1. Field of the Invention
The present invention relates generally to nanotechnology, and more particularly, to low-cost and high-throughput nanoimprint lithography of fabricating a nanoadhesive.
2. Description of the Related Art
In the field of the nanotechnology, the imprint lithography techniques can meet the requirements of mass production and low production cost. Particularly, the imprint lithography technique with the sub-50-nm line-width is essential for the further manufacturing of semiconductor integrated circuits and the commercialization of electronic, optoelectronic, and magnetic nanodevices.
Numerous relevant technologies are under development, like scanning electro beam lithography (K. C. Beard, T. Qi. M. R. Dawson, B. Wang. C. Li, Nature 368, 604 (1994)), X-ray lithography (M. Godinot and M. Mahboubi, C. R. Acad. Sci. Ser. II Mec. Phys. Chim. Chim. Sci. Terre Univers. 319, 357(1994); M. Godinot, in Anthropoid Origins, J. G. Fleagle and R. F. Kay, Eds. (Plenum, N.Y., 1994), pp. 235-295), lithographies based on scanning proximal probes (E. L. Simons and D. T. Rasmussen, Proc. Nati. Acad. Sci. U.S.A. 91, 9946(1994); Evol. Anthropol. 3, 128 (1994)), etc. While the scanning electro beam lithography demonstrated 10-nm resolution, it exposes point by point in a serial manner and thus, the current throughput of the technique is too low to be economically practical for mass production. The X-ray lithography demonstrated 20-nm resolution in a contact printing mode and has a high throughput, but its mask technology and exposure systems are currently rather complex and expensive. The lithographies based on scanning proximal probes, demonstrated a resolution of about 10-nm, but were in the early stages of development and failed to meet the requirements of low production cost and mass production, either.
The primary objective of the present invention is to provide a low-cost and high-throughput nanoimprint lithography method of fabricating a nanoadhesive.
The foregoing objective of the present invention is attained by the nanoimprint lithography method, which includes the steps of:
preparing a substrate and a mold under the vacuum environment, wherein at least one of the substrate and the mold is transparent, the mold is located over the substrate and has nanometer-scale features located on its bottom side, and a mold release agent located on the surface of the nanometer-scale features;
coating a liquid resist cast on the substrate, wherein the resist cast can be hardened by the irradiation of ultraviolet rays; pressing the mold onto the substrate to enable the resist cast to fill between the nanometer-scale features and the substrate;
irradiating the transparent one of the mold and the substrate by the ultraviolet rays to enable the ultraviolet rays to penetrate it to irradiate and harden the resist cast;
and releasing the mold from the substrate, and meanwhile, the resist cast produces a contrast pattern thereon corresponding to the nanometer-scale features, wherein the resist cast with the contrast pattern is the nanoadhesive.
Referring to
(a) Under vacuum environment, prepare a substrate 11 and a mold 13. The mold 13 is transparent plate-like and located over the substrate 11, having an oppressing portion 14 on a bottom side thereof. The oppressing portion 14 has nanometer-scale features 15 on its surface and a mold release agent 17 on the surface of the nanometer-scale features 15, as shown in
(b) Coat a liquid resist cast 19 on the substrate 11. The resist cast 19 is a polymer in this embodiment and can be hardened by the irradiation of ultraviolet rays. As shown in
(c) Press the mold 13 onto the substrate 11 to enable the resist cast 19 to fill between the nanometer-scale features 15 and the substrate 11, as shown in
(d) Irradiate the mold 13 by the ultraviolet rays from the upper side to enable the ultraviolet rays to penetrate the mold 13 to irradiate and harden the resist cast 19, as shown in
(e) Release the mold 13 from the substrate 11 to enable the resist cast 19 to produce a contrast pattern corresponding to the nanometer-scale features 15, wherein the resist cast 19 with the contrast pattern is the nanoadhesive, as shown in
Referring to
(a) Under a vacuum environment, prepare a substrate 21 and a mold 23. The substrate 21 is transparent, having a release layer 22 applied on its surface. The mold 23 is located over the substrate 21, having an oppressing portion 24 on a bottom side thereof. The oppressing portion 24 has nanometer-scale features 25 on its surface and a mold release agent 27 on the surface of the nanometer-scale features 25, as shown in
(b) Coat a liquid resist cast 29 on the release layer 22. The resist cast 29 can be hardened by the irradiation of ultraviolet rays. As shown in
(c) Press the oppressing portion 24 of the mold 23 onto the substrate 21 to enable the resist cast 29 to fill between the nanometer-scale features 25 and the release layer 22, as shown in
(d) Irradiate the substrate 21 with the ultraviolet rays from the lower side to enable the ultraviolet rays to penetrate the substrate 21 to irradiate and harden the resist cast 29, as shown in
(e) Release the mold 23 from the substrate 21 to enable the resist cast 29 to produce a contrast pattern corresponding to the nanometer-scale features 25, wherein the resist cast 29 with the contrast pattern is the nanoadhesive, as shown in
After the steps indicated above, remove the release layer 22 together with the resist cast 29 from the substrate 21 to enable the release layer 22 to become a carrier of the resist cast 29 for other purposes. Further, the release layer 22 can be erosively eliminated from the substrate by a chemical agent, and meanwhile, the resist cast 29 is kept on the substrate 21.
Referring to
(a) Under vacuum environment, prepare a substrate 31 and a mold 33. The mold 13 is transparent roller-shaped and located over the substrate 31, having an oppressing portion 34 on an outer periphery thereof. The oppressing portion 34 has nanometer-scale features 15 on a surface thereof and a mold release agent 37 on the surface of the nanometer-scale features 35, as shown in
(b) Lay a liquid resist cast 39 on the substrate 31. The resist cast 39 is a polymer in this embodiment and can be hardened by the irradiation of ultraviolet rays. As shown in
(c) Let the mold 33 roll the substrate 31 to enable the resist cast 39 to be filled between the nanometer-scale features 35 and the substrate 31, as shown in
(d) Irradiate the mold 33 by the ultraviolet rays from upper side to enable the ultraviolet rays to penetrate the mold 33 to irradiate and harden the resist cast 39 while the mold 33 rolls the substrate 31, as shown in
(e) Release the mold 33 by rolling the mold 33 away from the substrate 31. In the meantime, a contrast pattern corresponding to the nanometer-scale features 35 is formed on the resist cast 39. Thus, the resist cast 39 with the contrast pattern is the nanoadhesive, as shown in
After the steps indicated above, unfix the resist cast 39 with contrast pattern in the step (e) and then the resist cast 39 can be used for the nanoadhesive.
As indicated above, the nanoimprint lithography method of fabricating the nanoadhesive of the present invention employs the simple imprint or roller-print lithography in cooperation with the liquid resist cast and the irradiation of the ultraviolet rays under the vacuum environment to create a great number of nanometer-scale hardened resist casts for fabrication of the nanoadhesive. Thus, the present invention can achieve both of the mass production and low production cost, far more advanced than the prior art.
Number | Date | Country | Kind |
---|---|---|---|
94109887 | May 2005 | TW | national |
94125183 | Jul 2005 | TW | national |