The present invention relates generally to the field of medical implants and in particular to providing medical implants with improved biocompatibility.
Medical implants and devices play an important role in the practice of contemporary medicine. Unfortunately, following introduction into an organism, many implants and devices trigger a series of biologic reactions, many of which are deleterious to the body. Such adverse biologic reactions include inflammation, fibrosis, thrombosis, and infections that may lead to implant rejection.
One component leading to these adverse reactions is implant-mediated protein “denaturation,” a biologic process that appears to occur via protein adsorption onto the surface of an implant. The adsorption is led by a chaotic layer of spontaneously adsorbed, partially ‘denatured’ host proteins, including fibrinogen. (Tang L and Eaton J W, Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med 1993;178:2147-56; Hu et al. Molecular basis of biomaterial-mediated foreign body reactions. Blood 2001;98:1231-38; incorporated herein by reference). The denatured proteins, such as fibrinogen, are thus involved in promoting adverse biologic reactions to an implant, by, in part, attracting inflammatory cells to implants after their adsorption. Unfortunately, it remains to be understood how to prevent the denaturation and adsorption processes. Indeed, there remains a need for implants and devices that do not promote such adverse biologic reactions. This is likely to occur by identifying implants and surfaces that are compatible with the body (e.g., biocompatible) and do not promote protein denaturation and/or protein adsorption onto the implant surface.
To date, the production of biocompatible implants and devices has yielded materials with hydrophilic surfaces thought to prevent protein (e.g., fibrinogen) denaturation. Disappointingly, even the most hydrophilic of these materials, including polyethylene glycol, when placed on the surface of an implant or device is found to prompt protein conformational changes and adverse biologic reactions.
Presently, most if not all medical implants when introduced into an organism trigger a series of biologic reactions, referred to herein as foreign body reactions. The biologic reactions are generally accompanied by an accumulation of inflammatory and fibrotic cells that collect and/or adhere to the implant surface. It is this accumulation of cells, their by-products and the associated immune responses that lead to the failure of medical implants or devices.
Prior art coating techniques have been developed to improve the biocompatibility of the implant. These techniques, however, have been designed to change material surface chemistries in an attempt to reduce protein denaturation and protein/cell accumulation. Prior art techniques generally fail to significantly reduce surface-induced protein denaturation and subsequent adverse reactions. Therefore, there still remains a need for improved implants with surfaces that prevent protein denaturation and subsequent adverse reactions in the organism.
The present invention solves many problems associated with adverse reactions occurring upon introduction of an implant or device into an organism. The present invention provides for a preparation that prevents protein denaturation (e.g., unfolding) and subsequent adverse reactions upon its introduction into an organism.
Generally, and in one form the present invention is a nanoparticle preparation that reduces or prevents protein unfolding as well as subsequence adverse reactions from occurring in an organism. Adverse reactions may include biologic processes and/or cell surface interactions such as inflammatory cell accumulation, protein unfolding, protein denaturation, fibrotic tissue formation, thrombosis and device-centered infection. The nanoparticle preparation comprises nanoparticles less than or equal to 500 nanometer (nm) in diameter and an implant surface capable of receiving the nanoparticles. As such, the invention provides for a biocompatible coating on an implant that prevents adverse reactions in the body upon its introduction into an organism.
In another form, the present invention is a nanoparticle preparation for coating an implant surface comprising nanoparticles of less than or equal to 500 nanometers, wherein the nanoparticles promote characteristics on the implant surface after implantation into an organism in need thereof, the characteristics selected from the group consisting of reducing protein unfolding, reducing protein denaturation, preventing accumulation of inflammatory cells, preventing the accumulation of fibrotic cells, preventing fibrotic tissue formation, preventing thrombosis or device-centered infection, reducing the number of cell attachment sites, reducing adverse biological reactions and combinations thereof.
In yet another form, the present invention is a nanoparticle preparation for coating an implant surface comprising one or more nanoparticles of less than or equal to 500 nanometers and coating the surface of an implant with nanoparticles, wherein the nanoparticles promote characteristics on the implant surface selected from the group consisting of reducing protein unfolding, reducing protein denaturation, preventing accumulation of inflammatory cells, preventing the accumulation of fibrotic cells, preventing fibrotic tissue formation, preventing thrombosis or device-centered infection, reducing the number of cell attachment sites, reducing adverse biological reactions and combinations thereof. The method may include coating an implant or device with such a nanoparticle preparation that prevents protein unfolding or denaturation upon introduction of the implant into an organism.
Advantages of the present invention include findings that the reduction or prevention of protein unfolding, adverse biologic reactions, protein adsorption and protein denaturation that occur via the present invention appear regardless or independent of nanoparticle composition. In addition, the nanoparticle preparation of the present invention does not adversely affect surface properties or function of an implant.
Those skilled in the art will further appreciate the above-noted features and advantages of the invention together with other important aspects thereof upon reading the detailed description that follows in conjunction with the drawings.
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
Although making and using various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many inventive concepts that may be embodied in a wide variety of contexts. The specific aspects and embodiments discussed herein are merely illustrative of ways to make and use the invention, and do not limit the scope of the invention.
In the description which follows, like parts may be marked throughout the specification and drawing with the same reference numerals, respectively. The drawing figures are not necessarily to scale and certain features may be shown exaggerated in scale or in somewhat generalized or schematic form in the interest of clarity and conciseness.
The present invention provides for a surface on an implant, similar to a surface “coating,” that reduces and/or prevents adverse foreign body reactions, such as protein adsorption to the implant surface. The present invention improves the biocompatibility and blood compatibility of an implant by using a coating of nanoparticles, wherein each particle is generally less than 500 nm in diameter. Thus, nanoparticles of the present invention reduce protein “denaturation” as well as subsequent foreign body reactions.
When a protein undergoes “denaturation,” or unfolds, the protein adsorbs and interacts or attaches to multiple sites on the surface of the material. By “coating” a material with particles, the number of interactions or attachment sites or the extent of protein-surface interactions are reduced. (See
The above improvements are independent of nanoparticle composition. Thus compositions nanoparticle preparations comprising one or more degradable polymers, nondegradable polymers, metals, proteins, nucleic acids, micro-organisms (bacteria and viruses) and similar combinations may be used to improve the biocompatibility of implants introduced to organisms.
As used herein, medical implants or devices include any material with a surface to which a “coating” may be applied. This includes implants introduced for cosmetic, reconstructive, monitoring or replacement purposes, such as a joint implant, breast implant, dental implant, chip or ion implant, brain implant, retinal implant, cochlear implant, facial implant, organ implant, and prosthesis, as examples. It also includes particles, catheters and other devices introduced into an organism, such as drug release particles, miniature sensors and stents, as examples. The implant “material” as used herein may be any organic or inorganic used with medical implants or devices.
As used herein, the “coating” applied to the material surface includes “nanoparticles,” “nanoparticles-like objects,” “microscopic particles” or “functionalized particles.” Alternatively, the material surface may be treated to create particle-like structures on the surface by performing surface modification procedures, such as plasma polymerization, spot coating, etc. Such particles are generally a few micrometers in size to few millimeters in size or submicroscopic (less than one micrometer) and solid colloidal objects that may be cylindrical or spherical in shape with a semipermeable shell or shaped like a permeable nano-ball. One or more drugs or other relevant materials, referred to as a “tag,” (e.g., used for labeling, as a molecular ligand, for diagnosis or therapy, such as for a medical treatment, nuclear medicine or radiation therapy) may be included with the nanoparticles of the present invention. Inclusion may be via entrapment, encapsulation, absorption, adsorption, covalent linkage, or other attachment. Nanoparticles of the present invention may be, themselves, further coated as required.
Nanoparticles of the present invention are generally provided as a metal particle, carbon particle, inorganic chemical particle, organic chemical particle, ceramic particle, graphite particle, polymer particle, protein particle, peptide particle, DNA particle, RNA particle, bacteria/virus particle, hydrogel particle, liquid particle or porous particle. Thus, the nanoparticles may be, for example, metal, carbon, graphite, polymer, protein, peptide, DNA/RNA, microorganisms (bacteria and viruses) and polyelectrolyte, and may be loaded with a light or color absorbing dye, an isotope, a radioactive species, a tag, or be porous having gas-filled pores. As used herein, the tern “hydrogel” refers to a solution of polymers, sometimes referred to as a sol, converted into gel state by small ions or polymers of the opposite charge or by chemical crosslinking.
Suitable polymers of the present invention include copolymers of water soluble polymers, including, but not limited to, dextran, derivatives of poly-methacrylamide, PEG, maleic acid, malic acid, and maleic acid anhydride and may include these polymers and a suitable coupling agent, including 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide, also referred to as carbodiimide. Polymers may be degradable or nondegradable or of a polyelectrolyte material. Degradable polymer materials include poly-L-glycolic acid (PLGA), poly-DL-glycolic, poly-L-lactic acid (PLLA), PLLA-PLGA copolymers, poly(DL-lactide)-block-methoxy polyethylene glycol, polycaprolacton, poly(caprolacton)-block-methoxy polyethylene glycol (PCL-MePeg), poly(DL-lactide-co-caprolactone)-block-methoxy polyethylene glycol (PDLLACL-MePEG), some polysaccharide (e.g., hyaluronic acid, polyglycan, chitoson), proteins (e.g., fibrinogen, albumin, collagen, extracellular matrix), peptides (e.g., RGD, polyhistidine), nucleic acids (e.g., RNA, DNA, single or double stranded), viruses, bacteria, cells and cell fragments, organic or carbon-containing materials, as examples. Nondegradable materials include natural or synthetic polymeric materials (e.g., polystyrene, polypropylene, polyethylene teraphthalate, polyether urethane, polyvinyl chloride, silica, polydimethyl siloxane, acrylates, arcylamides, poly (vinylpyridine), polyacroleine, polyglutaraldehyde), some polysaccharides (e.g., hydroxypropyl cellulose, cellulose derivatives, dextran®, dextrose, sucrose, ficoll®, percoll®, arabinogalactan, starch), and hydrogels (e.g., polyethylene glycol, ethylene vinyl acetate, N-isopropylacrylamide, polyamine, polyethyleneimine, poly-aluminuin chloride).
Should the nanoparticles of the present invention require an additional layer or coating, typical suitable layers include, as examples, surfactants such as those including fatty acid esters of glycerols, sorbitol and other multifunctional alcohols (e.g., glycerol monostearate, sorbitan monolaurate, sorbitan monoleate), polysorbates, poloxamers, poloxamines, polyoxyethylene ethers and polyoxyethylene esters, ethoxylated triglycerides, ethoxylated phenols and ethoxylated diphenols, surfactants of the Genapol TM and Bauki series, metal salts of fatty acids, metal salts of fatty alcohol sulfates, sodium lauryl sulfate, and metal salts of sulfosuccinates.
The particles of the present invention are produced by conventional methods known to those of ordinary skill in the art. Techniques include emulsion polymerization in a continuous aqueous phase, emulsion polymerization in continuous organic phase, interfacial polymerization, solvent deposition, solvent evaporation, dissolvation of an organic polymer solution, cross-linking of water-soluble polymers in emulsion, dissolvation of macromolecules, and carbohydrate cross-linking. These fabrication methods can be performed with a wide range of polymer materials as described above. Removal of any solvent or emulsifier as required may include a number of methods well known to one of ordinary skill in the art. Examples of materials and fabrication methods for making nanoparticles have been published. (See Kreuter, J. 1991, Nanoparticles-preparation and applications; In: M. Donbrow (Ed.), Microcapsules and nanoparticles in medicine and pharmacy. CRC Press, Boca Raton, Fla., pp. 125-148; Hu, Z, Gao J. Optical properties of N-isopropylacrylamide microgel spheres in water. Langmuir 2002;18:1306-67; Ghezzo E, et al., Hyaluronic acid derivative microspheres as NGF delivery devices: Preparation methods and in vitro release characterization. Int J Pharm 1992;87:21-29; all references incorporated herein by reference).
Nanocoatings may be made to specifically accumulate certain cells, proteins, growth factors, peptides, biological substances and chemicals. In these cases, nanoparticles may be “tagged” to have a high affinity to specific biological component(s). In fact, a coating made of such cell/protein-affinity particles or “tags” may increase the specific accumulation of cells and proteins. When a “tag” is in contact with a nanoparticle of the present invention, it may be adsorbed or absorbed to a premade nanoparticle, or incorporated into the nanoparticle during the manufacturing process. Methods of absorption, adsorption, and incorporation are of common knowledge to those skilled in the art. The choice of the monomer and/or polymer, the solvent, the emulsifier, the tag and other auxiliary substances used herein will be dictated by the nanoparticle being fabricated and is chosen, without limitation and difficulty, by those skilled in the art. The ratio of tag to nanoparticle may be varied as required.
As used herein, a “tag” includes an addition to the nanoparticle that has an ability to modify the nanoparticle. Such tags may include drugs, molecular ligands (e.g., molecules/compounds) that recognize a material, cell, organ or tissue of interest, such as antibodies, antigens, proteins, peptides, nucleic acid sequences, fatty acid or carbohydrate moieties, chemicals, as examples. They may also be modified compounds or polymers that mimic recognition sites on cells, organs, or tissues. The tags may recognize a portion of a material, cell, organ, or tissue, including but not limited to a cell surface marker, cell surface receptor, immune complex, antibody, MHC, extracellular matrix protein, plasma, cell membrane, extracellular protein, polypeptide, cofactor, growth factor, fatty acid, lipid, carbohydrate chain, gene sequence, cytokine or other polymer.
Nanoparticles of the present invention may be applied to the surface of an implant by methods known to one of ordinary skill in the art, including by physical adsorption or chemical conjugation. The techniques described in accordance with the present invention may be used in vivo and in vitro. For example, nanoparticles can be used for coating blood bags and/or blood tubes. Techniques for making particles and coating implants in accordance with the present invention are further described by examples presented below.
Examples of Nanoparticle Preparation and Biocompatibility
N-isopropylacrylamide (NIPA) particles and hydro-propyl cellulose (HPC) particles were produced in sizes ranging from 100 nm to 20 μm. The particles were implanted in a subcutaneous space of Balb/C mice. After implantation for periods ranging from 3 days to 21 days, it was determined that adverse and foreign body reactions, such as inflammatory and fibrotic responses, were absent or less evident when smaller particles were implanted. Such size-dependence related to adverse tissue responses was independent of the material (i.e., particle) composition. In general, particles with sizes less than 500 nm showed the least adverse responses as shown in
Fibronogen-depleted mice, also referred to a hypofibrinogenemic mice, were generated by repeat administering ancrod (a snake venom) to the mice 3 days prior to implantation. These hypofibrinogenemic mice failed to illicit adverse or foreign body reactions to particles that were 10 micrometers in diameter, as shown in
Previous work by the inventor has shown that denatured fibrinogen will bind to a biomaterial or particle of larger dimensions and results in proinflammatory processes. As such, particles of larger size (e.g., 10 micrometer in diameter) were implanted subcutaneously in Balb/c mice using a subcutaneous implant model. Large amounts of fibrinogen (detected with peroxidase-conjugated antibody against fibrinogen) were found to accumulate around these larger particles as shown in
Because adverse biologic responses following insertion of an implant in an organism also include the accumulation of inflammatory cells and the formation of fibrotic capsules, these reactions were observed following implantation of larger particles and nanoparticles. As shown in
Examples of Coating with Nanoparticles and their Biocompatibility
Poly-L-lactic acid (PLLA) fibers were coated with nanoparticles of 100 nm diameter. NIPA nanoparticle-coated fibers were introduced into mice using the subcutaneous implantation mode and tissue samples were then examined seven days after implantation.
Similarly, adverse reactions were not apparent when implanting PET films coated with 100 nm diameter nanoparticles using the subcutaneous implant model, while reactions were apparent when implanting PET films coated with larger particles (micrometer in diameter). (Data not shown). Here, coating with nanoparticles, with diameters less than 500 nm, significantly reduced the accumulation of phagocytic cells by greater than 70% and reduced fibrotic tissue formation by greater than 50%. Similar studies using hydroxl propyl cellulose (HPC) particles as coating material yield similar results.
Nanoparticles can be physically or chemically conjugated to a large variety of materials, including nondegradable polymers, degradable polymers, metal, hydrogel, carbon, proteins, organic/inorganic chemicals, drugs, biological polymers, phospholipid polymers, dental materials, bone materials and soft tissue materials.
Example Nanoparticles Preventing Protein Denaturation
Using an in vitro model, it has been found that larger particles (e.g., those micrometer in diameter) are capable of denaturing fibrinogen (
Nanoparticles of the present invention provide for a coating on an implant surface to be implanted into an organism in need thereof. The coating may be applied to any material via physical and/or chemical binding, including techniques such as plasma polymerization or spot coating. In general, the coating of the present invention when applied to an implant surface is used for purposes that may be cosmetic, therapeutic, preventative, reconstructive, monitoring and replacement. In addition, the coating of the present invention may be used for in vitro purposes.
Additional objects, advantages and novel features of the invention as set forth in the description, will be apparent to one skilled in the art after reading the foregoing detailed description or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instruments and combinations particularly pointed out here.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/690,466, filed Oct. 21, 2003, incorporated herein by reference.
The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of EB-00287 awarded by The National Institutes of Health.
Number | Date | Country | |
---|---|---|---|
Parent | 10690466 | Oct 2003 | US |
Child | 10896376 | Jul 2004 | US |