This application generally relates to IR detectors, and in particular, to a nano-antenna coupled IR detector array.
Imaging systems typically use an array of detectors to generate an image of a target. Each individual detector element measures the intensity of energy (such as infrared or visible light) incident upon the detector element, and is used to form one pixel of the output image.
Present infrared (IR) detection systems employ bulky, complex, opto-mechanical systems using incoherent, direct detection IR arrays that require cryogenic cooling. Size, mass, power and packaging constraints of sensors impact platforms and ultimately limits performance. Complexity increases cost and reduces reliability.
GaN and GaAs/AlGaAs quantum well infrared photodetector (QWIP) technologies have been considered for broad band long-wavelength infrared (LWIR) response. However, the quantum efficiency at 10 μm for these systems is significantly low as they require extrinsic doping.
According to embodiment, a wideband infrared (IR) antenna array includes: a plurality of unit cells, each of the unit cells comprising: an antenna that focuses IR radiation onto an associated IR absorber element, each unit cell having a dimension approximately that of the wavelength detected that includes the antennae therein, wherein the absorber element is sized less than the dimension.
According to another embodiment, a method of forming an infrared (IR) wideband antenna array includes: epitaxially growing an IR absorber material on a substrate; forming a plurality of mesas in the absorber material; depositing an oxide layer between the mesas; and forming connected dipoles antennas over the oxide layer, wherein the connected dipole antennas are sized so as to have a response characteristic in the IR spectrum.
Other features and advantages of one or more embodiments of the present application will seem apparent from the following detailed description, and accompanying drawings, and the appended claims.
Embodiments of the present application will now be disclosed, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, in which:
A coherent infrared (IR) imaging system is disclosed. In particular, radio frequency (RF) analogs for wideband emission and reception may be adapted for use at optical wavelengths, such as infrared (IR) spectrum. Scaling the RF technology down to IR wavelengths represents a breakthrough for IR imaging technology, providing high performance lenseless detection for next generation large format coherent imaging systems that are platform conformal and scalable to large areas.
According to one embodiment, an array of planar low profile antennas are provided which focus incoming radiation below the diffraction limit thereby enabling the implementation of sub-wavelength dimension detectors. In some aspects, this antennae array configuration may be thought of as the conjugate of the long slot RF antenna approach described, for example, by A. Neto and J. J. Lee “Infinite Bandwidth” “Long Slot Array Antenna” IEEE Antennas and Wireless Propagation Letters Vol. 4 (2005) p. 75.
Unit-cell 100 generally includes substrate 20 having absorbing elements 30, separately spaced by insulating elements 40, each having a dipole antenna 50. In one implementation, metal diploes 50 may be configured to provide a wideband response over 8-12 μm. Absorbing elements 30 may be configured to absorb light, for example, in the infrared spectrum. In one implementation, the absorbing elements 30 may be formed of mercury cadmium telluride (also known as “mercad telluride,” MCT or HgCdTe).
An array of unit cells 100 may be used to generate an image of a target, with each unit cell 100 forming a pixel element. Absorber 30 measures the intensity of energy incident upon the pixel element, and this measurement is then used to form one pixel of the output image.
Light (radiation) will illuminate unit cell 100 from the top side of unit-cell 100. A portion of the incident light will be received by dipoles 50 which create a resonance current therein. The resonance currents in dipole 50 help to focus the incident radiation down to sub-wavelength dimensions, which maybe received by IR absorbing elements 30: Because of this configuration, dipoles 50 are configured to collect energy incident on an area, much larger than the area of absorber 30, and to focus that energy into a smaller, localized area where absorbing element 30 is positioned. This allows use of absorbing elements 30 that are much smaller than the pixel area (i.e., the dimension d). Since absorber elements 30 are smaller than the pixel area, a greater signal to noise ratio may be realized. Also, this allows for operation of the detector array either uncooled, or at a higher operating temperature. The size of dipoles 50 is constrained, not with respect to the absorber size, but to the absorber periodicity. In one embodiment, absorbers 30 may be separated by approximately λ/2. For wavelengths of 8-12 μm, this spacing would be about 4-6 μm. In the single cell view, shown in
Dipoles 50 may be resistively connected through absorber elements 30. In particular, photons impinging on absorber elements 30 may be optically mixed to provide an intermediate frequency signal. In one implementation, a local oscillator (such as a laser) provides an intermediate frequency signal in the 1-20 GHz range. Current amplitude and phase can then be detected from each pixel at this intermediate frequency.
According to an aspect of the disclosure, the antenna array may be fabricated using sub-wavelength fabrication processes.
Beginning in Step 410 (
In order to build the MCT layer up on the silicon wafer, fabrication may commence with epitaxial growth of an intermediate cadmium telluride (CdTe) layer on a single crystal silicon wafer. A 7 μm thick CdTe layer provides lattice matching between the silicon wafer and a 2-3 μm thick IR absorbing Hg(1-x)CdxTe:n−layer.
The absorption cut-off wavelength of the MCT may be selectively “tuned” by varying the alloy composition, for example, as disclosed in the co-pending application entitled “MULTIBAND SUB-WAVELENGTH IR DETECTOR HAVING A FREQUENCY SELECTIVE SLOTS AND METHOD OF MAKING THE SAME,” application Ser. No. 12/433,631, filed concurrently with this disclosure on Apr. 30, 2009, and issued on Apr. 12. 2011 as U.S. Pat. No. 7,923,689, herein incorporated by reference in its entirety. For example, the MCT band gap may be selectively tuned to absorb radiation between 8-12 μ.
A direct band gap of 0.1 eV, appropriate for 8-12 μm absorption may be obtained using an alloy composition of MCT where x is about 0.2. Electron mobility of μe=104 cm2/V-s for Hg(1-x)CdxTe may be sufficiently fast for detection at an intermediate frequency (IF) of 1-20 GHz.
Next, in step 420 (
In one implementation, the sub-wavelength mesas may be dry etched to a volume of approximately L3. Current manufacturing techniques permit L to be approximately 2-3 μm, although efforts are underway for L to be about 1 μm. The benefit of sub-wavelength absorber dimensions is that detector noise is reduced by virtue of the smaller area, however the antenna structure focuses radiation from a larger unit cell area onto the smaller absorber elements. The term “sub-wavelength,” as used herein, means a dimension that is less than the incoming radiation wavelength.
In step 430 (
In step 440 (
In step 450 (
In step 460 (
For a detector element area A of approximately 3.3×3.3 μm2, the RC time constant for the device may be approximately 1.6×10−13 s, indicating that a response frequency of around ½π RC is approximately 1 THz. It may be assumed that incident IR signal may be mixed with a local oscillator in the MCT absorber element, to generate a 1-20 GHz IF.
As can be seen, a −3dB bandwidth of 0.72 degrees and a peak gain of 44.8 dB may be realized. Theoretical calculations predicted a bandwidth of 0.73 degrees and a peak gain of 48 dB.
Space, airborne and surface-based infrared and visible imaging and remote sensing systems may benefit from this conformal nano-technology as it would result in higher performance, more producible infrared-visible imagers that are easier to integrate and deploy.
The antenna array provides a much higher signal to noise ratio than conventional systems, especially at higher temperatures. Moreover, the antenna array may be uncooled, although cooling may improve signal to noise ratio of the antennas. When cooled, less cooling may be required as compared to conventional IR detector array.
The embodiments disclosed herein may be adapted for other spectra, such as for example, visible or UV. However, since wavelengths are shorter in the visible and UV spectra the dimensions of the detector array would be smaller.
While this disclosure has been described in connection with what is presently considered to be the most practical embodiment, it is to be understood that it is capable of further modifications and is not to be limited to the disclosed embodiments, and this application is intended to cover any variations, uses, equivalent arrangements or adaptations of the disclosure following, in general, the principles of the disclosure and including such departures from the present disclosure as come within known or customary practice in the art to which the application pertains, and as may be applied to the essential features hereinbefore set forth and followed in the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5248884 | Brewitt-Taylor | Sep 1993 | A |
5399206 | De Lyon | Mar 1995 | A |
7289422 | Rettner et al. | Oct 2007 | B2 |
7333055 | Baharav et al. | Feb 2008 | B2 |
7456383 | Kim et al. | Nov 2008 | B2 |
7923689 | Kirby et al. | Apr 2011 | B2 |
20030103150 | Catrysse et al. | Jun 2003 | A1 |
20050121599 | Mouli | Jun 2005 | A1 |
20050200550 | Vetrovec et al. | Sep 2005 | A1 |
20050233493 | Augusto | Oct 2005 | A1 |
20050275934 | Ballato et al. | Dec 2005 | A1 |
20060018211 | Ueyanagi et al. | Jan 2006 | A1 |
20060175551 | Fan et al. | Aug 2006 | A1 |
20070194999 | Morton | Aug 2007 | A1 |
20080079625 | Weems et al. | Apr 2008 | A1 |
20090108203 | Gregoire et al. | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
2348539 | Oct 2000 | GB |
Number | Date | Country | |
---|---|---|---|
20100276598 A1 | Nov 2010 | US |