This application claims priority to Chinese Patent Application No. 201810220153.5, filed on Mar. 16, 2018, the entire disclosure of which is hereby incorporated by reference.
This disclosure relates to the field of mobile terminal technology, and particularly to a multiway switch, a radio frequency system, and a wireless communication device.
With the widespread use of electronic devices such as smart phones, the smart phone can support an increasing number of applications and is becoming more and more powerful. The smart phone is developing in a diversified and personalized way, becoming indispensable electronic products in users' life. In the fourth generation (4G) mobile communication system, the electronic device generally adopts a single-antenna or dual-antenna radio frequency (RF) system architecture. Currently, in a new radio (NR) system of the fifth generation (5G) mobile communication system, an electronic device supporting a four-antenna RF system architecture is proposed.
Implementations of the disclosure provide a multiway switch, a radio frequency system, and a wireless communication device.
According to a first aspect of implementations of the disclosure, a multiway switch is provided. The multiway switch is applicable to a wireless communication device. The wireless communication device is operable in a single-frequency single-transmit mode. The multiway switch includes five T ports and 2n P ports. The five T ports are configured to be coupled with a radio frequency circuit. The 2n P ports are configured to be coupled with an antenna system including 2n antennas. The five T ports include one first T port coupled with all of (that is, fully coupled with) the 2n P ports. n is an integer and n≥2.
The multiway switch is configured to be coupled with the radio frequency circuit and the antenna system to implement a preset function of the wireless communication device. The preset function is a function of transmitting a sounding reference signal (SRS) through the 2n antennas corresponding to the 2n P ports in turn.
According to a second aspect of implementations of the disclosure, a radio frequency system is provided. The radio frequency system includes an antenna system, a radio frequency circuit, and a multiway switch.
The multiway switch includes five T ports and 2n P ports. The five T ports are configured to be coupled with the radio frequency circuit. The 2n P ports are configured to be coupled with the antenna system. The five T ports include one first T port coupled with all of the 2n P ports. n is an integer and n≥2.
The antenna system includes 2n antennas.
The multiway switch is coupled with the radio frequency circuit and the antenna system to implement a preset function of the wireless communication device. The preset function is a function of transmitting an SRS through the 2n antennas corresponding to the 2n P ports in turn. n is an integer and n≥2.
According to a third aspect of implementations of the disclosure, a wireless communication device is provided. The wireless communication device includes an antenna system, a radio frequency circuit, and a multiway switch.
The multiway switch includes five T ports and 2n P ports. The five T ports are configured to be coupled with the radio frequency circuit. The 2n P ports are configured to be coupled with the antenna system. The five T ports include one first T port coupled with all of the 2n P ports. n is an integer and n≥2.
The antenna system includes 2n antennas.
The multiway switch is coupled with the radio frequency circuit and the antenna system to implement a preset function of the wireless communication device. The preset function is a function of transmitting an SRS through the 2n antennas corresponding to the 2n P ports in turn.
To describe technical solutions in implementations of the present disclosure or in the related art more clearly, the following briefly introduces the accompanying drawings required for describing the implementations or the related art. Apparently, the accompanying drawings in the following description only illustrate some implementations of the present disclosure. Those of ordinary skill in the art may also obtain other drawings based on these accompanying drawings without creative efforts.
In order to illustrate technical solutions of implementations of the present disclosure more clearly, technical solutions in implementations of the present disclosure will be described clearly and completely hereinafter with reference to the accompanying drawings described in the previous chapter. Apparently, the described implementations are merely some rather than all implementations of the present disclosure. All other implementations obtained by those of ordinary skill in the art based on the implementations of the present disclosure without creative efforts shall fall within the protection scope of the present disclosure.
The terms “first”, “second”, and the like used in the specification, the claims, and the accompany drawings of the present disclosure are to distinguish different objects rather than describe a particular order. The terms “include”, “comprise”, and “have” as well as variations thereof are intended to cover non-exclusive inclusion. For example, a process, method, system, product, or apparatus including a series of steps or units is not limited to the listed steps or units. Instead, it can optionally include other steps or units that are not listed; alternatively, other steps or units inherent to the process, method, product, or device can also be included.
The term “embodiment” or “implementation” referred to herein means that a particular feature, structure, or characteristic described in conjunction with the implementation may be contained in at least one implementation of the present disclosure. The phrase appearing in various places in the specification does not necessarily refer to the same implementation, nor does it refer to an independent or alternative implementation that is mutually exclusive with other implementations. It is explicitly and implicitly understood by those skilled in the art that an implementation described herein may be combined with other implementations.
The “electronic device” involved in the implementations of the present disclosure may include various handheld devices, in-vehicle devices, wearable devices, computing devices that have wireless communication functions or other processing devices connected to the wireless modem, as well as various forms of user equipments (UE), mobile stations (MS), terminal devices, and the like. For the convenience of description, the above-mentioned devices are collectively referred to as an electronic device.
In order to better understand a multiway switch and related products provided in the implementations of the present disclosure, the following implementations of the present disclosure will be described in detail.
At present, sounding reference signal (SRS) switching in four antennas of a mobile phone is a mandatory option for China mobile communications corporation (CMCC) in the China mobile fifth generation (5G) Scale Test Technical White Paper_Terminal, which is optional in the 3rd generation partnership project (3GPP). Its main purpose is for a base station to determine quality and parameters of four channels via measuring uplink signals of the four antennas of the mobile phone, to perform a beamforming of a downlink massive multi-input multi-output (MIMO) antenna array on the four channels according to a channel reciprocity, and finally to obtain the best data transmission performance for a downlink 4×4 MIMO.
In order to satisfy requirements of SRS switching in four antennas, implementations of the present disclosure provide a radio frequency architecture based on a simplified four-P-ports-and-n-T-ports (4PnT) antenna switch. In the implementations of the present disclosure, the 4PnT antenna switch is embodied as four-P-ports-and-five-T-ports (4P5T) antenna switch. In other implementations of the present disclosure, the 4PnT antenna switch can include other numbers of T ports, which is not limited herein. Compared with a 3P3T/DPDT/multiway small switch switching scheme, the present switching scheme can reduce the number of series switches in each path (all or part of switches are integrated into the 4P5T switch), thereby reducing link loss and optimizing the overall transmission and reception performance of the terminal. The implementations of the present disclosure are described in detail below.
The following describes some terms of the disclosure to facilitate understanding of those skilled in the art.
“P port” in the disclosure is the abbreviation of “pole port”, which refers to ports coupled with antennas of the multiway switch. “T port” in the disclosure is the abbreviation of “throw port”, which refers to ports coupled with radio frequency circuit of the multiway switch. The multiway switch is a 4P5T switch for example, that is, the four P ports are configured to be coupled with the antenna system and the five T ports are configured to be coupled with the radio frequency circuit. “Module” herein can refer to circuits and any combination of related components.
The concept of “coupling”, “full coupling (fully coupled)”, or other kinds of coupling between the T ports and the P ports of the multiway switch described in the implementations of the disclosure refers to a state in which the T ports are coupled with the P ports through first switch transistors. The concept of “full coupling” (fully coupled) of the T ports and the P ports of the multiway switch described in the implementations of the disclosure refers to a state in which the T ports are coupled with all of the P ports through first switch transistors. For example, a first T port is fully coupled with four P ports means the first T port is coupled with all of the four P ports. One T port or one P port may be one port of a second switch transistor. The first switch transistors are configured to control a unidirectional communication between the T ports and the P ports (including a unidirectional communication from the T ports to the P ports and a unidirectional communication from the P ports to the T ports). The first switch transistor can be, for example, a switch array including three metal-oxide-semiconductor (MOS) transistors. When the first switch transistor is disconnected and not grounded, parasitic parameters will greatly affect performance of other connected ports. Therefore, the first switch transistor is implemented with three MOS transistors, where the three MOS transistors can be in a common source connection, that is, coupled at a common source. When the first switch transistor is disconnected, two MOS transistors at two ends are disconnected and one MOS transistor in the middle is grounded. The second switch transistor is configured to enable a corresponding port (T port or P port) and can be, for example, a MOS transistor. The specific configurations of the first switch transistor and the second switch transistor are not limited herein. As one implementation, the wireless communication device can control paths between the T ports and the P ports to switch on through the first switch transistors. As one implementation, the wireless communication device can be provided with a dedicated controller to be coupled with switch transistors of the multiway switch.
The term “first T port” can also be named “one-to-all T port”. The first T port (one-to-all T port) refers to a T port coupled with all of P ports. The term “second T port” can also be named “one-to-one T port”. The first T port (one-to-all T port) refers to a T port coupled with a corresponding one P port.
The transmitting a sounding reference signal (SRS) through the four antennas corresponding to the four P ports in turn refers to a process in which the wireless communication device interacts with a base station based on polling mechanism to determine quality of an uplink channel corresponding to each antenna.
The “transmit-receive port”, “transmit port”, or “receive port” refers to a port (may be composed of one or more components) which implements a corresponding transmission and/or reception function and is located on the path of a transmitter circuit, on the path of a receive circuit, on the path of after a integration of one or more transmitter circuits and/or one or more receive circuits. It should be noted that the ports such as transmit ports, receive ports, and transmit-receive ports illustrated in the figures are exemplary and do not intent to indicate an exact port position and impose any restriction.
The following implementations of the present disclosure will be described in detail.
The multiway switch 10 is configured to be coupled with the radio frequency circuit 20 and the antenna system 30 to implement a preset function of the wireless communication device 100. The preset function is a function of transmitting an SRS through the four antennas corresponding to the four P ports in turn, which can be understood as a 2n-port SRS function.
The following describes the case where n=2, that is, four antennas and four P ports are configured, as an example. It is to be noted that, the number of the antennas and the P ports are not limited to 4, and the number thereof can be extended to 2n (n being an integer and n≥2) in the implementations of the disclosure. In the case where 2n antennas and 2n P ports are configured, with regard to logical composition of the radio frequency circuit, physical composition of the radio frequency circuit, coupling between the independent circuit modules and the T ports, coupling between the T ports and the P ports, coupling between the P ports and the antennas, and the like, reference may be made in the following implementations. As for the principle of achieving the transmitting an SRS through the 2n antennas in turn and the structure of simplified switch, reference may further be made to related descriptions in the following implementations.
The multiway switch 10 is configured to be coupled with the radio frequency circuit 20 and the antenna system 30 to implement a preset function of the wireless communication device 100. The preset function is a function of transmitting an SRS through the four antennas corresponding to the four P ports in turn, which can be understood as a four-port SRS function.
As an implementation, the wireless communication device 100 may be a mobile phone or other terminal devices supporting the fifth generation new radio (5G NR), such as a customer premise equipment (CPE) or a mobile wireless-fidelity (MIFI).
The multiway switch 10 includes field-effect transistors (FET). As one T port of the five T ports are coupled with all of the four P ports, and each of other T ports is only coupled with one P port and further coupled with one fixed antenna for receiving via the one P port, the number of built-in FETs, volume, and cost of the 4P4T switch can be reduced and performance can be improved. Details will be described hereinafter.
For example, among the five T ports, if each T port is coupled with all of the four P ports, as illustrated in
In addition, the wireless communication device 100 further includes a radio frequency transceiver. The radio frequency transceiver is coupled with the radio frequency circuit 20 and constitutes a radio frequency system of the wireless communication device 100 together with the radio frequency circuit 20, the multiway switch 10, and the antenna system 30.
By limiting the number of T ports that are coupled with all of the four P ports (in other words, full-coupling T ports), the number of switches of the radio frequency system of the wireless communication device can be effectively reduced. That is to say, the number of full-coupling T ports has a great influence on performance of the radio frequency system.
In the implementations of the present disclosure, the wireless communication device is operable in the single-frequency single-transmit mode.
The single-frequency single-transmit mode refers to an operating mode in which the wireless communication device 100 can support single frequency band-dual uplink (UL) transmit paths or single frequency band-four downlink (DL) receive paths to a maximum capability.
According to the implementations of the disclosure, the wireless communication device includes the antenna system, the radio frequency circuit, and the multiway switch. The antenna system includes the four antennas. The multiway switch includes the five T ports and the four P ports. One T port of the five T ports is coupled with all of the four P ports. The multiway switch is configured to be coupled with the radio frequency circuit and the antenna system to implement the preset function of the wireless communication device, and the preset function is a function of transmitting an SRS through the four antennas corresponding to the four P ports in turn.
As one implementation, the five T ports include one first T port and four second T ports. The one first T port is coupled with all of the four P ports. The four second T ports are coupled with the four P ports in one-to-one correspondence. The one first T port of the five T ports supports at least a transmission function and the four second T ports other than the one first T port of the five T ports support only a reception function.
In this implementation, since the multiway switch 10 includes the first T port and the second T ports and the number of the second T ports is not zero, compared with a configuration in which all T ports are coupled with all of P ports, for the multiway switch 10 provided herein, the number of switches is reduced. That is, the number of the switches in transmit paths and/or receive paths of the radio frequency system of the wireless communication device 100 can be reduced, thereby reducing path loss, improving transmit power/sensitivity, data transmission rate in the 5G NR, and uplink coverage and downlink coverage of the mobile phone, and reducing power consumption and cost.
As an implementation, the multiway switch 10 is composed of thirty-three FETs.
In the case that the wireless communication device 100 is operable in the single-frequency single-transmit mode, as illustrated in
The multiway switch 10 of the implementation of the disclosure can enable the wireless communication device 100 to be operable in the single-frequency single-transmit mode. It is beneficial to simplifying the RF architecture of the wireless communication device supporting four-port SRS switching in the 5G NR, reducing the number of switches in transmit paths and receive paths and reducing path loss, thereby improving transmit power/sensitivity, data transmission rate in the 5G NR, and uplink coverage and downlink coverage of the mobile phone, and reducing power consumption.
As an implementation, the radio frequency circuit 20 of the wireless communication device 100 logically includes one transmitter circuit (can be comprehended as a circuit for transmitting and/or processing signals) and four receiver circuits (can be comprehended as a circuit for receiving and/or processing signals).
The radio frequency circuit 20 physically includes one independent circuit module.
The one independent circuit module has one transmit port which is configured to be coupled with the one first T port. The independent circuit module has receive ports configured to be coupled with the four second T ports, in other words, the one independent circuit module has four receive ports each of which is configured to be coupled with one of the four second T ports.
As an implementation, the radio frequency circuit 20 of the wireless communication device 100 logically includes one transmitter circuit and four receiver circuits.
The radio frequency circuit 20 physically includes two independent circuit modules.
The two independent circuit modules have one transmit port which is configured to be coupled with the one first T port. The two first independent circuit modules have four receive ports each of which is configured to be coupled with one of the three second T ports.
Since low-noise amplifiers (LNA) in receiver circuits can operate simultaneously, due to their low power and low power consumption, mutual influence can be avoided through design. Therefore, multiple LNAs in multiple receiver circuits at the same frequency band can be disposed in the same circuit module. However, when two PAs at the same frequency band operate simultaneously (corresponding to UL MIMO mode), a transmit power will be high, and signals of the two PAs will interfere with each other. In addition, the two PAs will affect heat dissipation efficiency when working at the same time. The radio frequency circuit 20 of the wireless communication device 100 logically includes only one transmitter circuit, and only one PA at the same frequency band operates. Considering this, one or two independent circuit modules are needed.
When the radio frequency circuit 20 physically includes one independent circuit module, an example structure of the corresponding wireless communication device 100 can be referred to
As an implementation, as illustrated in
When the radio frequency circuit 20 physically includes two independent circuit modules, example structures of the corresponding wireless communication device 100 can be referred to
As an implementation, as illustrated in
As an implementation, as illustrated in
As an implementation, as illustrated in
As an implementation, as illustrated in
The transmitter circuit involved in the implementations of the present disclosure includes a power amplifier (PA), a filter, and a power coupler. The PA is coupled with the filter. The filter is coupled with the power coupler. The power coupler is coupled with the one first T port of the multiway switch 10. The PA is configured to be coupled with the radio frequency transceiver.
The receiver circuit involved in the implementations of the present disclosure includes a LNA and a filter. The LNA is coupled with the PA. The filter is coupled with one second T port of the multiway switch. The LNA is configured to be coupled with the radio frequency transceiver.
The transmit port of the transmitter circuit corresponds to the transmit port of the independent circuit module. The transmit port of the transmitter circuit is configured to be coupled with a corresponding first T port. The receive port of the receiver circuit corresponds to the receive port of the independent circuit module. The receive port of the receiver circuit is configured to be coupled with a corresponding second T port.
As illustrated in
The transmitter circuit has a power coupler coupled with the first T port of the multiway switch 10, and a PA coupled with a TX-CH0-NX port (a first transmit port at the NX frequency band) of the radio frequency transceiver. The first receiver circuit has a filter coupled with one (a first) second T port of the multiway switch 10, and a LNA coupled with a RX1-NX port (a first receive port at the NX frequency band) of the radio frequency transceiver. The second receiver circuit has a filter coupled with another (a second) second T port of the multiway switch 10, and a LNA coupled with a RX2-NX port (a second receive port at the NX frequency band) of the radio frequency transceiver. The third receiver circuit has a filter coupled with an additional (a third) second T port of the multiway switch 10, and a LNA coupled with a RX3-NX port (a third receive port at the NX frequency band) of the radio frequency transceiver. The fourth receiver circuit has a filter coupled with an extra (a fourth) second T port of the multiway switch 10, and a LNA coupled with a RX4-NX port (a fourth receive port at the NX frequency band) of the radio frequency transceiver.
The wireless communication device 100 can control paths between the T ports and the P ports of the multiway switch 10 to switch on and switch off through switch transistors to achieve the preset function. The preset function is transmitting an SRS through the four antennas corresponding to the four P ports in turn by the wireless communication device 100.
The coupling manner of a radio frequency transceiver, a radio frequency circuit 20, and a multiway switch 10 illustrated in
It can be understood that, the above-mentioned receiver circuits and transmitter circuits can be implemented in various manners. The implementations of the disclosure are not particularly restricted.
In one possible implementation, the four antennas include a first antenna, a second antenna, a third antenna, and a fourth antenna. These four antennas are all operable at a fifth generation new radio (5G NR) frequency band.
The 5G NR frequency band may include, for example, 3.3 GHz to 3.8 GHz and 4.4 GHz to 5 GHz.
In one possible implementation, the four antennas include a first antenna, a second antenna, a third antenna, and a fourth antenna. The first antenna and the fourth antenna are antennas operable at a long term evolution (LTE) frequency band and a fifth generation new radio (5G NR) frequency band. The second antenna and the third antenna are antennas only operable at the 5G NR frequency band.
The first antenna and fourth antenna are intended to support DL 4×4 MIMO for some frequency bands on LTE terminals. These two antennas are shared with antennas of 5G NR (hereinafter, “shared antennas” for short). The LTE frequency band may include, for example, 1880-1920 MHz and 2496-2690 MHz.
In one possible implementation, as illustrated in
The LTE 4*4 MIMO is a downlink LTE receive circuit and can be defined as a third receive path. Since the LTE currently has two receive paths, in order to support LTE 4×4 MIMO, the third path and a fourth receive path are added.
According to performance of the four antennas, the wireless communication device 100 will arrange one antenna with better performance for the circuit for PRX (primary receiver), and the antenna will be in a standby state. Moreover, first T ports of the switch having the transmission-reception function can be configured for TX (transmit) and PRX purpose, and thus the antenna can be switched arbitrarily. In this way, there is no need to restrict the coupling between ports of shared antennas.
As an implementation, as illustrated in
The schemes of the disclosure can be combined or replaced with each other. For example, the antenna system and/or the multiway switch described above can be applied or combined into the radio frequency system and the wireless communication device below. It is to be noted that, “the antenna system and/or the multiway switch” of the disclosure means “the antenna system”, “the multiway switch”, or “the antenna system and the multiway switch”.
The antenna system includes four antennas.
The multiway switch includes five T ports and four P ports. The five T ports are configured to be coupled with the radio frequency circuit. The four P ports are configured to be coupled with the antenna system. The five T ports include one first T port coupled with all of (that is, fully-coupled with) the four P ports.
The multiway switch is coupled with the radio frequency circuit and the antenna system to implement a preset function of the wireless communication device, and the preset function is a function of transmitting an SRS through the four antennas corresponding to the four P ports in turn.
As an implementation, the five T ports further include four second T ports. Each of the four second T ports is coupled with one corresponding P port of the four P ports. The first T port of the five T ports supports at least a transmission function. The four second T ports other than the first T port of the five T ports support only a reception function.
As an implementation, the radio frequency circuit of the wireless communication device logically includes one transmitter circuit and four receiver circuits. The radio frequency circuit physically includes one independent circuit module. The independent circuit module has one transmit port configured to be coupled with the one first T port. The independent circuit module has receive ports configured to be coupled with the four second T ports.
As an implementation, the independent circuit module includes one transmitter circuit and four receiver circuits. The transmitter circuit has one transmit port configured to be coupled with the one first T port. Each of the four receiver circuits has one receive port configured to be coupled with one of the four second T ports.
As an implementation, the radio frequency circuit of the wireless communication device logically includes one transmitter circuit and four receiver circuits. The radio frequency circuit physically includes two independent circuit modules. The two independent circuit modules have one transmit port configured to be coupled with the one first T port. The two first independent circuit modules have receive ports configured to be coupled with the three second T ports.
The antenna system includes four antennas.
The multiway switch includes five T ports and four P ports. The five T ports are configured to be coupled with the radio frequency circuit. The four P ports are configured to be coupled with the antenna system. The five T ports include one first T port coupled with all of (that is, fully-coupled with) the four P ports.
The multiway switch is coupled with the radio frequency circuit and the antenna system to implement a preset function of the wireless communication device, and the preset function is a function of transmitting an SRS through the four antennas corresponding to the four P ports in turn.
The wireless communication device includes at least one of an electronic device (such as a terminal device) and a base station.
In addition, as illustrated in
The receive antenna may be an antenna includes at least one of the four antennas (in the case of multiple antennas, the multiple antennas are strobed via switches).
For example, as illustrated in
While the disclosure has been described in connection with certain implementations, it is to be understood that the disclosure is not to be limited to the disclosed implementations but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
Number | Date | Country | Kind |
---|---|---|---|
2018 1 0220153 | Mar 2018 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4318104 | Enein | Mar 1982 | A |
4686533 | MacDonald | Aug 1987 | A |
4731614 | Crane | Mar 1988 | A |
5353032 | Bertocchi | Oct 1994 | A |
5434575 | Jelinek | Jul 1995 | A |
5952964 | Chan | Sep 1999 | A |
6005515 | Allen | Dec 1999 | A |
6181276 | Schlekewey | Jan 2001 | B1 |
6522897 | Martek | Feb 2003 | B1 |
7277679 | Barratt | Oct 2007 | B1 |
7633357 | Hangai | Dec 2009 | B2 |
7680461 | Takano | Mar 2010 | B2 |
8036148 | Fukamachi | Oct 2011 | B2 |
8073068 | Kim | Dec 2011 | B2 |
8189649 | Yuda | May 2012 | B2 |
8457026 | Ho | Jun 2013 | B1 |
8649418 | Negus | Feb 2014 | B1 |
8743754 | Jung | Jun 2014 | B2 |
9214981 | Park | Dec 2015 | B1 |
9252828 | Frenger | Feb 2016 | B2 |
9813269 | Yoon | Nov 2017 | B1 |
9831940 | Patel | Nov 2017 | B2 |
9847802 | Farley | Dec 2017 | B1 |
9913129 | So | Mar 2018 | B2 |
10075199 | King | Sep 2018 | B2 |
10355738 | Bai | Jul 2019 | B1 |
10389401 | Bai | Aug 2019 | B1 |
10419040 | Bai | Sep 2019 | B1 |
10439851 | Novak | Oct 2019 | B2 |
10454508 | Bai | Oct 2019 | B2 |
10454550 | Bai | Oct 2019 | B2 |
10491288 | Zhu | Nov 2019 | B2 |
10505578 | Bai | Dec 2019 | B2 |
10554243 | Bai | Feb 2020 | B2 |
10554244 | Bai | Feb 2020 | B2 |
10560130 | Bai | Feb 2020 | B2 |
10560137 | Bai | Feb 2020 | B2 |
10567027 | Bai | Feb 2020 | B2 |
10567028 | Bai | Feb 2020 | B2 |
10567029 | Bai | Feb 2020 | B2 |
10574285 | Bai | Feb 2020 | B2 |
10623027 | Bai | Apr 2020 | B2 |
10644730 | Bai | May 2020 | B2 |
10651875 | Bai | May 2020 | B2 |
20040121753 | Sugar | Jun 2004 | A1 |
20040192218 | Oprea | Sep 2004 | A1 |
20040196813 | Ofek | Oct 2004 | A1 |
20040196834 | Ofek | Oct 2004 | A1 |
20060193396 | Li | Aug 2006 | A1 |
20080117999 | Kadous | May 2008 | A1 |
20080247364 | Kim | Oct 2008 | A1 |
20080285670 | Walton | Nov 2008 | A1 |
20090054093 | Kim | Feb 2009 | A1 |
20090175374 | Seki | Jul 2009 | A1 |
20090180403 | Tudosoiu | Jul 2009 | A1 |
20090180466 | Soul | Jul 2009 | A1 |
20100002345 | Young | Jan 2010 | A1 |
20100234035 | Fujishima | Sep 2010 | A1 |
20110243037 | Sundstrom | Oct 2011 | A1 |
20110250926 | Wietfeldt | Oct 2011 | A1 |
20120236955 | Zhou | Sep 2012 | A1 |
20120287887 | Jung | Nov 2012 | A1 |
20130021113 | Bakalski | Jan 2013 | A1 |
20130083757 | Kakishima | Apr 2013 | A1 |
20130114468 | Hui | May 2013 | A1 |
20130121342 | Kim | May 2013 | A1 |
20130222183 | Lin | Aug 2013 | A1 |
20130273856 | Park | Oct 2013 | A1 |
20130308554 | Ngai | Nov 2013 | A1 |
20130322309 | Smith | Dec 2013 | A1 |
20130335160 | Khlat | Dec 2013 | A1 |
20140227982 | Granger-Jones | Aug 2014 | A1 |
20140294111 | Zhang | Oct 2014 | A1 |
20150295595 | Uejima | Oct 2015 | A1 |
20150312919 | Lee | Oct 2015 | A1 |
20150340769 | Desclos | Nov 2015 | A1 |
20150381246 | Huang | Dec 2015 | A1 |
20160065206 | Ho | Mar 2016 | A1 |
20160183099 | Frenger | Jun 2016 | A1 |
20160337025 | Xu | Nov 2016 | A1 |
20170063344 | Broyde | Mar 2017 | A1 |
20170063404 | Langer | Mar 2017 | A1 |
20170063412 | Ripley | Mar 2017 | A1 |
20170111066 | King | Apr 2017 | A1 |
20170155444 | Patel | Jun 2017 | A1 |
20170195004 | Cheng | Jul 2017 | A1 |
20170338839 | Little | Nov 2017 | A1 |
20170373368 | Srirattana | Dec 2017 | A1 |
20180069314 | Arfaei Malekzadeh | Mar 2018 | A1 |
20180084586 | McCoy | Mar 2018 | A1 |
20180152955 | Park | May 2018 | A1 |
20180191774 | Liang | Jul 2018 | A1 |
20180205413 | Patel | Jul 2018 | A1 |
20180227960 | Belghoul | Aug 2018 | A1 |
20190097715 | Maldonado | Mar 2019 | A1 |
20190140706 | Chang | May 2019 | A1 |
20190253214 | Liu | Aug 2019 | A1 |
20190267956 | Granger-Jones | Aug 2019 | A1 |
20190288389 | Bai | Sep 2019 | A1 |
20190288714 | Bai | Sep 2019 | A1 |
20190288715 | Bai | Sep 2019 | A1 |
20190288716 | Bai | Sep 2019 | A1 |
20190288717 | Bai | Sep 2019 | A1 |
20190288719 | Bai | Sep 2019 | A1 |
20190288729 | Bai | Sep 2019 | A1 |
20190288732 | Bai | Sep 2019 | A1 |
20190288734 | Bai | Sep 2019 | A1 |
20190288735 | Bai | Sep 2019 | A1 |
20190288736 | Bai | Sep 2019 | A1 |
20190288754 | Bai | Sep 2019 | A1 |
20190289606 | Negus | Sep 2019 | A1 |
20190377075 | Tsfati | Dec 2019 | A1 |
20200028556 | Inoue | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
101867402 | Oct 2010 | CN |
202103661 | Jan 2012 | CN |
103905104 | Jul 2014 | CN |
105245295 | Jan 2016 | CN |
106209048 | Dec 2016 | CN |
108199725 | Jun 2018 | CN |
108199728 | Jun 2018 | CN |
108462506 | Aug 2018 | CN |
2017212287 | Dec 2017 | WO |
Entry |
---|
International search report issued in corresponding international application No. PCT/CN2018/112702 dated Feb. 1, 2019. |
Extended European search report issued in corresponding European application No. 18204578.1 dated May 28, 2019. |
Gao Xiang et al: “Multi-Switch for Antenna Selection in Massive MIMO”, 2015 IEEE Global Communications Conference (GLOBECOM), IEEE, Dec. 6, 2015 (Dec. 6, 2015), pp. 1-6, XP032872922, DOI: 10.1109/GLOCOM.2014.7417765 [retrieved on Feb. 23, 2016] sections I, III.B, III.C; figures 1, 2, 6. |
Lemieux G et al: “Generating Highly-Routable Sparse Crossbars for PLDS”, FPGA'OO. ACM/SIGDA International Symposium on Field Programmable Gate Arrays. Monterey, CA, Feb. 9-11, 20; [ACM/SIGDA International Symposium on Field Programmable Gate Arrays], New York, NY : ACM, US, vol. CONF. 8, Jan. 1, 2000 (Jan. 1, 2000), pp. 155-164, XPO0806016Q, DOI: 10.1145/329166.329199; ISBN: 978-1-58113-193-2; section 2; figure 1. |
Number | Date | Country | |
---|---|---|---|
20190288735 A1 | Sep 2019 | US |