The invention relates to mura compensation, and more particularly to a mura compensation method and a mura compensation apparatus for an organic light emitting diode (OLED) display and an electronic device.
Mura phenomenon is a major display quality issue for an organic light emitting diode (OLED) display, which is mainly caused by luminance non-uniformity in the display area. Therefore, mura compensation is usually performed before shipping. For mura compensation of a fabricated OLED display, demura tables corresponding to various gray levels are created by analyzing images of a fabricated OLED display, and then these demura tables are used to adjust the gray level of each pixel. Conventionally, the demura tables are created only for the maximum luminance of the OLED display and are usually stored in a storage medium with a limited storing space. If mura compensation is intended to be performed for various luminance settings of the OLED display, demura tables for non-maximum luminance settings have to be created, and an extra storing space is needed to store the increased demura tables, resulting in a higher storage cost.
In the invention, for mura compensation of an OLED display, non-maximum-luminance demura offset values corresponding to a non-maximum luminance value of the OLED display can be determined from maximum-luminance demura offset values corresponding to the maximum luminance value of the OLED display, and thus a non-maximum-luminance demura table with these non-maximum-luminance demura offset values is not required to be created and stored in a storage medium. As such, the demura table cost for mura compensation for various luminance settings is significantly reduced.
One aspect of the invention directs to a mura compensation apparatus for an organic light emitting diode (OLED) display. The mura compensation apparatus includes a calculator and a mura compensator. The calculator is configured to calculate a non-maximum-luminance demura offset value of a pixel of the OLED display for a determined gray level on the basis of a gamma value, a maximum-luminance demura offset value of the pixel of the OLED display for a relocated gray level and a non-maximum luminance value of the OLED display. The mura compensator is configured to perform mura compensation on the pixel of the OLED display by the non-maximum-luminance demura offset value for the determined gray level.
In accordance with one or more embodiments of the invention, the calculator includes an offset relocator and an offset scalar. The offset relocator is configured to calculate the relocated gray level on the basis of the gamma value, the determined gray level, the non-maximum luminance value and a maximum luminance value of the OLED display. The offset scalar is configured to perform a scalar operation on the maximum-luminance demura offset value for the relocated gray level to obtain the non-maximum-luminance demura offset value for the determined gray level.
In accordance with one or more embodiments of the invention, the gamma value is in a range from 1.8 to 2.4.
In accordance with one or more embodiments of the invention, the mura compensation apparatus further includes a camera and a processor. The camera is configured to capture an image of the OLED display operated in a maximum luminance value. The processor is configured to create a demura table with the maximum-luminance demura offset value for the determined gray level from the captured image.
In accordance with one or more embodiments of the invention, the non-maximum luminance value is substantially a half of a maximum luminance value of the OLED display.
In accordance with one or more embodiments of the invention, the mura compensation apparatus further includes a storage medium that is configured to store a demura table with the maximum-luminance demura offset value for the determined gray level.
In accordance with one or more embodiments of the invention, the maximum-luminance demura offset value is dependent on a position of the pixel in the OLED display.
Another aspect of the invention directs to a mura compensation method for an OLED display, the mura compensation method includes: calculating a non-maximum-luminance demura offset value of a pixel of the OLED display for a determined gray level on the basis of a gamma value, a maximum-luminance demura offset value of the pixel of the OLED display for a relocated gray level and a non-maximum luminance value of the OLED display; and performing mura compensation on the pixel of the OLED display by the non-maximum-luminance demura offset value for the determined gray level.
In accordance with one or more embodiments of the invention, obtaining the non-maximum-luminance demura offset value includes: calculating the relocated gray level on the basis of the gamma value, the determined gray level, the non-maximum luminance value and a maximum luminance value of the OLED display; and performing a scalar operation on the maximum-luminance demura offset value for the relocated gray level to obtain the non-maximum-luminance demura offset value for the determined gray level.
In accordance with one or more embodiments of the invention, the gamma value is in a range from 1.8 to 2.4.
In accordance with one or more embodiments of the invention, the mura compensation method further includes: capturing an image of the OLED display operated in a maximum luminance value; and creating a demura table with the maximum-luminance demura offset value for the determined gray level from the captured image.
In accordance with one or more embodiments of the invention, the non-maximum luminance value is substantially a half of a maximum luminance value of the OLED display.
In accordance with one or more embodiments of the invention, the maximum-luminance demura offset value is dependent on a position of the pixel in the OLED display.
A further aspect of the invention directs to an electronic device. The electronic device includes an OLED panel and a mura compensation apparatus. The mura compensation apparatus includes a calculator and a mura compensator. The calculator is configured to calculate a non-maximum-luminance demura offset value of a pixel of the OLED panel for a determined gray level on the basis of a gamma value, a maximum-luminance demura offset value of the pixel of the OLED panel for a relocated gray level and a non-maximum luminance value of the OLED panel. The mura compensator is configured to perform mura compensation on the pixel of the OLED panel by the non-maximum-luminance demura offset value for the determined gray level.
In accordance with one or more embodiments of the invention, the calculator includes an offset relocator and an offset scalar. The offset relocator is configured to calculate the relocated gray level on the basis of the gamma value, the determined gray level, the non-maximum luminance value and a maximum luminance value of the OLED panel. The offset scalar is configured to perform a scalar operation on the maximum-luminance demura offset value for the relocated gray level to obtain the non-maximum-luminance demura offset value for the determined gray level.
In accordance with one or more embodiments of the invention, the gamma value is in a range from 1.8 to 2.4.
In accordance with one or more embodiments of the invention, the non-maximum luminance value is substantially a half of a maximum luminance value of the OLED panel.
In accordance with one or more embodiments of the invention, the electronic device further includes a storage medium that is configured to store a demura table with the maximum-luminance demura offset value for the determined gray level.
In accordance with one or more embodiments of the invention, the maximum-luminance demura offset value is dependent on a position of the pixel in the OLED panel.
In accordance with one or more embodiments of the invention, the mura compensation apparatus communicates with the OLED panel through a display serial interface (DSI).
The foregoing aspects and many of the accompanying advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings.
The spirit of the disclosure is clearly described hereinafter accompanying with the drawings and detailed descriptions. After realizing preferred embodiments of the disclosure, any persons having ordinary skill in the art may make various modifications and changes according to the techniques taught in the disclosure without departing from the spirit and scope of the disclosure. Also, the described embodiments are presented for purposes of illustrations and description, and they are not intended to limit the scope of the invention.
Terms used herein are only used to describe the specific embodiments, which are not used to limit the claims appended herewith. Unless limited otherwise, the term “a,” “an,” “one” or “the” of the single form may also represent the plural form.
The document may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Referring to
The mura compensation apparatus 100 includes a calculator 110, a storage medium 120 and a mura compensator 130. The calculator 110 may calculate a non-maximum-luminance demura offset value of the pixel of the OLED display D for a determined gray level on the basis of a maximum-luminance demura offset value of a pixel of the OLED display D for a relocated gray level and a non-maximum luminance value of the OLED display D. The maximum-luminance demura offset value is dependent on a position of the pixel in the OLED display D. That is, the maximum-luminance demura offset values respectively of variant pixels may be different. The storage medium 120 may store one or more demura tables corresponding to various gray levels for the maximum luminance value of the OLED display D. For example, the storage medium 120 may store two demura tables respectively corresponding to gray levels of 32 and 64. Each demura table stored in the storage medium 120 may include one or more maximum-luminance demura offset values of the pixels of the OLED display D for a particular gray level. The mura compensator 130 performs mura compensation on the pixels of the OLED display D by the non-maximum-luminance demura offset value for the determined gray level.
In particular, the calculator 110 includes an offset relocator 112 and an offset scalar 114. The offset relocator 112 calculates the relocated gray level gl′ on the basis of the gamma value γ, the determined gray level gl, the non-maximum luminance value bl and the maximum luminance value blMAX of the OLED display D by Equation (1):
and the offset scalar 114 performs a scalar operation on the maximum-luminance demura offset value OfsM(gl′) pre-stored in the storage medium 120 for the relocated gray level gl′ by Equation (2) to obtain the non-maximum-luminance demura offset value Ofs(gl,bl) for the determined gray level gl and the non-maximum luminance value bl:
The mura compensator 130 then uses the obtained non-maximum-luminance demura offset value Ofs(gl,bl) to perform mura compensation for the OLED display D. It is noted that the non-maximum luminance value bl is smaller than the maximum luminance value blMAX. In other words, the non-maximum luminance value bl is a fraction of the maximum luminance value blMAX. In some embodiments, the non-maximum luminance value bl is a half of the maximum luminance value blMAX. In addition, the gamma value γ may be in a range from 1.8 to 2.4 depending on various design requirements of the OLED display D. In certain embodiments, the gamma value γ is 2.0 or 2.2.
The specific implementation of the calculator 110 mentioned above can be software and/or hardware. For hardware implementation, a processor capable of executing instructions may be utilized, such as a central processing unit (CPU), a microprocessor, or other hardware units. Oppositely, for software implementation, the calculator 110 may be placed in a schedule management tool in a non-transitory computer readable medium accessible by the processor, and can be executed by the processor. Also, the storage medium 120 may be the non-transitory computer readable medium or a part of the non-transitory computer readable medium. The non-transitory computer readable medium can be a read only memory, a flash memory, a floppy disk, a hard disk, a compact disc, an USB flash drive, a magnetic tape, a database capable of being accessed on the internet, or other computer readable media having the same functions that is obvious to those ordinary skill in the art.
The camera 210, the processor 220 and/or the storage medium 230 may be a part of the mura compensation apparatus 100 in
In
According to the embodiments described above, a pre-created maximum-luminance demura table can be used for mura compensation for various luminance settings of an OLED display. That is, for mura compensation of an OLED display, non-maximum-luminance demura offset values corresponding to a non-maximum luminance value of the OLED display can be determined from maximum-luminance demura offset values corresponding to the maximum luminance value of the OLED display, and thus a non-maximum-luminance demura table with these non-maximum-luminance demura offset values is not required to be created and stored in a storage medium. As such, the demura table cost for mura compensation for various luminance settings is significantly reduced.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the invention cover modifications and variations of this invention provided they fall within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
9898998 | Lee | Feb 2018 | B2 |
10733932 | Pyo | Aug 2020 | B2 |
10741116 | Ding | Aug 2020 | B2 |
20020130830 | Park | Sep 2002 | A1 |
20060164355 | Kim | Jul 2006 | A1 |
20070262947 | Wang | Nov 2007 | A1 |
20080036703 | Wang | Feb 2008 | A1 |
20090140665 | Park | Jun 2009 | A1 |
20160358526 | Wang | Dec 2016 | A1 |
20200066207 | Gu | Feb 2020 | A1 |
20200160791 | Chung | May 2020 | A1 |
20200219433 | Yim | Jul 2020 | A1 |