The disclosure pertains to nanometrology device standards.
With the advent of science and engineering on the nanometer scale, scanning probe microscopes are increasingly used for nanometrology applications. Scanning probe microscopes use various probe tip configurations for assessing a range of physical properties on the atomic and nanometer scale. Based on the physical detection principle, a scanning probe microscope can be referred to as a scanning tunneling microscope, an atomic force microscope, a magnetic force microscope, or other type of microscope. The availability of these various configurations has permitted a wide range of nanometer scale measurements.
One particular application of scanning probe microscopy is in the measurement and characterization of specimen topography. However, accurate specimen metrology requires dimensional standards and standardized procedures for calibration. An absolute length reference is typically unavailable on a sample of interest, and nanometrology device standards are needed. Conventional “top-down” approaches for fabricating length references are based on conventional semiconductor manufacturing lithographic and etching processes. However, these processes are suitable for reference standards having feature heights greater than about 20 nm and feature pitches greater than about 1 μm, and smaller feature sizes are unavailable.
In many applications, interactions of a scanning probe tip and a sample are complex, and measurements of sample topography are complicated by the finite size of the scanning probe tip. See, for example, J. G. Griffith and D. A. Grigg, “Dimensional metrology with scanning probe microscopes,” J. Appl. Phys. 74, R83 (1993) and D. J. Keller and F. S. Franke, “Envelope reconstruction of probe microscope images,” Surface Science 294, 409 (1993). Accurate microscope calibration could permit deconvolution of the effects of finite probe tip size from specimen measurements.
Since scanning tunneling microscopes (and special atomic force microscopes that operate in vacuum) can have resolution on an atomic scale, reference samples of inorganic crystalline materials having known lattice constants can be used as lateral calibration standards. For example, highly ordered pyrolytic graphite can be used. In a [0001] oriented graphite crystal, the lateral lattice constant, i.e. the length of the <1000> and <1100> lattice vectors can be measured directly and is known to be 0.2462 nm. A single atomic monolayer step of graphite is known to be 0.3354 nm high. Thus, multilayer steps must have heights that are integral multiples of this monolayer step height. Such single- and multilayer steps can be used for vertical calibrations of scanning probe microscopes. Standards based on other inorganic crystals can also be used to obtain lateral and vertical calibrations of less than about 1 nm. For example, a Si (111) surface such as illustrated in
Thus, nanometrology device standards can be obtained that are suitable for calibrations from atomic dimensions up to a few nm. There is, however, a gap between these atomic precision nanometrology device standards and the about 20 nm dimensions of nanometrology device standards that are produced by the top-down approach. Accordingly, improved device standards and methods are needed.
According to representative examples, calibration standards comprise a substrate and at least one nano-island situated at a surface of the substrate. An indicia associated with a crystallographic orientation of the at least one nano-island is fixed with respect to the nano-island. In some examples, the indicia is situated on the substrate or at the at least one crystal island. In additional examples, the calibration standards comprise a plurality of nano-islands. The indicia can be associated with a cleavage plane of the substrate or the nano-island. In representative embodiments, the substrate is (111) oriented silicon or (111) oriented BaF2, and a buffer, stress relief, or other layer is situated between the substrate and the at least one nano-island. In typical examples, the nano-island has dimensions of between about 2 nm and 20 nm.
Methods of fabricating a calibration standard comprise forming at least one nano-island at a surface of a substrate and providing an indicia of a crystallographic orientation of the nano-island, wherein the indicia is fixed with respect to the nano-island. In some examples, the indicia is provided by cleaving at least one of the substrate and the nano-island. In other examples, the indicia is based on X-ray diffraction analysis of the nano-island or is based on electron backscatter diffraction. In representative examples, the at least one nano-island is formed by epitaxial growth and has dimensions of between about 2 nm and 10 nm. In further examples, a plurality of nano-islands is formed at the surface of the substrate.
Methods comprise evaluating a nano-island with a scanning probe microscope, and calibrating the scanning probe microscope based on the evaluation. In representative examples, the calibration is associated with compensation of a scan nonlinearity. In additional examples, methods further comprise selecting a hardness of the nano-island based on a scanning probe hardness and evaluating a plurality of nano-islands of at least two different heights with the scanning probe microscope, wherein the scanning probe microscope is calibrated based on the evaluation.
The foregoing and other objects, features, and advantages of the technology will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the term “coupled” means electrically or electromagnetically connected or linked and does not exclude the presence of intermediate elements between the coupled items.
Disclosed below are representative embodiments of metrology standards and associated methods of fabrication and use. The described systems, apparatus, and methods should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The disclosed systems, methods, and apparatus are not limited to any specific aspect or feature or combinations thereof, nor do the disclosed systems, methods, and apparatus require that any one or more specific advantages be present or problems be solved.
Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed systems, methods, and apparatus can be used in conjunction with other systems, methods, and apparatus. Additionally, the description sometimes uses terms like “produce” and “provide” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms will vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.
Disclosed herein are standards and associated methods of fabrication and use based on a “bottom-up” approach. Naturally occurring self-assembly and ordering processes can be used to produce well defined structures that have known feature sizes and morphologies of nm size in three dimensions. Epitaxial self-assembly of nanometer sized islands, referred to herein as nano-islands, can produce suitable nanometrology device standards. Self assembly of nano-islands is described in Alchalabi et al., “Self-assembled semiconductor quantum dots with nearly uniform sizes,” Phys. Rev. Lett. 90, 26104 (2003), Ferreira et al., “AFM characterization of PbTe quantum dots grown by molecular beam epitaxy under Volmer-Weber mode,” J. Cryst. Growth 231, 121 (2001), Lüders et al., “Self-organized structures in CoCr2O4 (001) thin films: Tunable growth from pyramidal clusters to a {111} fully faceted surface,” Phys. Rev. B 70, 45403 (2004), Pinczolits et al., “Direct formation of self-assembled quantum dots under tensile strain by heteroepitaxy of PbSe on PbTe (111),” Appl. Phys. Lett. 73, 250 (1998), Raab et al., “Atomic Force Microscopy and Transmission Electron Microscopy Study of Self-Organized Ordering in Vertically Aligned PbSe Quantum Dot Superlattices,” Mat. Res. Symp. Proc. Vol. 696, N7.2.1 (2002), Pinczolits et al., “Molecular beam epitaxy of highly faceted self-assembled IV-VI quantum dots with bimodal size distribution,” J. Cryst. Growth 201-202, 1126 (1999), Springholz et al., “Self-Organized Growth of Three-Dimensional Quantum-Dot Crystals with fcc-Like Stacking and a Tunable Lattice Constant,” Science 76, 1675 (1996), Springholz et al., “Tuning of Vertical and Lateral Correlations in Self-Organized PbSe/Pb1-xEuxTe Quantum Dot Superlattices,” Phys. Rev. Lett. 84, 4669 (2000), Springholz et al., “Controlling of lateral and vertical order in self-organized PbSe quantum dot superlattices,” Proc. 25th Int. Conf. on the Physics of Semiconductors, September 2000, Osaka, Japan, Miura and Ando, eds. (Springer 2001), p. 355-358, Springholz et al., Self-organized ordering in self-assembled quantum dot superlattices,” Materials Science and Engineering B 88, 143-152 (2002), Springholz et al., “Dot size dependence of vertical and lateral ordering in self-organized PbSe/Pb1-xEuxTe quantum-dot superlattices,” App. Phys. Lett. 82, 799 (2003), and Stangl et al., “Structural properties of self-organized semiconductor nanostructures,” Rev. Mod. Phys. 76, 725 (2004).
Nano-islands have several characteristics that make them particularly suitable for metrological standards. Nano-island morphology is known, stable, and uniform so that sample topography/scanning tip deconvolutions can be calculated. Nano-islands have structural, morphological, and chemical stability in typical nanometrology laboratory environments. Nano-islands have morphological uniformity that is largely independent of nano-island height since the nano-island facets are the crystallographic net-planes with the lowest or a very low surface energy (except for very small heights). In addition, nano-islands have large height-to-width aspect ratios so that elastic lattice mismatch strain resulting from the heteroepitaxial growth in the Stranski-Krastanow or Volmer-Weber mode tends to be partly relieved. Nano-islands can be produced with wide or narrow size distributions, and within hardness ranges that allow calibrations with scanning tips of different hardnesses. In order to use nano-islands as calibration standards, indicia that are detectable either macroscopically or microscopically can be provided to indicate crystallographic alignment of the nano-islands with respect to, for example, a scanning direction of a scanning probe microscope. In addition, aspect ratios, dimensions, size distributions, or other characteristics can be provided.
Application of nanometrology device standards to scanning probe microscopy can be achieved by calibrating, correcting, and fine tuning the scanning probe microscope with a nanometrology device standard until a measurement of the standard yields a value or values identical or sufficiently close to the dimensions or other values that are certified for the standard. In some examples, nanometrology device standards described herein are associated with fixed angles between a sample surface and nano-island facets, and these angles can be used for calibration.
Representative examples of nanometrology device standards for scanning probe microscopes, processes for the fabrication of such standards, and use of the standards are described. Generally speaking, the representative standards consist of epitaxial structures with nano-islands that possess either three symmetrically equivalent {100} facets on a (111) oriented substrate (referred to herein as “type 1”), four symmetrically equivalent {111} facets on a (001) oriented substrate (“type 2”), or three symmetrically equivalent {112} facets on a (111) oriented substrate (“type 3”). In all cases, there can also be tiny top facets more or less parallel to the surface normals of the substrate, a variety of free surface reconstructions or a slight rounding of the intersection points of the above mentioned {100}, {111}, and {112} facets. The nano-islands are of single crystalline materials and are chemically, structurally, and morphologically stable. Nano-islands that are of a material that occurs naturally as a mineral will also generally be stable in the nano-metrology laboratory environment.
One suitable process for nanometrology device standard fabrication is heteroepitaxial self-assembly in either the Stranski-Krastanow or the Volmer-Weber growth mode combined with processes that indicate the relevant crystallographic directions of the nano-islands. Such indications can be configured to be visible either macroscopically or microscopically. Crystallographic orientations can be revealed by, for example, partial or complete cleaving of (111) oriented substrates having rock salt or diamond structure. Alternatively, standard X-ray crystallographic or electron backscattering diffraction identification and marking of low-indexed crystallographic directions that are perpendicular to the surface normal can be used with substrates having the spinel structure or other structures that do not cleave well.
Substrates that are particularly suitable for nano-island self assembly include (111) (type 1 and 3) or (001) (type 2) oriented single crystals of the cubic crystal system having, for example, diamond, rock salt, or spinel structure. While cubic nano-islands on (111) oriented substrates tend to have three symmetrically equivalent {100} (type 1) or three symmetrically equivalent {112} facets (type 3), their counterparts on (001) oriented substrates have four symmetrically equivalent {111} facets (type 2).
Type 1 nano-islands can be grown in the Stranski-Krastanow growth mode to produce representative nano-islands as shown in
Type 2 nano-islands such as shown in
Type 3 nano-islands such as shown in
Type 1, 2 and 3 nanometrology device standards can be used in calibration of scanning probe microscopes. Typical number densities of nano-islands are in a range of from 1 to 500 μm−2. These number densities can generally be selected to provide spacing between nano-islands so that height measurements (z-coordinates) based on a particular nano-island are substantially independent of adjacent nano-islands. Typical nano-island heights are in a range of from about 1 nm to 500 nm. Height measurements in scanning probe microscopes are intrinsically more sensitive than x- and y-measurements and can be calibrated by standards with a certified roughness. Over the known large nano-island aspect ratios and height to full-base width ratios, this height sensitivity can be used for the calibration of lateral measurements.
Since the shapes of type 1, 2 and 3 nano-islands are known, scanning tip shape/nano-island shape deconvolutions can be calculated to determine the shape of a scanning probe tip. With the shape of the scanning probe tip determined in this way, deconvolutions of the finite probe tip size from measurements of nanometer-sized objects of interest can be calculated in order to better estimate actual object shapes and sizes. Using nanometrology device standards that feature laterally ordered arrays of nano-islands such as illustrated in
In order to provide such nanometrology standards, particularly those that can fill the gap between the atomic precision nanometrology standards that allow calibrations up to a few nm, and conventional “top down” nanometrology device standards that allow calibrations down to about 20 nm, so-called “bottom-up approaches” are described. These “bottom up” approaches can be used to provide standards suitable for a wide range of dimensions but are particularly needed for dimensional calibrations for which atomic precision standards are too small, and “top down” standards are too large. Representative examples of such standards are described below.
Epitaxial self-assembly of PbSe (clausthalite) or Pb(Se,Te) with high PbSe content islands on PbTe (altaite) in the Stranski-Krastanow mode leads to nanometer sized three-dimensional islands that possess suitable properties for nanometrology device standard applications. Epitaxial self-assembly of CoCr2O4 (cochromite) islands on MgAl2O4 (spinel) substrates produces nanometer sized three-dimensional islands that also have suitable properties for nanometrology applications. Epitaxial self-assembly of PbTe (altaite) in the Volmer-Weber mode produces nanometer sized three-dimensional islands that also have suitable properties for nanometrology device standard applications.
Other epitaxial materials systems can also be used to produce nanometer sized three-dimensional islands that have suitable properties for nanometrology device standard applications. While PbSe and PbTe possess a Mohs hardness of 2.5, CoCr2O4 is much harder, having a Mohs hardness of 7. All three types of nanometrology device standards can, thus, be used in different scanning probe modes and with scanning probe tips of different harnesses.
The self-assembly of nano-islands is a result of the epitaxial growth mode. One of many examples of the first type of the device is a wafer of (111) oriented BaF2 (frankdicksonite) substrate on which firstly a lattice matched Pb(Se,Te) buffer layer or a PbTe buffer layer and secondly either a PbSe or Pb(Se,Te) nano-island layer with high PbSe content are grown epitaxially by means of molecular beam epitaxy or metal organic vapor phase epitaxy in the Stranski-Krastanow mode. The final PbSe or Pb(Se,Te) nano-island layer may be replaced by a strain symmetrized superlattice of several PbSe or Pb(Se,Te) nano-island layers with high PbSe content separated by (Pb,Eu)(Se,Te) spacer layers with a high PbTe content that ends in nano-islands. These multilayer superlattices can also be grown epitaxially by the same methods. The process of the fabrication of this device comprises epitaxial growth and the introduction of macroscopically or microscopically visible edges parallel to <110> directions that are perpendicular to the wafer normal by partial or total cleaving of the pseudo-substrate while taking advantage of the three naturally occurring {111} cleavage planes that are inclined by 70.529° to the (111) BaF2 plane.
For scanning probe microscope calibration, the nano-islands of this nanometrology device standard are aligned with their <110> edges (the intersections of the nano-island facets with the BaF2 wafer normal) perpendicular to the scanning direction. This is achieved by taking advantage of the macroscopically or microscopically visible <110> direction markers. When the scanning probe tip scans over such a nano-island, it follows a [2-1-1], [1-21] or [11-2] direction. First the scanning probe tip goes up a nano-island (100), (010), or (001) plane. Each of these planes makes an angle of 54.736° with the (111) surface normal. Then the scanning probe tip goes down a nano-island [-100], [0-10], or [00-1] edge. Each of these edges makes an angle of 32.264° with the (111) surface normal. The three-fold symmetry of the nano-island is taken advantage of for the microscope calibration by adjusting each one of the above mentioned <110> directions to be perpendicular to the scanning direction, one after the other, repeating the calibration procedure three times, and averaging the results.
Another of many examples of the first type of the device is a wafer of (111) oriented Si substrate on which firstly a CaF2 (fluorite) buffer layer, secondly a BaF2 buffer layer, thirdly a lattice matched Pb(Se,Te) buffer layer or a PbTe buffer layer, and fourthly either a PbSe or Pb(Se,Te) nano-island layer with high PbSe content or a strain symmetrized superlattice of several PbSe or Pb(Se,Te) nano-island layers with high PbSe content separated by (Pb,Eu)(Se,Te) spacer layers with a high PbTe content are grown epitaxially by molecular beam epitaxy or metal organic vapor phase epitaxy. The fabrication of this device comprises epitaxial growth and the introduction of macroscopically or microscopically visible edges parallel to <112> directions that are perpendicular to the wafer normal by either partial or complete cleavage of the pseudo-substrate while taking advantage of the three naturally occurring {110} cleavage planes that are inclined by 90° to the (111) nanometrology device surface.
For microscope calibration, the nano-islands of this nanometrology device standard are aligned with their <110> edges (the intersections of the nano-island facets with the Si wafer normal) perpendicular to the scanning direction. This is achieved by taking advantage of the macroscopically or microscopically visible <112> directions. The three-fold symmetry of the nano-island is taken advantage of by adjusting each of the above mentioned <110> directions to be perpendicular to the scanning probe direction, one after another, repeating the calibration procedure three times, and averaging the results.
One of many examples of the second type of the device is a wafer of (100) oriented MgAl2O4 (spinel) on which CoCr2O4 (cochromite) nano-islands are grown epitaxially by radio-frequency magnetron sputtering. The fabrication of this device comprises epitaxial growth and the introduction of macroscopically or microscopically visible markers parallel to <110> directions that are perpendicular to the wafer normal by employing standard X-ray crystallographic or electron backscatter diffraction determination of these directions and their marking by suitable processes. Another of many examples of the second type of device is a wafer of (100) oriented MgAl2O4 (spinel) on which a strain symmetrized superlattice of CoCr2O4 (cochromite) and a suitable spinel structure spacer layer material are grown epitaxially by radio-frequency magnetron sputtering whereby the superlattice ends in CoCr2O4 (cochromite) nano-islands. The fabrication of this device comprises epitaxial growth and the introduction of macroscopically or microscopically visible markers parallel to <110> directions that are perpendicular to the wafer normal by employing standard X-ray crystallographic or electron backscatter diffraction determination of these directions and their marking by suitable processes.
For microscope calibration, the nano-islands of the second type of this nanometrology device standard are aligned with their <110> edges (the intersections of the nano-island facets with the MgAl2O4 wafer normal) to be perpendicular to the probe tip scanning direction. This is achieved by taking advantage of the macroscopically or microscopically visible <110> directions. For the calibration of a scanning probe microscope with the second type of this nanometrology device standard, the scanning probe tip follows <110> directions. This means that the scanning probe tip goes up a nano-island (111), (1-11), (-1-11), or (-111) plane. Then the scanning probe tip goes down a nano-island (-1-11), (-111), (111), or (1-11) plane. Each of these planes makes an angle of 54.736° with the (001) surface normal. The four-fold symmetry of the nano-island is taken advantage of for the calibration of scanning probe microscopes by adjusting each one of the above mentioned <110> directions to be perpendicular to the scanning probe direction, one after the other, repeating the calibration procedure four times, and averaging the results.
One of many examples of the third type of the device is a wafer of (111) oriented BaF2 (frankdicksonite) on which PbTe (altaite) nano-islands are grown epitaxially in the Volmer-Weber mode using molecular beam epitaxy. The process of the fabrication of this device comprises epitaxial growth and the introduction of macroscopically or microscopically visible edges parallel to <110> directions that are perpendicular to the wafer normal by partial or total cleaving of the pseudo-substrate while taking advantage of the three naturally occurring {111} cleavage planes that are inclined by 70.529° to the (111) BaF2 plane.
For microscope calibration, the nano-islands of this nanometrology device standard are aligned with their <110> edges (the intersections of the nano-island facets with the BaF2 wafer normal) to be perpendicular to the probe tip scanning direction. This is achieved by taking advantage of the macroscopically or microscopically visible <110> directions. When the scanning probe tip scans over such a nano-island, it follows a [2-1-1], [1-21] of [11-2] direction. First the scanning probe tip goes up a nano-island (211), (121), or (112) plane. Each of these planes makes an angle of 19.471° with the (111) surface normal. Then the scanning probe tip goes down a nano-island [-311], [1-31], or [11-3] edge. Each of these edges makes an angle of 10.025° with the (111) surface normal. The three-fold symmetry of the nano-island is taken advantage of for the calibration of scanning probe microscopes by adjusting each one of the above mentioned <110> directions to be perpendicular to the scanning probe direction, one after the other, repeating the calibration procedure three times, and averaging the results.
PbSe (clausthalite) or Pb(Se,Te) islands with a high PbSe content can be grown on PbTe (altaite) by molecular bean epitaxy using PbTe and PbSe sources. (111) oriented silicon can be used as a substrate. After desorption of surface layers, a 20 nm thick CaF2 (fluorite) buffer layer is grown at 700° C. Subsequently, at 350° C., a 5 μm thick PbTe buffer layer is grown. The substrate and layers are then exposed to a 380 C environment, and 1.5 nm (approximately 5 monolayers) of PbSe is deposited at a rate of 0.25 nm s−1. The sample is cooled to room temperature at a rate of 1 K s−1, and removed from the epitaxial growth reactor. Crystallographic <112> directions that are perpendicular to the Si wafer substrate normal are marked by partial or total cleavage of the epitaxial structure along the {110} planes that are perpendicular to the Si wafer normal.
A simplified representation of such a device is shown in
PbSe (clausthalite) or Pb(Se,Te) islands with a high PbSe content are grown on PbTe (altaite) using molecular bean epitaxy with PbTe and PbSe sources. (111) oriented silicon is the substrate. After desorption of surface layers, a 3 nm thick CaF2 (fluorite) buffer layer is grown at 700° C. Subsequently, a 4 μm thick PbTe buffer layer is grown at 350° C. The assembly is then exposed to a 380° C. environment and 1.1 nm (about 3.5 monolayers) of PbSe is deposited at a rate of about 0.25 nm s−1. The assembly is then cooled to room temperature at a rate of 1 K s−1 and removed from the epitaxial growth reactor. Crystallographic <112> directions perpendicular to the Si wafer normal are marked by partial or total cleavage of the epitaxial structure along the {110} planes that are perpendicular to the Si wafer normal.
PbSe (clausthalite) or Pb(Se,Te) islands with a high PbSe content can be grown on PbTe (altaite) by molecular bean epitaxy using PbTe and PbSe sources. (111) oriented silicon can be used as a substrate. After desorption of surface layers, a 25 nm thick CaF2 (fluorite) buffer layer can be grown at 700° C. At the same temperature, a BaF2 (frankdicksonite) buffer layer with 1 μm thickness is grown. Subsequently at 350° C., a 4 nm thick PbTe buffer layer is grown. The assembly is then heated to about 380° C. and 1.1 nm (approximately 3.5 monolayers) of PbSe is deposited at a rate of 0.25 nm s−1. The assembly is cooled to room temperature at a rate of 1 K s−1 and removed from the epitaxial growth reactor. Crystallographic <112> directions that are perpendicular to the Si wafer normal are marked by partial or total cleavage of the epitaxial structure along the {110} planes that are perpendicular to the Si wafer normal.
CoCr2O4 (cochromite) can be grown on (001) oriented MgAl2O4 (spinel) by radio-frequency magnetron sputtering at a temperature of about 700° C. in an atmosphere of 75% Ar and 25% O2 at a pressure of 33.33 Pa and a growth rate of approximately 0.03 nm s−1. Sputtering for 50 minutes results in a CoCr2O4 layer that is approximately 85 nm thick. After sputtering, the sample is cooled to room temperature and removed from the growth chamber. Crystallographic <110> directions that are perpendicular to the MgAl2O4 wafer normal are determined by standard X-ray crystallography or electron backscattering diffraction in a scanning electron microscope and marked on the device surface.
A simplified representation of such a device is illustrated in
CoCr2O4 (cochromite) can be grown on (001) oriented MgAl2O4 (spinel) by radio-frequency magnetron sputtering at a temperature of 700° C. in an atmosphere of 75% Ar and 25% O2 at a pressure of 33.33 Pa and a growth rate of approximately 0.03 nm s−1. Sputtering for 100 minutes results in a CoCr2O4 layer that is approximately 170 nm thick. The sample is then cooled to room temperature and removed from the sputtering chamber. Crystallographic <110> directions that are perpendicular to the MgAl2O4 wafer normal are determined by standard X-ray crystallography or electron backscattering diffraction in a scanning electron microscope and marked on the device surface.
CoCr2O4 (cochromite) is grown on (001) oriented MgAl2O4 (spinel) by radio-frequency magnetron sputtering at a temperature of 700° C. in an atmosphere of 75% Ar and 25% O2 at a pressure of 33.33 Pa at a growth rate of approximately 0.03 nm s−1. Sputtering for 200 minutes results in a CoCr2O4 layer that is approximately 340 nm thick. The assembly is then cooled to room temperature and removed from the epitaxial growth reactor. Crystallographic <110> directions that are perpendicular to the MgAl2O4 wafer normal are determined by standard X-ray crystallography or electron backscattering diffraction in a scanning electron microscope and marked on the device surface.
PbSe (clausthalite) or Pb(Se,Te) islands with a high PbSe content can be grown on PbTe (altaite) by molecular bean epitaxy using PbTe and PbSe sources. Freshly cleaved (111) oriented BaF2 (frankdicksonite) can be used as the substrate. After desorption of surface layers for 10 minutes at 500° C., a 3 μm PbTe is grown at a rate of 0.2 nm s−1. Then the temperature is lowered to 380° C. and 2.5 nm (approximately 8 monolayers) of PbSe are deposited at a rate of 0.08 nm s−1. The assembly is finally cooled to room temperature by disabling the molecular beam epitaxy system sample heaters. The sample is removed from the epitaxial growth reactor and the crystallographic <110> directions that are perpendicular to the BaF2 wafer normal are marked by partial or total cleavage of the epitaxial structure along the {111} planes that are inclined by 70.529° to the (111) wafer normal plane.
A simplified representative example of such a device is illustrated schematically in
PbSe (clausthalite) or Pb(Se,Te) islands with a high PbSe content can be grown on PbTe (altaite) by molecular bean epitaxy using PbTe and PbSe sources. Freshly cleaved (111) oriented BaF2 (frankdicksonite) is used as the substrate. After desorption of surface layers for 15 minutes at 500° C., a PbTe buffer layer is grown at 400° C. and a growth rate of 0.2 nm s−1. Then 50 periods of a PbSe nano-island layer plus a strain symmetrizing (Pb,Eu)Te spacer layer are grown at 360° C. A 1.5 nm thick PbSe layer (approximately 5 monolayers) is deposited at a rate of 0.025 nm s−1 and a 16 nm thick Pb0.92Eu0.8Te layer is deposited at a growth rate of 0.35 nm s−1 for one period of this superlattice. The sample is cooled to room temperature at a rate of 1 K s−1 and removed from the epitaxial growth reactor. Crystallographic <110> directions that are perpendicular to the BaF2 wafer normal are marked by partial or total cleavage of the epitaxial structure along the {111} planes that are inclined by 70.529° to the (111) wafer normal plane.
A simplified representative device configuration is illustrated in
PbSe (clausthalite) or Pb(Se,Te) islands with a high PbSe content can be grown on PbTe (altaite) by molecular bean epitaxy using PbTe and PbSe sources. Freshly cleaved (111) oriented BaF2 (frankdicksonite) can be used as the substrate. After desorption of surface layers for 15 minutes at 500° C., a PbTe buffer layer is grown at 400° C. and a growth rate of 0.2 nm s−1. Then 50 periods of a PbSe nano-island plus a strain symmetrizing (Pb,Eu)Te spacer layer are grown at 360° C. In this example, 1.5 nm (approximately 5 monolayers) of PbSe is deposited at a rate of 0.025 nm s−1 and 46.5 nm of Pb0.92Eu0.8Te is grown at a rate of 0.35 nm s−1 for one period of this superlattice. The sample is finally cooled to room temperature at a rate of 1 K s−1 and removed from the epitaxial growth reactor. Crystallographic <110> directions that are perpendicular to the BaF2 wafer normal are marked by partial or total cleavage of the epitaxial structure along the {111} planes that are inclined by 70.529° to the (111) wafer normal plane.
PbTe (altaite) can be grown by molecular bean epitaxy using a PbTe source. Freshly cleaved (111) oriented BaF2 (frankdicksonite) is used as a substrate. After desorption of surface layers for 15 minutes at 500° C., the substrate temperature is lowered to 300° C. and 0.475 nm (approximately 1.5 monolayers) of PbTe is deposited at a rate of 0.15 nm s−1. The assembly is then cooled to room temperature at a rate of 1 K s−1 and removed from the epitaxial growth reactor. Crystallographic <110> directions that are perpendicular to the BaF2 wafer normal are marked by partial or total cleavage of the epitaxial structure along the {111} planes that are inclined by 70.529° to the (111) wafer normal plane.
PbTe (altaite) can be grown by molecular bean epitaxy using a PbTe source. Freshly cleaved, (111) oriented BaF2 (frankdicksonite) can be used as the substrate. After desorption of surface layers by exposure to a 500° C. environment for about 15 minute, the substrate temperature is reduced to about 300° C. and 1.9 nm (approximately 6 monolayers) of PbTe is deposited at a rate of 0.15 nm s−5. The sample is then cooled at a rate of 1 K s−1 and removed from the epitaxial growth reactor. Crystallographic <110> directions that are perpendicular to the BaF2 wafer normal are marked by partial or total cleavage of the epitaxial structure along the {111} planes that are inclined by 70.529° to the (111) wafer normal plane
Nanometrology device standards can be based on the representative structures described above. Methods for fabricating and using such devices in conjunction with scanning probe microscopes typically include (1) epitaxial growth by any method that results in nanometer sized islands, and (2) marking of suitable crystallographic directions on the device by any method so that scans in a range of suitable crystallographic directions can be performed for calibration purposes.
In some examples, nanometrology device standards and methods for fabricating and using such devices in conjunction with scanning probe microscopes are based on epitaxial growth of nano-islands of a known morphology, structural and chemical stability in typical nanometrology laboratory environments, morphological stability of the crystal form in typical nanometrology laboratory environments, nearly complete morphological uniformity regardless of the nano-islands height, large height-to-width nano-island aspect ratios, either a small or a large nano-island size distribution, and a hardness range that allows for a multitude of calibrations of scanning probe microscopes with different scanning tips.
Examples of nanometrology device standards and methods for fabricating and using such devices in conjunction with scanning probe microscopes are described above. Standards can be provided with indicia that identify calibration directions or dimensions that are associated with, for example, crystallographic directions. Calibration directions can be identified based on nano-island or substrate cleavage (or partial cleavage) or by X-ray diffraction or electron backscatter diffraction. Directions and dimensions are conveniently included in such indicia. In some examples, device standards include nano-islands or other structures associated with one or more feature populations, such as size, orientation, shape, or other structural features. These additional features can also be noted in any indicia.
Nano-islands of various sizes can be included in calibration standards, and islands of larger or smaller sizes can be used. As used herein, nano-islands have dimensions of from about 0.5 nm to about 500 nm. Nano-islands or crystal islands can be formed within a layer so as to project outwardly from a layer of nano-island material. Alternatively, a nano-island material can be deposited so that substantially separate nano-islands are formed directly on a substrate. Thus, nano-islands or other islands can project from a substrate, a buffer or stress/strain compensating layer, or out of a layer of a material from which nano-islands are formed.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.
This application claims the benefit of U.S. Provisional Application 60/628,983, filed Nov. 17, 2004 and that is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3830639 | Evans et al. | Aug 1974 | A |
4100091 | Powell | Jul 1978 | A |
4267507 | Guerpont | May 1981 | A |
4475995 | Ziegler et al. | Oct 1984 | A |
4687987 | Kuchnir et al. | Aug 1987 | A |
4966952 | Riaza | Oct 1990 | A |
5070004 | Fujita et al. | Dec 1991 | A |
5117110 | Yasutake | May 1992 | A |
5194161 | Heller et al. | Mar 1993 | A |
5223409 | Ladner et al. | Jun 1993 | A |
5347226 | Bachmann et al. | Sep 1994 | A |
5403484 | Ladner et al. | Apr 1995 | A |
5504366 | Weiss et al. | Apr 1996 | A |
5559328 | Weiss et al. | Sep 1996 | A |
5578745 | Bayer et al. | Nov 1996 | A |
5602323 | Ohmi | Feb 1997 | A |
5605800 | Kourilsky et al. | Feb 1997 | A |
5619035 | Weiss et al. | Apr 1997 | A |
5652428 | Nishioka et al. | Jul 1997 | A |
5665905 | Bartha et al. | Sep 1997 | A |
5729015 | Tong | Mar 1998 | A |
5760901 | Hill | Jun 1998 | A |
5780889 | Sethi | Jul 1998 | A |
5825670 | Chernoff et al. | Oct 1998 | A |
5830287 | Pinnow et al. | Nov 1998 | A |
5837500 | Ladner et al. | Nov 1998 | A |
5855827 | Bussing et al. | Jan 1999 | A |
5876928 | Kourilsky et al. | Mar 1999 | A |
5905000 | Yadav et al. | May 1999 | A |
5936237 | van der Weide | Aug 1999 | A |
5948972 | Samsavar et al. | Sep 1999 | A |
5955661 | Samsavar et al. | Sep 1999 | A |
5959241 | Sriram et al. | Sep 1999 | A |
5999887 | Giannakopoulos et al. | Dec 1999 | A |
6016693 | Viani et al. | Jan 2000 | A |
6028008 | Bayer et al. | Feb 2000 | A |
6060549 | Li et al. | May 2000 | A |
6066806 | Higashiura et al. | May 2000 | A |
6091496 | Hill | Jul 2000 | A |
6146390 | Heilbrun et al. | Nov 2000 | A |
6165181 | Heilbrun et al. | Dec 2000 | A |
6214368 | Lee et al. | Apr 2001 | B1 |
6230572 | Pui et al. | May 2001 | B1 |
6237029 | Master et al. | May 2001 | B1 |
6267005 | Samsavar et al. | Jul 2001 | B1 |
6278113 | Murayama et al. | Aug 2001 | B1 |
6337215 | Wilson | Jan 2002 | B1 |
6354133 | Yedur et al. | Mar 2002 | B1 |
6358860 | Scheer et al. | Mar 2002 | B1 |
6374135 | Bucholz | Apr 2002 | B1 |
6381744 | Nanos et al. | Apr 2002 | B2 |
6387560 | Yadav et al. | May 2002 | B1 |
6398940 | Chi et al. | Jun 2002 | B1 |
6405583 | Shirakawabe et al. | Jun 2002 | B1 |
6418460 | Bitar et al. | Jul 2002 | B1 |
6434687 | Huppenthal | Aug 2002 | B1 |
6459482 | Singh et al. | Oct 2002 | B1 |
6463319 | Bucholz | Oct 2002 | B1 |
6480285 | Hill | Nov 2002 | B1 |
6490913 | Martin et al. | Dec 2002 | B1 |
6491702 | Heilbrun et al. | Dec 2002 | B2 |
6504172 | Zagoskin et al. | Jan 2003 | B2 |
6520005 | McWaid et al. | Feb 2003 | B2 |
6537847 | Zagoskin et al. | Mar 2003 | B2 |
6544698 | Fries | Apr 2003 | B1 |
6573039 | Dunlay et al. | Jun 2003 | B1 |
6573497 | Rangarajan et al. | Jun 2003 | B1 |
6573498 | Rangarajan et al. | Jun 2003 | B1 |
6589229 | Connelly et al. | Jul 2003 | B1 |
6591658 | Yedur et al. | Jul 2003 | B1 |
6610355 | Yadav et al. | Aug 2003 | B2 |
6611039 | Anthony | Aug 2003 | B2 |
6616895 | Dugas et al. | Sep 2003 | B2 |
6620591 | Dunlay et al. | Sep 2003 | B1 |
6635874 | Singh et al. | Oct 2003 | B1 |
6643165 | Segal et al. | Nov 2003 | B2 |
6643616 | Granik et al. | Nov 2003 | B1 |
6661004 | Aumond et al. | Dec 2003 | B2 |
6689650 | Gambino et al. | Feb 2004 | B2 |
6706402 | Rueckes et al. | Mar 2004 | B2 |
6709018 | Phillips | Mar 2004 | B2 |
6720553 | Bonnell et al. | Apr 2004 | B2 |
6723187 | Segal et al. | Apr 2004 | B2 |
6727071 | Dunlay et al. | Apr 2004 | B1 |
6727548 | King | Apr 2004 | B1 |
6731531 | Forbes et al. | May 2004 | B1 |
6746517 | Benson et al. | Jun 2004 | B2 |
6764796 | Fries | Jul 2004 | B2 |
6768918 | Zelenchuk | Jul 2004 | B2 |
6770220 | Klimant | Aug 2004 | B1 |
6777030 | Veerasamy et al. | Aug 2004 | B2 |
6784028 | Rueckes et al. | Aug 2004 | B2 |
6870309 | Blyablin et al. | Mar 2005 | B2 |
7062397 | Minor | Jun 2006 | B1 |
7204122 | Sullivan et al. | Apr 2007 | B2 |
20010052122 | Nanos et al. | Dec 2001 | A1 |
20020025277 | Dugas et al. | Feb 2002 | A1 |
20020055033 | Yadav et al. | May 2002 | A1 |
20020113971 | Zettler et al. | Aug 2002 | A1 |
20030062590 | Anthony | Apr 2003 | A1 |
20030080550 | Phillips | May 2003 | A1 |
20030132376 | Bonnell et al. | Jul 2003 | A1 |
20030222050 | Dugas et al. | Dec 2003 | A1 |
20040029041 | Shih et al. | Feb 2004 | A1 |
20040037253 | Boland et al. | Feb 2004 | A1 |
20040065252 | Sreenivasan et al. | Apr 2004 | A1 |
20040120858 | Dugas et al. | Jun 2004 | A1 |
20040146430 | Dugas | Jul 2004 | A1 |
20050010310 | Touzov | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
1209633 | Mar 1999 | CN |
1409109 | Apr 2003 | CN |
1434461 | Aug 2003 | CN |
1440087 | Sep 2003 | CN |
1440782 | Sep 2003 | CN |
1470322 | Jan 2004 | CN |
19651029 | Jun 1998 | DE |
0957333 | Nov 1999 | EP |
0736746 | Mar 2000 | EP |
0676614 | Jun 2001 | EP |
1251562 | Oct 2002 | EP |
1298727 | Apr 2003 | EP |
55155454 | Dec 1980 | JP |
59057110 | Apr 1984 | JP |
59057111 | Apr 1984 | JP |
03122514 | May 1991 | JP |
05018708 | Jan 1993 | JP |
05164512 | Jun 1993 | JP |
05223704 | Aug 1993 | JP |
05312506 | Nov 1993 | JP |
06066512 | Mar 1994 | JP |
06117844 | Apr 1994 | JP |
06201372 | Jul 1994 | JP |
06201374 | Jul 1994 | JP |
07083650 | Mar 1995 | JP |
07248332 | Sep 1995 | JP |
08005313 | Jan 1996 | JP |
08087701 | Apr 1996 | JP |
08233836 | Sep 1996 | JP |
08262037 | Oct 1996 | JP |
08278315 | Oct 1996 | JP |
09145722 | Jun 1997 | JP |
11094862 | Apr 1999 | JP |
11304822 | Nov 1999 | JP |
2002122529 | Apr 2002 | JP |
2002323429 | Nov 2002 | JP |
2002350319 | Dec 2002 | JP |
2003042928 | Feb 2003 | JP |
2003162954 | Jun 2003 | JP |
2004037325 | Feb 2004 | JP |
2179704 | Feb 2002 | RU |
WO9908785 | Feb 1999 | WO |
WO9935600 | Jul 1999 | WO |
WO9946558 | Sep 1999 | WO |
WO0070297 | Nov 2000 | WO |
WO0106227 | Jan 2001 | WO |
WO0205304 | Jan 2002 | WO |
WO03019238 | Mar 2003 | WO |
WO03105184 | Dec 2003 | WO |
WO03107433 | Dec 2003 | WO |
WO2004035211 | Apr 2004 | WO |
WO04053860 | Jun 2004 | WO |
WO2004050237 | Jun 2004 | WO |
WO04055786 | Jul 2004 | WO |
Number | Date | Country | |
---|---|---|---|
60628983 | Nov 2004 | US |