The following description includes the preferred best mode of an embodiment of the present invention. It will be clear from this description of the invention that the invention is not limited to these illustrated embodiments but that the invention also includes a variety of modifications and embodiments thereto. Therefore the present description should be seen as illustrative and not limiting. While the invention is susceptible of various modifications and alternative constructions, it should be understood, that there is no intention to limit the invention to the specific form disclosed, but, on the contrary, the invention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention as defined in the claims.
In the embodiment of the invention shown in
In the embodiment of the invention shown in
This superimposed arrangement of multiple layers 20 of a preselected material provides an arrangement referred to as a superlattice or a superlaminate. In a superlattice configuration, the materials in the layers have a preselected crystallized form and are oriented so as to take advantage of the crystallized structure and provide a more rigid coating. Examples of materials that would be included in a superlattice configuration include ZrO2, TiO2, SiO2, Ta2O5, Nb2O5, indium tin oxide, and other similar materials. Depending upon the necessities of the user the lattice structures of the various layers may be similar or different. In a superlaminate configuration, a more amorphous configuration is preferred. In some embodiments, a polymer or plastic material is utilized as one of the materials in the coating so as to provide a more flexible configuration. Examples of materials that may be utilized include SiO, SiN, AlN, AlO and other similar materials. In addition to varying the materials, modification of the temperature to effect various changes in the crystalline structure may also take place. The superposition of these thin layers prevents crack propagation and also provides an increased strength that is significantly greater than single layer of the material of the same thickness.
In a superlattice embodiment of the invention, the superlattice consists of hundreds to thousands of nm-scale layers with alternating compositions and/or crystalline phases. These microlayers are appropriately stacked and offset so as to allow some degree of interfacial compressive stress to absorb the energy of the crack. Examples of desirable lattice matches are FCC/FCC and FCC/BCC. These structures work on the principles of interrupting crack propagation by periodically varying the microstructure and crystalline phase composition of the layers and improving the elastic properties by incorporating more pliant layers into a hard matrix. In such an embodiment, the embryonic crack or dislocation is terminated at the next interface between the two layers. In the preferred embodiment of the invention, the crystal lattices of the individual layers match as closely as possible, but not perfectly, as a result when a crack/dislocation begins to propagate at the surface of the coating, it is diffused by stress at the interface with the next layer. Additionally, a hard material can be combined with a more ductile material to obtain a hard material with improved ductility.
A variety of types of materials have been tested for use in the present embodiment of the invention. The following table shows various types of materials that have been applied and tested both in single as well as in superlattice/superlaminate configurations.
These columns show the relative hardness of various materials both individually and when configured into a superlattice or superlaminate configuration. The coating described previously as being schematically represented in
Because the coatings in this embodiment are constructed from optically transparent materials, these coatings are extremely transparent at visible wavelengths, and are suitable in a variety of embodiments including serving as coatings on plastics, including windows, domes, windshields, mirrors and flexible webs. In addition, this same or similar coating configurations can be utilized with a variety of other types of material to form coatings for non-optical devices as well.
In another embodiment of the invention, a hard Cu/Al metallic and hybrid Al/acrylate polymer material were put together in a superimposed microlayer configuration. The resulting hardness of the materials increased from ˜1.3 GPa for the polymer/metal structure to a hardness of about ˜6 GPa for the hardness of the metallic nanolaminant. A TEM photograph of a cross section of such a coating is shown in
The multiple superimposed layer configuration of the present invention is preferred obtained by a method whereby layers of a preselected material are sputter deposited from a target onto a substrate device. Preferably, this substrate device rotates over the targets, and the targets sputter deposit material at a preselected rate on to the target as the target rotates. Referring now to
In addition to these methods, various other methods may be utilized and combined to produce desired devices. For example, the present invention allows for the even coating of curved surfaces without degradation of the optical or desired surface properties. In one embodiment of the invention, a laminate coating is deposited in the strap mode in a vacuum roll coater. This coating can then be taken off the drum and placed on a mandrel to achieve the final shape or form. The coating can also be deposited onto a flexible substrate and rolled up. By utilizing a polymer layer, the surface of the laminate mirror is extremely smooth. If desired a reflective metal such as Ag, Au or Al, or a multilayer enhanced reflector can be deposited over the laminate coating to modify the reflectance to obtain high reflectance over a specific or broad wavelength band. Once formed, various other modifications and features may be combined with the invention. For example in some configurations the polymer/metal laminate can be modified by microactuators attached to a portion of the device. No structural backing would be required for such a combination.
The present invention provides a variety of advantages including increased allowing for coatings that are very light weight, formable in a variety of applications such as a on a mandrel, or on flexible substrates, and which utilize low cost materials. These devices allow for very high deposition rates and allow both layer materials can be deposited simultaneously. Potential applications of the present invention include applications in a variety of fields.
While various preferred embodiments of the invention are shown and described, it is to be distinctly understood that this invention is not limited thereto but may be variously embodied to practice within the scope of the following claims. From the foregoing description, it will be apparent that various changes may be made without departing from the spirit and scope of the invention as defined by the following claims.
This invention claims priority from provisional patent application No. 60/846,374 entitled Optical Superlattice Coatings and Methods for Preparing and Using Same. The contents of which are herein incorporated by reference.
This invention was made with Government support under Contract No. A04-0157 awarded by the U.S. Department of Defense. The Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
60846374 | Sep 2006 | US |