEIK





3A-L26
2805
DIQMTQSPSSLSASVGDRVTITCRASPSISTYLNWYQQKPGKAPKLLIYTASRLQTGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQTYSTPSSFGQGTKVEIK





3A-L27
2806
DIQMTQSPSSLSASVGDRVTITCRASQNIAKYLNWYQQKPGKAPKLLIYGASGLQSGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSHSPPITFGQGTKVEIK





3A-L28
2807
DIQMTQSPSSLSASVGDRVTITCRASQSIGTYLNWYQQKPGKAPKLLIYAASNLHSGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQESYSAPYTFGQGTKVEIK





3A-L29
2808
DIQMTQSPSSLSASVGDRVTITCRASQSISPYLNWYQQKPGKAPKLLIYKASSLQSGVPSRF




SGSGSGTDFTLTISSLQPEDFATYYCQQSSSTPYTFGQGTKVEIK





4A-H51
2809
EVQLVESGGGLVQPGGSLRLSCAASGPGTAIMGWFRQAPGKEREFVARISTSGGSTKYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTTVTTPPLIWGQGTLVTVSS





4A-H52
2810
EVQLVESGGGLVQPGGSLRLSCAASGRSFSNSVMGWFRQAPGKEREFVARITWNGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTVSS





4A-H53
2811
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAVSWSGSGVY




YADSVKGRFTITADNSKNTAYLQMNSLKPENTAVYYCATDPPLFWGQGTLVTVSS





4A-H54
2812
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDARMGWFRQAPGKEREFVGAVSWSGGTTV




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTEDPYPRWGQGTLVTVSS





4A-H49
2813
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARASPNTGWHFDHWGQGTLVT




VSS





4A-H55
2814
EVQLVESGGGLVQPGGSLRLSCAASGSGLSINAMGWFRQAPGKERESVAAISWSGGSTYT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAYQAGWGDWGQGTLVTVSS





4A-H39
2815
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNAAMGWFRQAPGKEREFVARILWTGASRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTVSS





4A-H56
2816
EVQLVESGGGLVQPGGSLRLSCAASGFSLDYYGMGWFRQAPGKERESVAAISWNGDFTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKRANPTGAYFDYWGQGTLVT




VSS





4A-H33
2817
EVQLVESGGGLVQPGGSLRLSCAASGFTFSRHDMGWFRQAPGKEREFVAGINWESGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRGVYGGRWYRTSQYTWGQ




GTLVTVSS





4A-H57
2818
EVQLVESGGGLVQPGGSLRLSCAASGLTFRNYAMGWFRQAPGKEREFVAAIGSGGYTDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVKPGWVARDPSQYNWGQGTLV




TVSS





4A-H25
2819
EVQLVESGGGLVQPGGSLRLSCAASGGTFSRYAMGWFRQAPGKEREWVSAVDSGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAASPSLRSAWQWGQGTLVTVSS





4A-H58
2820
EVQLVESGGGLVQPGGSLRLSCAASGFTLDYYDMGWFRQAPGKEREFVAAVTWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQGT




LVTVSS





4A-H59
2821
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSAGYTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPLFCWHFDLWGQGTLVTV




SS





4A-H6
2822
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDIMGWFRQAPGKEREFVAAIHWSAGYTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGHVDLWGQGTLVT




VSS





4A-H61
2823
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSADYTPY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPNTGWHFDHWGQGTLVTVS




S





4A-H3
2824
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATATPNTGWHFDHWGQGTLVT




VSS





4A-H62
2825
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGGSTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H43
2826
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAGINWSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H5
2827
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWTGGYTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H42
2828
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKERECVAAINWSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H63
2829
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDYTMGWFRQAPGKEREFVAAINWSGGYTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H6
2830
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYGMGWFRQAPGKEREFVATINWSGALTH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATLPFYDFWSGYYTGYYYMDV




WGQGTLVTVSS





4A-H40
2831
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFLAGVTWSGSSTF




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H21
2832
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDIMGWFRQAPGKEREFVAAISWSGGNTHY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H64
2833
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATASPNTGWHFDHWGQGTLVT




VSS





4A-H47
2834
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDDYVMGWFRQAPGKEREFVAAVSGSGDDT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQG




TLVTVSS





4A-H65
2835
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATEPPLSCWHFDLWGQGTLVTV




SS





4A-H18
2836
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSGGYTPY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPNTGWHFDHWGQGTLVTVS




S





4A-H66
2837
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREIVAAINWSAGYTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCCHFDLWGQGTLVTV




SS





4A-H36
2838
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAISWSGGTTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H67
2839
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGDSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H16
2840
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGGTTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H11
2841
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAIHWSGSSTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H68
2842
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKERELVGTINWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H34
2843
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSGGYTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H28
2844
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKERELVAAINWNGGNT




HYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H69
2845
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGGTTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H7
2846
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGYTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGHVDLWGQGTLVT




VSS





4A-H71
2847
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREWVASINWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H23
2848
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAGISWNGGSIY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H9
2849
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYEMGWFRQAPGKEREFVAAISWRGGTTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAGDYDWGQGT




LVTVSS





4A-H72
2850
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGYTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGHVDLWGQGTLVT




VSS





4A-H73
2851
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGGSTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H29
2852
EVQLVESGGGLVQPGGSLRLSCAASGVTLDDYAMGWFRQAPGKEREFVAVINWSGGSTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGGWVPSSTSESLNWYFDRW




GQGTLVTVSS





4A-H41
2853
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSGGTTPY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCCHVDLWGQGTLVTVS




S





4A-H74
2854
EVQLVESGGGLVQPGGSLRLSCAASGLTFSDDTMGWFRQAPGKEREFVAAVSWSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H75
2855
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWTGGYTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H31
2856
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVATINWTAGYTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCWHFDHWGQGTLVTV




SS





4A-H32
2857
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGNTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H15
2858
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYTMGWFRQAPGKEREFVAAINWSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H14
2859
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAGINWSGNGVY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H76
2860
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYAMGWFRQAPGKERELVAPINWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H50
2861
EVQLVESGGGLVQPGGSLRLSCAASGGTFSNSGMGWFRQAPGKERELVAVVNWSGRRTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVPWMDYNRRDWGQGTLVTVS




S





4A-H17
2862
EVQLVESGGGLVQPGGSLRLSCAASGQLANFASYAMGWFRQAPGKEREFVAAITRSGSST




VYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTMNPNPRWGQGTLVTVSS





4A-H37
2863
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDIMGWFRQAPGKEREFVAAINWTGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H44
2864
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATARPNTGWHFDHWGQGTLVT




VSS





4A-H77
2865
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREWVGSINWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H78
2866
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAGMTWSGSSTF




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H79
2867
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERECVAAINWSGDYTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H8
2868
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVGGINWSGGYTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H81
2869
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAVNWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H82
2870
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYAMGWFRQAPGKEREFVAAINWSGGYTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H83
2871
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGYTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H35
2872
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARASPNTGWHFDRWGQGTLVT




VSS





4A-H45
2873
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSGGYTH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H84
2874
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAITWSGGRTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDRPLFWGQGTLVTVSS





4A-H85
2875
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSGGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATASPNTGWHFDHWGQGTLVT




VSS





4A-H86
2876
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAIHWSGSSTRY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H87
2877
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDYTMGWFRQAPGKEREWVAAINWSGGTTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H88
2878
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGDNTH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H89
2879
EVQLVESGGGLVQPGGSLRLSCAASGFAFGDNWIGWFRQAPGKEREWVASISSGGTTAY




ADNVKGRFTIIADNSKNTAYLQMNSLKPEDTAVYYCAHRGGWLRPWGYWGQGTLVTVS




S





4A-H9
2880
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVGRINWSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H91
2881
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVGGISWSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H92
2882
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H46
2883
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGYTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H20
2884
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSADYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCWHFDHWGQGTLVTV




SS





4A-H93
2885
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGSSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H4
2886
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREMVAA1NWIAGYTA




DADSVRRLFTITADNNKNTAHLMMNLLKPENTAVYYCAEPSPNTGWHFDHWGQGTLVT




VSS





4A-H2
2887
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGNTP




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H94
2888
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGDNTH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H95
2889
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPLFCWHFDHWGQGTLVTV




SS





4A-H12
2890
EVQLVESGGGLVQPGGSLRLSCAASGFTFGDYVMGWFRQAPGKEREIVAAINWNAGYTA




YADSVRGLFTITADNSKNTAYLQMNSLKPEDTAVYYCAKASPNTGWHFDHWGQGTLVT




VSS





4A-H30
2891
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYTMGWFRQAPGKEREFVAAINWTGGYTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H27
2892
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYTA




YADSVKGLFTITADNSKNTAYLQMNILKPEDTAVYYCARATPNTGWHFDHWGQGTLVT




VSS





4A-H22
2893
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSGDNTH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H96
2894
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYTPY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCCHFDHWGQGTLVTVS




S





4A-H97
2895
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGYTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPNTGWHFDHWGQGTLVT




VSS





4A-H98
2896
EVQLVESGGGLVQPGGSLRLSCAASGFTWGDYTMGWFRQAPGKEREFVAAINWSGGNT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQG




TLVTVSS





4A-H99
2897
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPGKEREFVAAVSSLGPFTRY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKPGWVARDPSQYNWGQGTLV




TVSS





4A-
2898
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAINWSGGST


H100

YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQG




TLVTVSS





4A-
2899
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNAAMGWFRQAPGKEREFVARILWTGASRS


H101

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTVSS





4A-
2900
EVQLVESGGGLVQPGGSLRLSCAASGGTFGVYHMGWFRQAPGKEREGVAAINMSGDDS


H102

AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAILVGPGQVEFDHWGQGTLVT




VSS





4A-
2901
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMGWFRQAPGKEREFVARI--


H103

SGSTFYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAALPFVCPSGSYSDYGDE




YDWGQGTLVTVSS





4A-
2902
EVQLVESGGGLVQPGGSLRLSCAASGRTFSGDFMGWFRQAPGKEREFVGRINWSGGNTY


H104

YADSVRGLFTITADNNKNTAYLMMNLLKPEDTAVYYCPTDPPLFWGLGTLVTWSS





4A-
2903
EVQLVESGGGLVQPGGSLRLSCAASGSTLRDYAMGWFRQAPGKERESVAAITWSGGSTA


H105

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASLLAGDRYFDYWGQGTLVTVS




S





4A-
2904
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYTMGWFRQAPGKEREFVAAITDNGGSKY


H106

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQGT




LVTVSS





4A-
2905
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSYGMGWFRQAPGKEREFVAAINWSGASTY


H107

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDWRDRTWGNSLDYWGQGTL




VTVSS





4A-
2906
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAISWSEDNT


H108

YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQG




TLVTVSS





4A-
2907
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAVSGSGDDT


H109

YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQG




TLVTVSS





4A-H11
2908
EVQLVESGGGLVQPGGSLRLSCAASGNIAAINVMGWFRQAPGKEREFVAAISASGRRTDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARRVYYYDSSGPPGVTFDIWGQG




TLVTVSS





4A-
2909
EVQLVESGGGLVQPGGSLRLSCAASGIITSRYVMGWFRQAPGKEREGVAAISTGGSTIYAD


H111

SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARQDSSSPYFDYWGQGTLVTVSS





4A-
2910
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAISNSGLSTY


H112

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQGT




LVTVSS





4A-
2911
EVQLVESGGGLVQPGGSLRLSCAASGSISSINVMGWFRQAPGKEREFVATMRWSTGSTYY


H113

ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAQRVRGFFGPLRTTPSWYEWGQG




TLVTVSS





4A-
2912
EVQLVESGGGLVQPGGSLRLSCAASGLTFILYRMGWFRQAPGKEREFVAAINNFGTTKYA


H114

DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTHYDFWSGYTSRTPNYFDYWGQ




GTLVTVSS





4A-
2913
EVQLVESGGGLVQPGGSLRLSCAASGGTFSVYHMGWFRQAPGKEREPVAAISWSGGSTA


H115

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVNTWTSPSFDSWGQGTLVTV




SS





4A-
2914
EVQLVESGGGLVQPGGSLRLSCAASGRAFSTYGMGWFRQAPGKEREFVAGINWSGDTPY


H116

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREVGPPPGYFDLWGQGTLVTV




SS





4A-
2915
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDIAMGWFRQAPGKEREFVASINWGGGNTY


H117

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWGQGT




LVTVSS





4A-
2916
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSARMGWFRQAPGKEREFVAAISWSGDNTH


H118

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTVSS





4A-
2917
EVQLVESGGGLVQPGGSLRLSCAASGFAFSSYAMGWFRQAPGKEREWVATINGDDYTYY


H119

ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVATPGGYGLWGQGTLVTVSS





4A-H12
2918
EVQLVESGGGLVQPGGSLRLSCAASGITFRRHDMGWFRQAPGKEREFVAAIRWSSSSTVY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRGVYGGRWYRTSQYTWGQG




TLVTVSS





4A-
2919
EVQLVESGGGLVQPGGSLRLSCAASGTAASFNPMGWFRQAPGKEREFVAAITSGGSTNYA


H121

DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAIAYEEGVYRWDWGQGTLVTVSS





4A-
2920
EVQLVESGGGLVQPGGSLRLSCAASGNINIINYMGWFRQAPGKEREGVAAIHWNGDSTAY


H122

ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASGPPYSNYFAYWGQGTLVTVSS





4A-
2921
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYAMGWFRQAPGKERESVAAISGSGGSTAY


H123

ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKIMGSGRPYFDHWGQGTLVTVS




S





4A-
2922
EVQLVESGGGLVQPGGSLRLSCAASGNIFTRNVMGWFRQAPGKEREFVAAITSSGSTNYA


H124

DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARPSSDLQGGVDYWGQGTLVTVSS





4A-
2923
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSIAMGWFRQAPGKEREFVASINWGGGNTIY


H125

ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWGQGTL




VTVSS





4A-
2924
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPGKEREFVAAVSSLGPFTRY


H126

ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKPGWVARDPSEYNWGQGTLV




TVSS





4A-
2925
EVQLVESGGGLVQPGGSLRLSCAASGFTLDDSAMGWFRQAPGKEREWVAAITNGGSTYY


H127

ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARFARGSPYFDFWGQGTLVTVSS





4A-
2926
EVQLVESGGGLVQPGGSLRLSCAASGSISSFNAMGWFRQAPGKERESVAAIDWDGSTAYA


H128

DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGGYYGSGSFEYWGQGTLVTVS




S





4A-
2927
EVQLVESGGGLVQPGGSLRLSCAASGNIFSDNIIGWFRQAPGKEREMVAYYTSGGSIDYAD


H129

SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGTAVGRPPPGGMDVWGQGTLVT




VSS





4A-H13
2928
EVQLVESGGGLVQPGGSLRLSCAASGSISSIGAMGWFRQAPGKEREGVAAISSSGSSTVYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVPPGQAYFDSWGQGTLVTVSS





4A-
2929
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYGMGWFRQAPGKERELVATITWSGDSTY


H131

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKGGSWYYDSSGYYGRWGQGT




LVTVSS





4A-
2930
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYTMGWFRQAPGKEREWVSAISWSTGSTY


H132

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRYGPPWYDWGQGTLVTVS




S





4A-
2931
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSVGMGWFRQAPGKERELVAVINWSGARTY


H134

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVPWMDYNRRDWGQGTLVTVS




S





4A-
2932
EVQLVESGGGLVQPGGSLRLSCAASGRIFTNTAMGWFRQAPGKEREGVAAINWSGGSTA


H135

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTSGSYSFDYWGQGTLVTVSS





4A-
2933
EVQLVESGGGLVQPGGSLRLSCAASGEEFSDHWMGWFRQAPGKEREFVGAIHWSGGRTY


H136

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQGT




LVTVSS





4A-
2934
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSIAMGWFRQAPGKEREFVAAINWSGARTAY


H137

ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWGQGTL




VTVSS





4A-
2935
EVQLVESGGGLVQPGGSLRLSCAASGSTSSLRTMGWFRQAPGKEREGVAAISSRDGSTIYA


H138

DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDDSSSPYFDYWGQGTLVTVSS





4A-
2936
EVQLVESGGGLVQPGGSLRLSCAASGGGTFGSYAMGWFRQAPGKEREFVAAISIASGASG


H139

GTTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTMNPNPRWGQGTLVTV




SS





4A-H14
2937
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNAAMGWFRQAPGKEREFVARITWNGGSTF




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTVSS





4A-
2938
EVQLVESGGGLVQPGGSLRLSCAASGIILSDNAMGWFRQAPGKEREFVAAISWLGESTYY


H141

ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWGQGTL




VTVSS





4A-
2939
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWNGGYTA


H142

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTSPNTGWHYYRWGQGTLVT




VSS





4A-
2940
EVQLVESGGGLVQPGGSLRLSCAASGFNFNWYPMGWFRQAPGKERESVAAISWTGVSTY


H143

TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARWGPGPAGGSPGLVGFDY




WGQGTLVTVSS





4A-
2941
EVQLVESGGGLVQPGGSLRLSCAASGSIRSVSVMGWFRQAPGKEREAVAAISWSGVGTA


H144

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAYQRGWGDWGQGTLVTVSS





4A-
2942
EVQLVESGGGLVQPGGSLRLSCAASGMTFRLYAMGWFRQAPGKEREFVGAINWLSESTY


H145

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKPGWVARDPSEYNWGQGTL




VTVSS





4A-
2943
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGGSTY


H146

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTMVTVSS





4A-
2944
EVQLVESGGGLVQPGGSLRLSCAASGGTFSVYAMGWFRQAPGKEREGVAAISMSGDDAA


H147

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKISKDDGGKPRGAFFDSWGQG




TLVTVSS





4A-
2945
EVQLVESGGGLVQPGGSLRLSCAASGFALGYYAMGWFRQAPGKERESVAAISSRDGSTA


H148

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLATGPQAYFHHWGQGTLVT




VSS





4A-
2946
EVQLVESGGGLVQPGGSLRLSCAASGFNLDDYAMGWFRQAPGKERESVAAISWDGGATA


H149

YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVGRGTTAFDSWGQGTLVTVS




S





4A-H15
2947
EVQLVESGGGLVQPGGSLRLSCAASGNTFSGGFMGWFRQAPGKEREFVASIRSGARTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAQRVRGFFGPLRTTPSWYEWGQGT




LVTVSS





4A-
2948
EVQLVESGGGLVQPGGSLRLSCAASGSIRSINIMGWFRQAPGKEREAVAAISWSGGSTVYA


H151

DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASLLAGDRYFDYWGQGTLVTVSS





7A-1
2949
EVQLVESGGGLVQPGGSLRLSCAASGFTLGDYVMGWFRQAPGKEREFVAAIHSGGSTYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKEYGGTRRYDRAYNWGQGTLV




TVSS





7A-2
2950
EVQLVESGGGLVQPGGSLRLSCAASGGGTFGSYAMGWFRQAPGKERELVAAISSGGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-3
2951
EVQLVESGGGLVQPGGSLRLSCAASGRTYSISAMGWFRQAPGKEREFVAAISMSGDDSAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQLGYESGYSLTYDYDWGQGTL




VTVSS





7A-4
2952
EVQLVESGGGLVQPGGSLRLSCAASGGTFSTYPMGWFRQAPGKEREFVAAITSDGSTLYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAATDYNKAYAREGRRYDWGQGTL




VTVSS





7A-5
2953
EVQLVESGGGLVQPGGSLRLSCAASGSIFRINAMGWFRQAPGKEREFVAAIHWSGSSTRY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQDRRRGDYYTFDYHWGQGTL




VTVSS





7A-6
2954
EVQLVESGGGLVQPGGSLRLSCAASGGTFNNYAMGWFRQAPGKERELVAAITSGGSTDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-7
2955
EVQLVESGGGLVQPGGSLRLSCAASGTIVNINVMGWFRQAPGKEREFVAAIHWSGGLKA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAMNRAGIYEWGQGTLVTVSS





7A-8
2956
EVQLVESGGGLVQPGGSLRLSCAASGSTFSNYAMGWFRQAPGKERELVAAITSGGSTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-9
2957
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDYVMGWFRQAPGKEREFVAAISRSGNLKSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKEYGGTRRYDRAYNWGQGTL




VTVSS





7A-10
2958
EVQLVESGGGLVQPGGSLRLSCAASGSAFRSTVMGWFRQAPGKEREFVAAVIGSSGITDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-11
2959
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDAGMGWFRQAPGKEREFVAAISRSGNLKA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVQVNGTWAWGQGTLVTVSS





7A-12
2960
EVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAMGWFRQAPGKERELVAAISWNGGSTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-13
2961
EVQLVESGGGLVQPGGSLRLSCAASGGTFSTYVMGWFRQAPGKEREFVAAISWSGESTLY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADLMYGVDRRYDWGQGTLVTV




SS





7A-14
2962
EVQLVESGGGLVQPGGSLRLSCAASGISSSKRNMGWFRQAPGKEREFVAGISWTGGITYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIAGRGRWGQGTLVTVSS





7A-15
2963
EVQLVESGGGLVQPGGSLRLSCAASGRRFSAYGMGWFRQAPGKEREFVAVISRSGTLTRY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASSGPADARNGERWHWGQGTLV




TVSS





7A-16
2964
EVQLVESGGGLVQPGGSLRLSCAASGLTFSSFVMGWFRQAPGKEREFVAAISSNGGSTRY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKEYGGTRRYDRAYNWGQGTL




VTVSS





7A-17
2965
EVQLVESGGGLVQPGGSLRLSCAASGTVFSISAMGWFRQAPGKEREFVAAISMSGDDTAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQLGYESGYSLTYDYDWGQGTL




VTVSS





7A-18
2966
EVQLVESGGGLVQPGGSLRLSCAASGSIFSPNVMGWFRQAPGKEREFVAAITNGGSTKYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQRWRGGSYEWGQGTLVTVSS





7A-19
2967
EVQLVESGGGLVQPGGSLRLSCAASGIPASIRVMGWFRQAPGKEREFVAAIHWSGSSTRY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALSRAIVPGDSEYDYRWGQGTLV




TVSS





7A-20
2968
EVQLVESGGGLVQPGGSLRLSCAASGRTFSMSAMGWFRQAPGKEREFVSAISWSGGSTLY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQLGYESGYSLTYDYDWGQGTL




VTVSS





7A-21
2969
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYAMGWFRQAPGKERELVAAITSGGSTDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-22
2970
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYAMGWFRQAPGKERELVAAISTGGSTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-23
2971
EVQLVESGGGLVQPGGSLRLSCAASGRSFSSVGMGWFRQAPGKEREFVAVISRSGASTAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASAGPADARNGERWAWGQGTLV




TVSS





7A-24
2972
EVQLVESGGGLVQPGGSLRLSCAASGRAFRRYTMGWFRQAPGKERELIAVINWSGDRRY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAATLAKGGGRWGQGTLVTVSS





7A-25
2973
EVQLVESGGGLVQPGGSLRLSCAAMAWAGFARRRAKNAKWWRALPRGGPTYADSVKG




RFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGGMWYGSSLYVRFDLLEDGMDWGQGT




LVTVSS





7A-26
2974
EVQLVESGGGLVQPGGSLRLSCAASGSISSINGMGWFRQAPGKERELVALISRSGGTTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASAGPADARNGERWAWGQGTLVT




VSS





7A-27
2975
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNNVMGWFRQAPGKERELVAAAISGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-28
2976
EVQLVESGGGLVQPGGSLRLSCAASGRTFSISAMGWFRQAPGKEREFVAAISRSGTTMYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQLGYESGYSLTYDYDWGQGTLV




TVSS





7A-29
2977
EVQLVESGGGLVQPGGSLRLSCAASGGTFSYYDLAAMGWFRQAPGKEREFVAAISWSQY




NTKYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARVVVRTAHGFEDNWGQ




GTLVTVSS





7A-30
2978
EVQLVESGGGLVQPGGSLRLSCAASGRTFNNYGMGWFRQAPGKEREFVAVISRSGSLKA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASDPTYGSGRWTWGQGTLVTVS




S





7A-31
2979
EVQLVESGGGLVQPGGSLRLNCAASGFTLDDYVMGWFRQTPGKEREFVAAISSSGALTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDAAVYYCAAKEYGGTRRYDRAYNWGQGTL




VTVSS





7A-32
2980
EVQLVESGGGLVQPGGSLRLSCAASGRTFNAMGWFRQAPGKEREFVAAIRWSGDMSVYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQDRRRGDYYTFDYHWGQGTLV




TVSS





7A-33
2981
EVQLVESGGGLVQPGGSLRLSCAASGLTFSTYAMGWFRQAPGKEREFVAAITSGGSTDYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-34
2982
EVQLVESGGGLVQPGGSLRLSCAASGSIFTINAMGWFRQAPGKEREGVAAIGSDGSTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVVRWGADWGQGTLVTVSS





7A-35
2983
EVQLVESGGGLVQPGGSLRLSCAASGLTFSSYAMGWFRQAPGKERELVAAITSSSGSTPA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-36
2984
EVQLVESGGGLVQPGGSLRLSCAASGIPFSTRTMGWFRQAPGKEREFVAAISWSQYNTKY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARHWGMFSRSENDYNWGQGTL




VTVSS





7A-37
2985
EVQLVESGGGLVQPGGSLRLSCAASGRSRFSTYVMGWFRQAPGKEREFVAAISWSQYNT




KYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARYDWGQ




GTLVTVSS





7A-38
2986
EVQLVESGGGLVQPGGSLRLSCAASGLTLSSYGMGWFRQAPGKEREYVAVISRSGSLKAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATRADAEGWWDWGQGTLVTVSS





7A-39
2987
EVQLVESGGGLVQPGGSLRLSCAASGSIFRVNVMGWFRQAPGKEREFVAAINNFGTTKYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADLPSRWGQGTLVTVSS





7A-40
2988
EVQLVESGGGLVQPGGSLRLSCAASGRTFRNYAMGWFRQAPGKERELVAAISSGGSTDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-41
2989
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSFAMGWFRQAPGKERELVAAISSGGSTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-42
2990
EVQLVESGGGLVQPGGSLRLSCAASGTTFRINAMGWFRQAPGKEREFVAAMNWSGGSTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQDRRRGDYYTFDYHWGQGT




LVTVSS





7A-43
2991
EVQLVESGGGLVQPGGSLRLSCAASGFTLGDYVMGWFRQAPGKEREFVAAIHSGGSTLY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKEYGGTRRYDRTYNWGQGTL




VTVSS





7A-44
2992
EVQLVESGGGLVQPGGSLRLSCAASGFTFSRSAMGWFRQAPGKERELVAGILSSGATVYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKAPRDWGQGTLVTVSS





7A-45
2993
EVQLVESGGGLVQPGGSLRLSCAASGRTFNNYAMGWFRQAPGKERELVAAITSGGSTDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-46
2994
EVQLVESGGGLVQPGGSLRLSCAASGFTFRSYPMGWFRQAPGKEREFVAAINNFGTTKYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAKGIGVYGWGQGTLVTVSS





7A-47
2995
EVQLVESGGGLVQPGGSLRLSCAASGNIFTRNVMGWFRQAPGKEREFVAAIHWNGDSTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGSNIGGSRWRYDWGQGTLV




TVSS





7A-48
2996
EVQLVESGGGLVQPGGSLRLSCAASGRTISRYTMGWFRQAPGKERELVAAIKWSGASTVY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWGQGTL




VTVSS





7A-49
2997
EVQLVESGGGLVQPGGSLRLSCAASGFRFSSYGMGWFRQAPGKEREFVAIITSGGLTVYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARKTFYFGTSSYPNDYAWGQGTL




VTVSS





7A-50
2998
EVQLVESGGGLVQPGGSLRLSCAASGRTFDNHAMGWFRQAPGKEREGVAAIGSDGSTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVVRWGVDWGQGTLVTVSS





7A-51
2999
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSHAMGWFRQAPGKEREFVAGISWSGESTLT




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCADVNGDWGQGTLVTVSS





7A-52
3000
EVQLVESGGGLVQPGGSLRLSCAASGMTFRLYAMGWFRQAPGKEREFVAAISWSQYNTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQLGYESGYSLTYDYDWGQG




TLVTVSS





7A-53
3001
EVQLVESGGGLVQPGGSLRLSCAASGGTFRKLAMGWFRQAPGKEREFVAVISWTGGSSY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLTSFATWGQGTLVTVSS





7A-54
3002
EVQLVESGGGLVQPGGSLRLSCAASGRTFSANGMGWFRQAPGKEREFVAAISASGTLRAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARSPMSPTWDWGQGTLVTVSS





7A-55
3003
EVQLVESGGGLVQPGGSLRLSCAASGSAFRSTVMGWFRQAPGKEREFVAAISWTGESTLY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATGPYRSYFARSYLWGQGTLVTV




SS





7A-56
3004
EVQLVESGGGLVQPGGSLRLSCAASGGTFDYSGMGWFRQAPGKEREFVAVVSQSGRTTY




YADSVKGLFTITADNSKNTAYLQMNLLKPEDTAVYYCPTATRPGEWDGGQGTLVTVSR





7A-57
3005
EVQLVESGGGLVQPGGSLRLSCAASGVFGPIRAMGWFRQAPGKERELVALMGNDGSTYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAIGWRWGQGTLVTVSS





7A-58
3006
EVQLVESGGGLVQPGGSLRLSCAASGFNFNWYPMGWFRQAPGKEREFVAAIRWSGGITY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATGPYRSYFARSYLWGQGTLVT




VSS





7A-59
3007
EVQLVESGGGLVQPGGSLRLSCAASGMTFHRYVMGWFRQAPGKERELVASITTGGTPNY




ADSVKGRFTIITDNNKNTAYLLMINLQPEDTAVYYCCKVPYIWGQGTLGTVGT





7A-60
3008
EVQLVESGGGLVQPGGSLRLSCAASGISTMGWFRQAPGKEREFVAAINNFGTTKYADSVK




GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAASQSGSGYDWGQGTLVTVSS





7A-61
3009
EVQLVESGGGLVQPGGSLRLSCAASGRAFNTRAMGWFRQAPGKERELVALMGNDGSTY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAIGWRWGQGTLVTVSS





7A-62
3010
EVOLVESGGGLVOPGGSLRLSCAASGLTDRRYTMGWFRQAPGKEREFVAAINSGGSTLY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGT




LVTVSS





7A-63
3011
EVQLVESGGGLVQPGGSLRLSCAASGRTFNVMGWFRQAPGKERELVALMGNDGSTYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVRWGVDWGQGTLVTVSS





7A-64
3012
EVQLVESGGGLVQPGGSLRLSCAASGRAFNTRAMGWFRQAPGKERELVALMGNDGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAIGWRWGQGTLVTVSS





7A-65
3013
EVQVVESGGGVVHPGGSVRMRCAASGVTVDYSGMGWFGQAPGKEREFVAVVSQSARTT




YYADSVKGRFTISADNSKNTEYLQMNSMKPEDTAVYYCATATRPGEWDWGQGTLVTVS




S





7A-66
3014
EVQLVESGGGLVQPGGSLRLSCAASGRTPRLGAMGWFRQAPGKEREFVAAISRSGGLTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQLVGSNIGGSRWRYDWGQGT




LVTVSS





7A-67
3015
EVQLVESGGGLVQPGGSLRLSCAASGLTFRNYAMGWFRQAPGKEREFVAAITSGGSTLYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGHGTLVTESS





8A-1
3016
EVQLVESGGGLVQPGGSLRLSCAASGGRTFSDLAMGWFRQAPGKEREFVALITRSGGTTF




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIGRGSWGQGTLVTVSS





8A-2
3017
EVQLVESGGGLVQPGGSLRLSCAASGFTFGEYAMGWFRQAPGKEREFVAAVSSLGPFTRY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVLDGYSGSWGQGTLVTVSS





8A-3
3018
EVQLVESGGGLVQPGGSLRLSCAASGFAFSSYGMGWFRQAPGKEREFVAAISWSGVRSG




VSAIYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTDLTGDLWYFDLWGQGT




LVTVSS





8A-4
3019
EVQLVESGGGLVQPGGSLRLSCAASGLTAGTYAMCWFRQAPGKEREGVACASSTDGSTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVRTYGSATYDWGQGTLVTV




SS





8A-5
3020
EVQLVESGGGLVQPGGSLRLSCAASGFTLDDYVMGWFRQAPGKERELVAAVSSLGPFTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKEYGGTRRYDRAYNWGQGT




LVTVSS





8A-6
3021
EVQLVESGGGLVQPGGSLRLSCAASGPTLGSYVMGWFRQAPGKEREFVAAISWSQYNTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQRWRGGSYEWGQGTLVTVS




S





8A-7
3022
EVQLVESGGGLVQPGGSLRLSCAASGPTFSSYVMGWFRQAPGKEREFVAAISWSQYNTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAASRSGSGYDWGQGTLVTVSS





8A-8
3023
EVQLVESGGGLVQPGGSLRLSCAASGYLYSKDCMGWFRQAPGKEREGVATICTGDGSTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVIAYEEGVYRWDWGQGTLVT




VSS





8A-9
3024
EVQLVESGGGLVQPGGSLRLSCAASGFTIDDYAMGWFRQAPGKEREGVAAISGSGDDTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKLPYVSGDYWGQGTLVTVSS





8A-10
3025
EVQLVESGGGLVQPGGSLRLSCAASGGRFSDYGMGWFRQAPGKERELVALISRSGNLKSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKTGTSFVWGQGTLVTVSS





8A-11
3026
DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





8A-12
3027
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPGKEREFVALINRSGGSQFY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIGRGSWGQGTLVTVSS





9A-1
3028
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRLAMGWFRQAPGKEREFVAAISRSGRSTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRSQILFTSRTDYEWGQGTLVT




VSS





9A-2
3029
EVQLVESGGGLVQPGGSLRLSCAASGSFSIAAMGWFRQAPGKEREFVATINYSGGGTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVNTFDESAYAAFACYDVVWGQ




GTLVTVSS





9A-3
3030
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRYAMGWFRQAPGKEREFVAAISRSGKSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAASSVFSDLRYRKNPKWGQGTLV




TVSS





9A-4
3031
EVQLVESGGGLVQPGGSLRLSCAASGRTFSKYAMGWFRQAPGKEREFVSHISRDGGRTFS




SSTMGWFRQAPGKERELVALITPSSRTTYYADSVKGRFTISADNSKNTAYLQMNSLKPED




TAVYYCAIAGRGRWGQGTLVTVSS





9A-5
3032
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYAMGWFRQAPGKEREFVASINWGGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKTKRTGIFTTARMVDWGQGTL




VTVSS





9A-6
3033
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRFAMGWFRQAPGKEREFVAAIRWSGGRTV




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIEPGTIRNWRNRVPFARGNFG




WGQGTLVTVSS





9A-7
3034
EVQLVESGGGLVQPGGSLRLSCAASGLGIAFSRRTAMGWFRQAPGKEREFVAAISWRGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRWIPPGPIWGQGTLVTVS




S





9A-8
3035
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYPMGWFRQAPGKEREFVAAISRSGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKRLRSFASGGSYDWGQGTLVT




VSS





9A-9
3036
EVQLVESGGGLVQPGGSLRLSCAASGGTLRGYGMGWFRQAPGKEREFVASISRSGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRRVTLFTSRADYDWGQGTLV




TVSS





9A-10
3037
EVQLVESGGGLVQPGGSLRLSCAASGRMFSSRSMGWFRQAPGKEREFVALINRSGGSQFY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRWIPPGPIWGQGTLVTVSS





9A-11
3038
EVQLVESGGGLVQPGGSLRLSCAASGRTFGRRAMGWFRQAPGKEREFVAGISRGGGTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWGQGTL




VTVSS





10A-1
3039
EVQLVESGGGLVQPGGSLRLSCAASGLSSPPFDDFPMGWFRQAPGKEREFVSSIYSDDGDS




MYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARQTFDFWSASLGGNFWYFDL




WGQGTLVTVSS





10A-2
3040
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSYSMGWFRQAPGKEREFVSAISWIIGSGGTT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTAGAGDSWGQGTLVTVSS





10A-3
3041
EVQLVESGGGLVQPGGSLRLSCAASGSIFSTRTMGWFRQAPGKEREFVASITKFGSTNYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTRGGGRFFDWLYLRWGQGTLVTVSS





10A-4
3042
EVQLVESGGGLVQPGGSLRLSCAASGRTLWRSNMGWFRQAPGKEREFVASISSFGSTKYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGHGRYFDWLLFARPPDYWGQG




TLVTVSS





10A-5
3043
EVQLVESGGGLVQPGGSLRLSCAASGRSLGIYRMGWFRQAPGKEREFVAAITSGGRKNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKRTIFGVGRWLDPWGQGTLVTVS




S





10A-6
3044
EVQLVESGGGLVQPGGSLRLSCAASGTTLTFRIMGWFRQAPGKEREFVPAISSTGLASYTD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCSKDRAPNCFACCPNGFDVWGQGTLV




TVSS





10A-7
3045
EVQLVESGGGLVQPGGSLRLSCAASGSRFSGRFNILNMGWFRQAPGKEREFVARIGYSGQ




SISYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGRFLGGTEWGQGTLVTVS




S





10A-8
3046
EVQLVESGGGLVQPGGSLRLSCAASGTLFKINAMGWFRQAPGKEREFVAQINRHGVTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGRTIFFGGGRYFDYWGQGTLV




TVSS





10A-9
3047
EVQLVESGGGLVQPGGSLRLSCAASGIPFRSRTMGWFRQAPGKEREFVAGITGSGRSQYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGARIFGSVAPWRGGNYYGMD




VWGQGTLVTVSS





10A-10
3048
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSFRMGWFRQAPGKEREFVAGISRGGSTKYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARASGLWFRRPHVWGQGTLVTVSS





10A-11
3049
EVQLVESGGGLVQPGGSLRLSCAASGRNFRRNSMGWFRQAPGKEREFVAGISWSGARTH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVSRRPRSPPGYYYGMDVWG




QGTLVTVSS





10A-12
3050
EVQLVESGGGLVQPGGSLRLSCAASGRNLRMYRMGWFRQAPGKEREFVATIRWSDGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTRARLRYFDWLFPTNFDYWGQG




TLVTVSS





10A-13
3051
EVQLVESGGGLVQPGGSLRLSCAASGGLTFSSNTMGWFRQAPGKEREFVASISSSGRTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARRVRRLWFRSYFDLWGQGTLVTV




SS





10A-14
3052
EVQLVESGGGLVQPGGSLRLSCAASGFTLAYYAMGWFRQAPGKEREFVAAISWSGRNIN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARERARWFGKFSVSWGQGTLVT




VSS





10A-15
3053
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSFPMGWFRQAPGKEREFVAAISWSGSTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYSACGRLGFGAWGQGTLVTVSS





10A-16
3054
EVQLVESGGGLVQPGGSLRLSCAASGISSSKRNMGWFRQAPGKEREFVATWTSRGITTYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGPPRLWGSYRRKYFDYWGQG




TLVTVSS





10A-17
3055
EVQLVESGGGLVQPGGSLRLSCAASGRTFSIYAMGWFRQAPGKEREFVARITRGGITKYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGLGWLLGYYWGQGTLVTVSS





10A-18
3056
EVQLVESGGGLVQPGGSLRLSCAASGRMYNSYSMGWFRQAPGKEREFVARISPGGTFYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTSARSGWFWRYFDSWGQGTLVTV




SS





10A-19
3057
EVQLVESGGGLVQPGGSLRLSCAASGRTFRSYGMGWFRQAPGKEREFVASISRSGTTMYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARRGLLQWFGAPNSWFDPWGQGT




LVTVSS





10A-20
3058
EVQLVESGGGLVQPGGSLRLSCAASGRTIRTMGWFRQAPGKEREFVATINSRGITNYADS




VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTERDGLLWFRELFRPSWGQGTLVTVS




S





10A-21
3059
EVQLVESGGGLVQPGGSLRLSCAASGRSFSFNAMGWFRQAPGKEREFVARISRFGRTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKVHSYVWGGHSDYWGQGTLVTV




SS





10A-22
3060
EVQLVESGGGLVQPGGSLRLSCAASGRTYYAMGWFRQAPGKEREFVGAIDWSGRRITYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVRFSRLGGVIGRPIDSWGQGTLV




TVSS





10A-23
3061
EVQLVESGGGLVQPGGSLRLSCAASGRAFRRYTMGWFRQAPGKEREFVASITKFGSTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKDRGVLWFGELWYWGQGTLVTV




SS





10A-24
3062
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYRMGWFRQAPGKEREFVASINRGGSTKYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASGKGGSATIFHLSRRPLYFDYWGQ




GTLVTVSS





10A-25
3063
EVQLVESGGGLVQPGGSLRLSCAASGITFSPYAMGWFRQAPGKEREFVATINWSGGYTVY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKRKNRGPLWFGGGGWGYWGQ




GTLVTVSS





10A-26
3064
EVQLVESGGGLVQPGGSLRLSCAASGRTFSGFTMSSTWMGWFRQAPGKEREFVAGIITNG




STNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARRVAYSSFWSGLRKHMDV




WGQGTLVTVSS





10A-27
3065
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYSMGWFRQAPGKEREFVASITPGGNTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASRRRWLTPYIFWGQGTLVTVSS





10A-28
3066
EVQLVESGGGLVQPGGSLRLSCAASGSIFSIGMGWFRQAPGKEREFVARIWWRSGATYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAISIFGRLKWGQGTLVTVSS





10A-29
3067
EVQLVESGGGLVQPGGSLRLSCAASGRTFTSYRMGWFRQAPGKEREFVAEISSSGGYTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVGPLRFLAQRPRLRPDYWGQG




TLVTVSS





10A-30
3068
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSFRFRAMGWFRQAPGKEREFVALIFSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREWGRWLQRGSYWGQGTLVT




VSS





10A-31
3069
EVQLVESGGGLVQPGGSLRLSCAASGRTFGSYGMGWFRQAPGKEREFVATISIGGRTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGSGSGFMWYHGNNNYDRWRY




WGQGTLVTVSS





10A-32
3070
EVQLVESGGGLVQPGGSLRLSCAASGRTFRSYPMGWFRQAPGKEREFVASINRGGSTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGRYDFWSGYYRWFDPWGQGTL




VTVSS





10A-33
3071
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRSDMGWFRQAPGKEREFVAAISWSGGSTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATVPPPRRFLEWLPRRLTYIWGQG




TLVTVSS





10A-34
3072
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYTMGWFRQAPGKEREFVASMRGSRSYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARMSGFPFLDYWGQGTLVTVSS





10A-35
3073
EVQLVESGGGLVQPGGSLRLSCAASGSIFRLSTMGWFRQAPGKEREFVASISSFGSTYYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTRGIFLWFGESFDYWGQGTLVTVS




S





10A-36
3074
EVQLVESGGGLVQPGGSLRLSCAASGIAFRIRTMGWFRQAPGKEREFVASITSGGSTNYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGPRFGGFRGYFDPWGQGTLVTV




SS





10A-37
3075
EVQLVESGGGLVQPGGSLRLSCAASGFTFTSYRMGWFRQAPGKEREFVAGISRFFGTAYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVTRWFGGLDVWGQGTLVTVS




S





10A-38
3076
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRYVMGWFRQAPGKEREFVASISRFGRTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARHHGLGILWWGTMDVWGQGTLV




TVSS





10A-39
3077
EVQLVESGGGLVQPGGSLRLSCAASGRTFSMGWFRQAPGKEREFVASISRFGRTNYADSV




KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKRSTWLPQHFDSWGQGTLVTVSS





10A-40
3078
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTYTMGWFRQAPGKEREFVARIWRSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGVRGVFRAYFDHWGQGTLV




TVSS





10A-41
3079
EVQLVESGGGLVQPGGSLRLSCAASGRNLRMYRMGWFRQAPGKEREFVALISRVGVTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGTSFFNFWSGSLGRVGFDSWG




QGTLVTVSS





10A-42
3080
EVQLVESGGGLVQPGGSLRLSCAASGITIRTHAMGWFRQAPGKEREFVATISRSGGNTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTAGVLRYFDWFRRPYWGQGTLV




TVSS





10A-43
3081
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYHMGWFRQAPGKEREFVAAITSGGRTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTDGLRYFDWFPWASAFDIWGQG




TLVTVSS





10A-44
3082
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYTMGWFRQAPGKEREFVAVISWSGGSTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARKGRWSGMNVWGQGTLVTVS




S





10A-45
3083
EVQLVESGGGLVQPGGSLRLSCAASGRTFSWYPMGWFRQAPGKEREFVASISWGGARTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARSTGPRGSGRYRAHWFDSWG




QGTLVTVSS





10A-46
3084
EVQLVESGGGLVQPGGSLRLSCAASGRTFTSYRMGWFRQAPGKEREFVAAITWNSGRTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCSPSSWPFYFGAWGQGTLVTVSS





10A-47
3085
EVQLVESGGGLVQPGGSLRLSCAASGRPLRRYVMGWFRQAPGKEREFVAAITNGGSTKY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGTPWRLLWFGTLGPPPAFDYW




GQGTLVTVSS





10A-48
3086
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYAMGWFRQAPGKEREFVAAINRSGSTEYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARQHQDFWTGYYTVWGQGTLVTV




SS





10A-49
3087
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYTMGWFRQAPGKEREFVASISRSGTTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEGWRWLQLRGGFDYWGQGTLV




TVSS





10A-50
3088
EVQLVESGGGLVQPGGSLRLSCAASGRTLSTYNMGWFRQAPGKEREFVASISRFGRTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARRGKLSAAMHWFDPWGQGTLVT




VSS





10A-51
3089
EVQLVESGGGLVQPGGSLRLSCAASGRFFSTRVMGWFRQAPGKEREFVARIWPGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDRGIFGVSRWGQGTLVTVSS





10A-52
3090
EVQLVESGGGLVQPGGSLRLSCAASGRFFSICSMGWFRQAPGKEREFVAGINWRSGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGSGWWEYWGQGTLVTVSS





10A-53
3091
EVQLVESGGGLVQPGGSLRLSCAASGRMFSSRSNMGWFRQAPGKEREFVASISSGGTTAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGFGRRFLEWLPRFDYWGQGTL




VTVSS





10A-54
3092
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSARMGWFRQAPGKEREFVAGINMISSTKYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAHFRRFLPRGYVDYWGQGTLVTVS




S





10A-55
3093
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYTMGWFRQAPGKEREFVARIAGGSTYYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARQQYYDFWSGYFRSGYFDLWGQ




GTLVTVSS





10A-56
3094
EVQLVESGGGLVQPGGSLRLSCAASGHTFRNYGMGWFRQAPGKEREFVAAITSSGSTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATVPPPRRFLEWLPRRLTYTWGQGT




LVTVSS





10A-57
3095
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRYAMGWFRQAPGKEREFVASITKFGSTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKERESRFLKWRKTDWGQGTLVTV




SS





10A-58
3096
EVQLVESGGGLVQPGGSLRLSCAASGRNLRMYRMGWFRQAPGKEREFVASISRFGRTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARHDSIGLFRHGMDVWGQGTLVT




VSS





10A-59
3097
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYAMGWFRQAPGKEREFVARISSGGSTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDRGFGFWSGLRGYFDLWGQGTL




VTVSS





10A-60
3098
SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKRKKRGPLWFGGGGWGYWGQGTL




VTVSS





10A-61
3099
EVQLVESGGGLVQPGGSLRLSCAASGIPFRSRTFSAYAMGWFRQAPGKEREFVAQITRGGS




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARRHWFGFDYWGQGTLVTV




SS
















TABLE 16







Variable Domain Light Chain Sequences










SEQ



Variant
ID NO
Sequence





1-1
3100
QSALTQPASVSGSPGQSITISCTGTSSDVGSNNLVSWYQQHPGKAPKLMIYEGDKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYATGFYVFGGGTKLTVL





1-2
3101
QSALTQPASVSGSPGQSITISCTGTSSVGGYNLVSWYQQHPGKAPKLMIYEGSKRPSGV




SNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTLAVFGGGTKLTVL





1-3
3102
QSALTQPASVSGSPGQSITISCTGTSSNVGSYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTFKAYVFGGGTKLTVL





1-4
3103
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTHYVFGGGTKLTVL





1-5
3104
QSALTQPASVSGSPGQSITISCTGTSSDVGSYHLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTFGVVFGGGTKLTVL





1-6
3105
QSALTQPASVSGSPGQSITISCTGTSSDVGSNNLVSWYQQHPGKAPKLMIYEGGKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYSGRYTYVFGGGTKLTVL





1-7
3106
QSALTQPASVSGSPGQSITISCTGTSSDVGNYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTFAVFGGGTKLTVL





1-8
3107
QSALTQPASVSGSPGQSITISCTGTSSDIGSYNLVSWYQQHPGKAPKLMIYEASRPSGVS




NRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSGIFYVFGGGTKLTVL





1-9
3108
QSALTQPASVSGSPGQSITISCTGTGSDVGYNLVSWYQQHPGKAPKLMIYEVSKRPSGV




SNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTFEVFGGGTKLTVL





1-10
3109
QSALTQPASVSGSPGQSITISCTGTSSDVGDYNLVSWYQQHPGKAPKLMIYEGGKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTNVVFGGGTKLTVL





1-11
3110
QSALTQPASVSGSPGQSITISCTGTSSDVGTYNLVSWYQQHPGKAPKLMIYEGYKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGNLWLFGGGTKLTVL





1-12
3111
QSALTQPASVSGSPGQSITISCTGTSSDVGHYNLVSWYQQHPGKAPKLMIYEGGKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGRDTYVAFGGGTKLTVL





1-13
3112
QSALTQPASVSGSPGQSITISCTGTSSDVGRYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSRTVVFGGGTKLTVL





1-14
3113
QSALTQPASVSGSPGQSITISCTGASSDVGSYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSGVFGGGTKLTVL





1-15
3114
QSALTQPASVSGSPGQSITISCTGTSTDVGSYNLVSWYQQHPGKAPKLMIYEGFKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTLGVFGGGTKLTVL





1-16
3115
QSALTQPASVSGSPGQSITISCTGTTSDVGSYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAKDEADYYCSYTSSRTGVFGGGTKLTVL





1-17
3116
QSALTQPASVSGSPGQSITISCTATSSDVGSYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSWVFGGGTKLTVL





1-18
3117
QSALTQPASVSGSPGQSITISCTGTSSDVGSNNLVSWYQQHPGKAPKLMIYEGSKWPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSFAGSSTDVVFGGGTKLTVL





1-19
3118
QSALTQPASVSGSPGQSITISCTGASSDVGSYNLVSWYQQHPGKAPKLMIYEGFKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSHTYVFGGGTKLTVL





1-20
3119
QSALTQPASVSGSPGQSITISCTGTSSDVGSYYLVSWYQQHPGKAPKLMIYEGFKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSLYVFGGGTKLTVL





1-21
3120
QSALTQPASVSGSPGQSITISCTGTSSDVGSYSLVSWYQQHPGKAPKLMIYEGDKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSRRVFGGGTKLTVL





1-22
3121
QSALTQPASVSGSPGQSITISCTGSSSDVGSYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSNWVFGGGTKLTVL





1-23
3122
QSALTQPASVSGSPGQSITISCTGTSSDVGYYNLVSWYQQHPGKAPKLMIYEGGKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTPYVVFGGGTKLTVL





1-24
3123
QSALTQPASVSGSPGQSITISCTGTSSDVGSNNLVSWYQQHPGKAPKLMIYEGSKWPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSFAGSSTDVVFGGGTKLTVL





1-25
3124
QSALTQPASVSGSPGQSITISCTGTSSDVGSSNLVSWYQQHPGKAPKLMIYEGDKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYGVVFGGGTKLTVL





1-26
3125
QSALTQPASVSGSPGQSITISCTGTSSDIGSYNLVSWYQQHPGKAPKLMIYEGFKRPSGV




SNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYSVVFGGGTKLTVL





1-27
3126
QSALTQPASVSGSPGQSITISCTGTSSDVGAYNLVSWYQQHPGKAPKLMIHEGNKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGDSFPYVFGGGTKLTVL





1-28
3127
QSALTQPASVSGSPGQSITISCTGTSRDVGSYNLVSWYQQHPGKAPKLMIYEASKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTLYVFGGGTKLTVL





1-29
3128
QSALTQPASVSGSPGQSITISCTGTSSDVGHYNLVSWYQQHPGKAPKLMIYEGGKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSIYVFGGGTKLTVL





1-30
3129
QSALTQPASVSGSPGQSITISCTGTSSDVGNYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGTVVFGGGTKLTVL





1-31
3130
QSALTQPASVSGSPGQSITISCTGTSSDVGKYNLVSWYQQHPGKAPKLMIYEGSQRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTVFGGGTKLTVL





1-32
3131
QSALTQPASVSGSPGQSITISCTGTSSDVGSNNLVSWYQQHPGKAPKLMIYEGDKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYTGSYTVVFGGGTKLTVL





1-33
3132
QSALTQPASVSGSPGQSITISCTGTSSDVGDYNLVSWYQQHPGKAPKLMIYEGGKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTNVVFGGGTKLTVL





1-34
3133
QSALTQPASVSGSPGQSITISCTGTSSDVGKYNLVSWYQQHPGKAPKLMIYEASKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCYSYAGSYTLGVFGGGTKLTVL





1-35
3134
QSALTQPASVSGSPGQSITISCTGTSSDVGSYNHVSWYQQHPGKAPKLMIYEGGKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGTTTPFVFGGGTKLTVL





1-36
3135
QSALTQPASVSGSPGQSITISCTGTSSDVGKYNLVSWYQQHPGKAPKLMIYETRKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTVVFGGGTKLTVL





2A-1
3136
DIQMTQSPSSLSASVGDRVTITCRASQSIHRFLNWYQQKPGKAPKLLIYAASNLHSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYGLPP-TFGQGTKVEIK





2A-10
3137
DIQMTQSPSSLSASVGDRVTITCRASQSIHISLNWYQQKPGKAPKLLIYLASPLASGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-5
3138
DIQMTQSPSSLSASVGDRVTITCRASQSIHTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-2
3139
DIQMTQSPSSLSASVGDRVTITCRASQTINTYLNWYQQKPGKAPKLLIYSASTLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTFTFGQGTKVEIK





2A-4
3140
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-6
3141
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-11
3142
DIQMTQSPSSLSASVGDRVTITCRASQSIGNYLNWYQQKPGKAPKLLIYGVSSLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPLTFGQGTKVEIK





2A-12
3143
DIQMTQSPSSLSASVGDRVTITCRASQSIDNYLNWYQQKPGKAPKLLIYGVSALQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPPYFFGQGTKVEIK





2A-13
3144
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYGASALESGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPPYFFGQGTKVEIK





2A-14
3145
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYGVSALQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYFFGQGTKVEIK





2A-7
3146
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-8
3147
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-15
3148
DIQMTQSPSSLSASVGDRVTITCRASQSIDNYLNWYQQKPGKAPKLLIYGVSALQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPLTFGQGTKVEIK





2A-9
3149
DIQMTQSPSSLSASVGDRVTITCRASQRIGTYLNWYQQKPGKAPKLLIYAASNLEGGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQNYSTTWTFGQGTKVEIK





2A-16
3150
DIQMTQSPSSLSASVGDRVTITCTGTSSDVGSYDLVSWYQQKPGKAPKLLIYEGNKRPS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSSVVFGQGTKVEIK





2A-17
3151
DIQMTQSPSSLSASVGDRVTITCTGTSSDVGSSNLVSWYQQKPGKAPKLLIYEGSKRPS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSLYVFGQGTKVEIK





2A-18
3152
DIQMTQSPSSLSASVGDRVTITCTGTSSDIGSYNLVSWYQQKPGKAPKLLIYEGTKRPSG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSRTYVFGQGTKVEIK





2A-19
3153
DIQMTQSPSSLSASVGDRVTITCTGTSTDVGSYNLVSWYQQKPGKAPKLLIYEGTKRPS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSYTSVVFGQGTKVEIK





2A-2
3154
DIQMTQSPSSLSASVGDRVTITCTGTSSNVGSYNLVSWYQQKPGKAPKLLIYEGTKRPS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSSSFVVFGQGTKVEIK





2A-21
3155
DIQMTQSPSSLSASVGDRVTITCRASQSIHTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-22
3156
DIQMTQSPSSLSASVGDRVTITCRASQSIHTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLOPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-23
3157
DIQMTQSPSSLSASVGDRVTITCRASQTINTFLNWYQQKPGKAPKLLIYSASTLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTFTFGGGTKVEIK





2A-24
3158
SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYRTPPWTFGGGTKVEIK





2A-25
3159
DIQMTQSPSSLSASVGDRVTITCRSSQSISSYLNWYQQKPGEAPKLLIYGASRLRSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQGYSAPWTFGGGTKVEIK





2A-26
3160
DIQMTQSPSSLSASVGDRVTITCRASQSISGSLNWYQQKPGKAPKLLIYAESRLHSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSPPQTFGGGTKVEIK





2A-27
3161
DIQMTQSPSSLSASVGDRVTITCRASRSISTYLNWYQQKPGKAPKLLIYAASNLQGGVP




SRLSGSGSGTDFTLTISSLQPEDFATYYCQQSHSIPRTFGGGTKVEIK





2A-28
3162
DIQMTQSPSSLSASVGDRVTITCRASQSIHTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLOPEDFATYYCQQSYSAPPYTFGQGTKVEIK





3A-10
3163
DIQMTQSPSSLSASVGDRVTITCRASQSIRKYLNWYQQKPGKAPKLLIYASSTLQRGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSLSTPFTFGGGTKVEIK





3A-4
3164
DIQMTQSPSSLSASVGDRVTITCRASRSIRRYLNWYQQKPGKAPKLLIYASSSLQAGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTLLTFGQGTKVEIK





3A-7
3165
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYASSSLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPRTFGQGTKVEIK





3A-1
3166
DIQMTQSPSSLSASVGDRVTITCRASQTIYSYLNWYQQKPGKAPKLLIYATSTLQGGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQHRGTFGQGTKVEIK





3A-5
3167
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYAASSLKSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPRTFGQGTKVEIK





3A-6
3168
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSSLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSPPFTFGQGTKVEIK





3A-15
3169
DIQMTQSPSSLSASVGDRVTITCRASQNIKTYLNWYQQKPGKAPKLLIYAASKLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTSPTFGQGTKVEIK





3A-3
3170
DIQMTQSPSSLSASVGDRVTITCRASRSISRYLNWYQQKPGKAPKLLIYAASSLQAGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSSLLTFGQGTKVEIK





3A-11
3171
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSLSPPFTFGQGTKVEIK





3A-8
3172
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYAASSLKSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPLTFGQGTKVEIK





3A-2
3173
DIQMTQSPSSLSASVGDRVTITCRTSQSINTYLNWYQQKPGKAPKLLIYGASNVQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYRIPRTFGQGTKVEIK





3A-12
3174
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSLSTPFTFGQGTKVEIK





3A-14
3175
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSTPFTFGQGTKVEIK





3A-9
3176
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYAASSLKSGVPS




RFSGSGSGTDFTLTISSLOPEDFATYYCQQSYSLPRTFGQGTKVEIK





3A-13
3177
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSPPFTFGQGTKVEIK





3A-16
3178
DIQMTQSPSSLSASVGDRVTITCRASQIIGSYLNWYQQKPGKAPKLLIYTTSNLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYITPWTFGQGTKVEIK





3A-17
3179
DIQMTQSPSSLSASVGDRVTITCRASQSISRYINWYQQKPGKAPKLLIYEASSLESGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSHITPLTFGQGTKVEIK





3A-18
3180
DIQMTQSPSSLSASVGDRVTITCRASQSIYTYLNWYQQKPGKAPKLLIYSASNLHSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSDTTPWTFGQGTKVEIK





3A-19
3181
DIQMTQSPSSLSASVGDRVTITCRASQSIATYLNWYQQKPGKAPKLLIYGASSLEGGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQTFSSPFTFGQGTKVEIK





3A-2
3182
DIQMTQSPSSLSASVGDRVTITCRASQNINTYLNWYQQKPGKAPKLLIYSASSLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSSLTPWTFGQGTKVEIK





3A-21
3183
DIQMTQSPSSLSASVGDRVTITCRASQGIATYLNWYQQKPGKAPKLLIYYASNLQSGVP




SRFSGSGSGTDFTLTISSLOPEDFATYYCQQSYSTRFTFGQGTKVEIK





3A-22
3184
DIQMTQSPSSLSASVGDRVTITCRASERISNYLNWYQQKPGKAPKLLIYTASNLESGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTPPRTFGQGTKVEIK





3A-23
3185
DIQMTQSPSSLSASVGDRVTITCRASQSISSSLNWYQQKPGKAPKLLIYAASRLQDGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPRSFGQGTKVEIK





3A-24
3186
DIQMTQSPSSLSASVGDRVTITCRASQSISSHLNWYQQKPGKAPKLLIYRASTLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQTYNTPQTFGQGTKVEIK





3A-25
3187
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLIWYQQKPGKAPKLLIYAASRLHSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQGYNTPRTFGQGTKVEIK





3A-26
3188
DIQMTQSPSSLSASVGDRVTITCRASPSISTYLNWYQQKPGKAPKLLIYTASRLQTGVPS




RFSGSGSGTDFTLTISSLOPEDFATYYCQQTYSTPSSFGQGTKVEIK





3A-27
3189
DIQMTQSPSSLSASVGDRVTITCRASQNIAKYLNWYQQKPGKAPKLLIYGASGLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSPPITFGQGTKVEIK





3A-28
3190
DIQMTQSPSSLSASVGDRVTITCRASQSIGTYLNWYQQKPGKAPKLLIYAASNLHSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQESYSAPYTFGQGTKVEIK





3A-29
3191
DIQMTQSPSSLSASVGDRVTITCRASQSISPYLNWYQQKPGKAPKLLIYKASSLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSSSTPYTFGQGTKVEIK
















TABLE 17







Antibody Sequences












SEQ




Antibody
ID NO
Sequence







Antibody 1
3192
EVQLVESGGGLVQPGGSLRL





SCAASGSTFSINAMGWFRQA





PGKEREFVAGITSSGGYTNY





ADSVKGRFTISADNSKNTAY





LQMNSLKPEDTAVYYCAADG





VPEYSDYASGPVWGQGTLVT





VSSGGGGSGGGGSASEVQLV





ESGGGLVQPGGSLRLSCAAS





GFTFSPSWMGWFRQAPGKER





EFVATINEYGGRNYADSVKG





RFTISADNSKNTAYLQMNSL





KPEDTAVYYCARVDRDFDYW





GQGTLVTVSSGGGGSEPKSS





DKTHTCPPCPAPELLGGPSV





FLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVKFNWYVD





GVEVHNAKTKPREEQYNSTY





RVVSVLTVLHQDWLNGKEYK





CKVSNKALPAPIEKTISKAK





GQPREPQVYTLPPSREEMTK





NQVSLTCLVKGFYPSDIAVE





WESNGQPENNYKTTPPVLDS





DGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKS





LSLSPG







Antibody 2
3193
EVQLVESGGGLVQPGGSLRL





SCAASGFTFSPSWMGWFRQA





PGKEREFVATINEYGGRNYA





DSVKGRFTISADNSKNTAYL





QMNSLKPEDTAVYYCARVDR





DFDYWGQGTLVTVSSGGGGS





EPKSSDKTHTCPPCPAPELL





GGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVKF





NWYVDGVEVHNAKTKPREEQ





YNSTYRVVSVLTVLHQDWLN





GKEYKCKVSNKALPAPIEKT





ISKAKGQPREPQVYTLPPSR





EEMTKNQVSLTCLVKGFYPS





DIAVEWESNGQPENNYKTTP





PVLDSDGSFFLYSKLTVDKS





RWQQGNVFSCSVMHEALHNH





YTQKSLSLSPGGGGGSGGGG





SASEVQLVESGGGLVQPGGS





LRLSCAASGSTFSINAMGWF





RQAPGKEREFVAGITSSGGY





TNYADSVKGRFTISADNSKN





TAYLQMNSLKPEDTAVYYCA





ADGVPEYSDYASGPVWGQGT





LVTVSS










Example 7: Preventative v Therapeutic Studies of SARS-CoV-2 Antibodies in Hamsters

This example is designed to compare low dose (1 mg/kg) preventative treatment to therapeutic low dose (1.5 mg/kg), early post-infection treatment in hamsters.


In a therapeutic model, hamsters treated at 6 and 48 hours post SARS-CoV-2 infection challenge compared to vehicle with significant protection particularly on days 5-8 (FIG. 22).


While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the disclosure. It should be understood that various alternatives to the embodiments of the disclosure described herein may be employed in practicing the disclosure. It is intended that the following claims define the scope of the disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A multispecific antibody comprising at least two binding domains to a spike glycoprotein or a receptor of the spike glycoprotein: (a) a first binding domain of the at least two binding domains comprising a first variable domain, heavy chain region (VH), wherein the first VH region comprises complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein (i) an amino acid sequence of CDRH1 is as set forth in any one of SEQ ID NOs: 1-122; (ii) an amino acid sequence of CDRH2 is as set forth in any one of SEQ ID NOs: 652-773; and (iii) an amino acid sequence of CDRH3 is as set forth in any one of SEQ ID NOs: 1303-1425; and(b) a second binding domain of the at least two binding domains comprising a second variable domain, heavy chain region (VH), wherein the first VH region comprises complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein (i) an amino acid sequence of CDRH1 is as set forth in any one of SEQ ID NOs: 123-651; (ii) an amino acid sequence of CDRH2 is as set forth in any one of SEQ ID NOs: 774-1302; and (iii) an amino acid sequence of CDRH3 is as set forth in any one of SEQ ID NOs: 1426-1953.
  • 2. The multispecific antibody of claim 1, wherein the multispecific antibody is bispecific, trispecific, or tetraspecific.
  • 3. The multispecific antibody of claim 1, wherein the multispecific antibody is bispecific.
  • 4. The multispecific antibody of claim 1, wherein the multispecific antibody is bivalent, trivalent, or tetravalent.
  • 5. The multispecific antibody of claim 1, wherein the multispecific antibody is bivalent.
  • 6. The multispecific antibody of claim 1, wherein the antibody or antibody fragment comprises a KD of less than 50 nM.
  • 7-9. (canceled)
  • 10. A multispecific antibody comprising at least two binding domains to a spike glycoprotein or a receptor of the spike glycoprotein: (a) a first binding domain of the at least two binding domains comprising a first variable domain, heavy chain region (VH) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 2212-2333; and(b) a second binding domain of the at least two binding domains comprising a second variable domain, heavy chain region (VH) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 2334-3099.
  • 11. The multispecific antibody of claim 10, wherein the multispecific antibody is bispecific, trispecific, or tetraspecific.
  • 12. (canceled)
  • 13. The multispecific antibody of claim 10, wherein the multispecific antibody is bivalent, trivalent, or tetravalent.
  • 14. (canceled)
  • 15. The multispecific antibody of claim 10, wherein the antibody or antibody fragment comprises a KD of less than 50 nM.
  • 16-18. (canceled)
  • 19. A nucleic acid composition comprising: a) a first nucleic acid encoding a first variable domain, heavy chain region (VH) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 2212-2333; b) a second nucleic acid encoding a second variable domain, heavy chain region (VH) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 2334-3099; and an excipient.
  • 20. A method of treating a SARS-CoV-2 infection, comprising administering the multispecific antibody of claim 1.
  • 21. The method of claim 20, wherein the multispecific antibody is administered prior to exposure to SARS-CoV-2.
  • 22. The method of claim 21, wherein the multispecific antibody is administered at least about 1 week prior to exposure to SARS-CoV-2.
  • 23. The method of claim 21, wherein the multispecific antibody is administered at least about 1 month prior to exposure to SARS-CoV-2.
  • 24. (canceled)
  • 25. The method of claim 19, wherein the multispecific antibody is administered after exposure to SARS-CoV-2.
  • 26. (canceled)
  • 27. The method of claim 25, wherein the multispecific antibody is administered at most about 1 week after exposure to SARS-CoV-2.
  • 28. The method of claim 25, wherein the multispecific antibody is administered at most about 1 month after exposure to SARS-CoV-2.
  • 29. A method of treating an individual with a SARS-CoV-2 infection with the multispecific antibody of claim 1 comprising: (a) obtaining or having obtained a sample from the individual;(b) performing or having performed an expression level assay on the sample to determine expression levels of SARS-CoV-2 antibodies; and(c) if the sample has an expression level of the SARS-CoV-2 antibodies then administering to the individual the antibody or antibody fragment of claim 1, thereby treating the SARS-CoV-2 infection.
  • 30. A method of diagnosing an individual with a SARS-CoV-2 infection with the multispecific antibody of claim 1 comprising: (a) obtaining or having obtained a sample from the individual; and(b) performing or having performed an expression level assay on the sample to determine expression levels of SARS-CoV-2 antibodies using the multispecific antibody of claim 1.
CROSS REFERENCE

This application claims the benefit of U.S. Provisional Patent Application No. 63/272,645, filed on Oct. 27, 2021 and U.S. Provisional Patent Application No. 63/374,505, filed on Sep. 2, 2022, which are each herein incorporated by reference in their entirety.

Provisional Applications (2)
Number Date Country
63272645 Oct 2021 US
63374505 Sep 2022 US