The present specification relates generally to the field of displays. More specifically, the specification relates to virtual displays.
Virtual displays can provide information that is viewable in virtual space for a user of equipment, such as aircraft, ships, boats, naval craft, medical equipment, robotic equipment, remote vehicles, unmanned vehicle systems (UVSs), training simulators, entertainment systems, military equipment, land vehicles, etc. The information can include navigation parameters, guidance parameters, equipment parameters, location information, video information, remote views, symbology, etc.
Virtual displays can be Near Eye Displays (NEDs), such as Head Mounted Displays (HMDs) (e.g., head worn displays, helmet mounted displays and head worn displays) or Head Up Displays (HUDs) with a fixed combiner near the eye position. Virtual displays can be utilized to provide images to an operator or user (e.g., a pilot in a cockpit). In aircraft applications, HUDs generally include a fixed combiner, an optical projector, an image source, and a HUD computer. HMDs generally include a head worn or helmet mounted combiner, optical projection elements, an image source, a HMD computer, and a head orientation sensor. The HUD or HMD computer causes the image source to provide an image which is projected to a combiner. The combiner provides a collimated image to the pilot. The image can include enhanced vision images, flight symbology, targeting data, flight instrument data, synthetic vision images, head up display (HUD) data, etc.
Cockpit and other display technologies have utilized non-virtual displays such as gauges and panel displays (e.g., head down displays (HDDs) in the cockpit environment). The non-virtual display technology has migrated from a multiplicity of independent gauges to a few large panel, non-virtual displays (e.g., large format HDDs in the cockpit environment). The large format HDDs can represent and concentrate information that used to be apportioned to different gauges and smaller HDDs. While this display technology allows for denser and more flexible display of multiple information streams, the denser, larger display formats can present several drawbacks. First, as information density on each panel is increased, the failure of a single display panel can cause degradation in cockpit workflow, pilot workload, and the amount of information provided to the pilot. Second, the larger, denser displays cannot easily direct attention to particular warnings on the HDDs and/or to locations outside of the cockpit and/or off the HDDs. Third, larger displays cannot be designed to cover the entire cockpit area. Dead space or unused areas in the cockpit cannot be filled in with display information due to shape and size constraints. Large HDDs often include bezels which take up space in the cockpit and cannot display information for the pilot. Bezels associated with conventional HDDs can prevent a seamless display experience.
Thus, there is a need for a low cost, lightweight virtual display system for use with a heads down display (HDD). There is also a need for a virtual display system that provides a seamless display system. There is further a need for near eye display system and method that can be easily integrated in the design of a cockpit without requiring extra display space. There is further a need for a near eye display that can provide display redundancy in the event of a malfunction. There is also a need for a virtual display system and method that is optimized to direct attention to warnings in the cockpit or to locations outside of the cockpit. Yet further, there is a need for a near eye display system that displays types of information in positions that are appropriate for the particular type of information.
Accordingly, it would be desirable to provide a display system and/or method that provides one or more of these or other advantageous features. Other features or advantages will be made apparent in the present specification. The teachings disclosed extend to those embodiments which fall within the scope of the appended claims, regardless of whether they accomplish one or more of the aforementioned advantages or features.
An exemplary embodiment relates to an apparatus for providing a virtual display in an environment. The apparatus includes a number of head down image sources. The head down image sources are each disposed at a respective image source position and separated by a gap. The apparatus also includes a combiner configured to provide an image. The image being provided virtually at a location associated with the gap.
Another exemplary embodiment relates to an apparatus for providing a virtual display in an environment including at least one head down image source. The apparatus includes a computer and a combiner configured to provide an image in response to the computer. The image is associated with the image source when the image source is in a failed mode.
Another exemplary embodiment relates to an HMD or HUD for providing a virtual display in an environment. The HMD or HUD includes at least one head down image source, and a combiner. The combiner is configured to provide an image. The image is provided to replace an image associated with the image source. The image is provided when the image source is in a failed mode.
Another exemplary embodiment relates to an apparatus in an environment. The environment includes a number of image sources. The image sources are each disposed at a respective image source position and are separated by a gap. The apparatus includes an image source and a combiner. The combiner is configured to provide an image from the image source. The image is provided virtually at a location associated with the gap.
Another exemplary embodiment relates to an apparatus that includes a near-eye display system including an image source and a combiner. The image source provides an image on the combiner for directing the attention of the user to a display or instrument in the field of view.
Other exemplary embodiments relate to methods for performing the operations associated with the systems and apparatuses described above.
These and other features, aspects, and advantages of the present invention will become apparent from the following description, appended claims, and the accompanying exemplary embodiments shown in the drawings, wherein like numerals denote like elements, which are briefly described below:
Before describing in detail the particular improved system and method, it should be observed that the invention includes, but is not limited to, a novel structural combination of components and not in the particular detailed configurations thereof. Accordingly, the structure, software, optics, methods, functions, control and arrangement of components have been illustrated in the drawings by readily understandable block representations and schematic drawings in order not to obscure the disclosure with structural details which will be readily available to those of ordinary skill in the art having the benefit of the description herein. Further, the invention is not limited to the particular embodiments depicted in the exemplary diagrams, but should be construed in accordance with the language of the claims.
With reference to
Virtual system 10 is disposed in environment 11 which can be a cockpit, bridge, operating room, etc. Environment 11 can have a window 19 or port to an environment 21 external to environment 11 in one embodiment. For example, environment 11 can be an aircraft cockpit, and environment 21 can be the real world viewable through the windshield canopy of the cockpit. In one embodiment, environment 11 is a windowless cockpit environment.
In one embodiment, system 10 can include image source 12, image source 14, and a Near-Eye Display (NED) system 24. Image source 12 and image source 14 can be head down displays (HDDs) in a cockpit environment in one embodiment. Image sources 12 and 14 can be liquid crystal displays, CRT displays, gauges, etc. In one embodiment, image sources 12 and 14 are large format displays covering a portion of the cockpit environment. Dead spaces and gaps where sources 12 and 14 are not located are present in the cockpit environment in one embodiment.
Near eye display system 24 provides at least one virtual image in one embodiment. Near eye display system 24 can be a head worn display system or a fixed combiner display system in certain embodiments. In one embodiment, the virtual image replaces, augments, and/or complements an image provided by at least one of sources 12 and 14.
Near eye display system 24 includes a computer 26, an image source 28, optics 32 and a combiner 30. Images from image source 28 are projected via optics 32 to combiner 30 which can be a head worn combiner or a fixed combiner in one embodiment. System 10 can include a view tracker 36 for providing gaze information associated with the user (e.g., pilot) to computer 26 in one embodiment.
In operation, near eye display system 24 provides images from image source 28 to a pilot or other operator so that he or she can simultaneously view the images and a real world scene in one embodiment. The images can include graphic and/or text information (e.g., flight path vector, target icons, symbols, fuel indicators, course deviation indicator, pitch indicator, etc.). The image can also include information from other sensors or equipment associated with environment 10 (e.g., a vertical traffic collision avoidance display, terrain avoidance and awareness display, a weather radar display, flight control sensors, an electronic flight bag, a navigation system, environmental sensors, etc. in an aircraft) in one embodiment. In addition, the images can include synthetic or enhanced vision images. In one embodiment, collimated light representing the image from image source 28 is provided on combiner 30 so that the pilot can view the image conformally on the real world scene through combiner 30.
Near eye display system 24, with or without view tracker 36, can be used to compensate for the partial or total failure of one or more head-down displays (e.g., sources 12 and 14) in one embodiment. When computer 26 receives an indication of malfunction associated with one of sources 12 or 14, computer 26 can cause information associated with the malfunctioning display (e.g. source 12 or 14) to be displayed on combiner 30. The indication of the malfunction or display fault can be provided from sources 12 or 14 or other systems including an integrated display control and monitoring system in one embodiment. In one embodiment, the indication can be manually input via a user interface. When computer 26 receives the indication of malfunction associated with both sources 12 and 14, computer 26 can cause information associated with the malfunctioning sources 12 and 14 to be displayed on combiner 30. The information associated with both sources 12 and 14 can be merged and redundant information eliminated to more clearly display the information. Near eye display system 24 can also provide information from malfunctioning gauges or other equipment when an indication of a fault or malfunction is received by computer 26 in one embodiment.
In one embodiment, upon failure of sources 12 or 14, which can be automatically detected or manually indicated, computer 26 instructs system 24 to display to the pilot the content of the failed source 12 or 14 or both whenever the pilot looks in the direction of the failed display in one embodiment. Computer 26 can use gaze information from view tracker 36 to determine when the pilot views the failed source 12 or 14 in one embodiment. In one embodiment, the field of view previously subtended by the failed source 12 or 14 is now filled by system 24, which now acts as a backup or redundant display system. Advantageously, system 24 leads to seamless continuation of cockpit operations and improved dispatch reliability for the aircraft in one embodiment.
In one embodiment, the HDDs (sources 12 and 14) are non-functional and simply are a target area so that when the user looks at the target area, information associated with the target area is provided. In this way, system 24 operates to provide a virtual head down display system according to one embodiment.
In one embodiment, near eye display system 24 can be used to enhance the awareness of information provided by sources 12 and 14 and to enhance awareness of aircraft operations. For example, indications can be displayed by system 24 (which is always within the wearer's field of view (FOV) in one embodiment) to direct the attention of user 20 to particular locations within the cockpit (warning messages on sources 12 and 14, or other instruments) or outside the cockpit (e.g., for traffic etc.). In one embodiment, arrows, chevrons, text or other indicia are provided on combiner 30 to direct the pilot's attention. Computer 26 can receive gaze information from tracker 36 and adjust the position of the arrow or other indicia as the pilot's view changes toward the warning message or traffic in one embodiment. Color can be added to or overlayed over monochromatic information provided by sources 12 and 14 using combiner 30 to augment the display of information in one embodiment.
In another embodiment, system 24 can be used to “fill in” the dead spaces in environment 11 associated with sources 12 and 14. The dead spaces can be associated with bezels or areas between sources 12 and 14 in one embodiment. The dead spaces or unused areas can also be located above, below, to the right, or to the left of sources 12 and 14 in one embodiment. Advantageously, system 24 provides information at locations where placement of displays is impracticable (e.g., due to non-rectangular or non-planar areas, or other areas not meeting the requirements of the display device installation) in one embodiment.
In addition, near eye display system 24 can provide information at locations between sources 12 and 14 to virtually provide the appearance of a seamless display in one embodiment. Eliminating display seams is advantageous when providing information that requires spanning multiple sources 12 and 14, for example wide field of view imagery, large maps, etc. according to one embodiment. System 24 can provide information to gaps between sources 12 and 14 to provide a seamless display experience in one embodiment. Computer 24 can use gaze information from tracker 36 to appropriately provide the information in virtual locations associated with dead spaces in the cockpit. In addition, HUD symbology can be provided when user 20 looks through combiner 30 through window 19 in one embodiment.
View tracker 36 is an optional component of system 24 in one embodiment. View tracker 36 can include sensors for head tracking and/or pupil tracking. In one embodiment, an eye sensor which picks up reflections of a pupil can be utilized for tracking position of the eye. Head position and pupil position from tracker 36 can be provided as gaze information to computer 26 so computer 26 can determine an appropriate virtual image for the pilot.
In one embodiment, view tracker 36 can be or include one or more camera-based sensors to provide gaze information. The cameras can be mounted on system 24 or the user for determining the content of the user's visual field (e.g., gaze information). The camera can be part of head tracker 36. In one embodiment, the camera associated with head tracker 36 can utilize marks within environment 11 to determine where user 20 is looking. Spatial registry software can be utilized to determine where a user is viewing.
Combiner 30 can be embodied as a head worn combiner or a fixed HUD combiner. In one embodiment, combiner 30 utilizes waveguide optics and diffraction gratings to receive collimated light provided by source 28 and provide collimated light to a user 20. In one embodiment, combiner 30 can be a goggle, glasses, helmet or visor-type combiner.
Image sources 12, 14, and 28 can be or include any type of devices for providing an image including but not limited to a CRT display, an LED display, an active matrix liquid crystal display (LCD), a light emitting diode, laser illuminator, etc. In one embodiment, image source 28 can be a micro LCD assembly or liquid crystal on silicon (LCOS) display and can provide linearly polarized light. Image source 28 can include a laser or LED backlight in one embodiment.
Image sources 12, 14 and 28 can provide information from a variety of sources. In one embodiment, image sources 12 and 14 can provide information from aircraft sensors, instruments, and systems including but not limited to one or more of a targeting computer, a HUD computer, a synthetic vision system (SVS), an enhanced vision system (EVS), a flight computer, a traffic collision avoidance system (TCAS), a terrain awareness and avoidance system (TAAS), a navigation system, an electronic flight bag system and a HUD/HWD computer.
Computer 26 can be a HUD computer or HWD computer and controls the provision of images by image source 28. Computer 26 can be a processing circuit or part of a processing circuit associated with other electronic components in environment 11. Computer 26 can receive data from various sensors, equipment, and subsystems and can receive data from image sources 12 and 14. For example, image sources 12 and 14 can provide an indication of a malfunction to computer 26.
Optics 32 can be collimating optics which can be a single optical component, such as a lens, or include multiple optical components. The collimating optics can be integrated with image source 28 in one embodiment. The collimating optics can also be separate or partially separate from image source 28.
With reference to
System 200 is employed in an aircraft environment 211 or a cockpit including a window 254 and a window 256 in one embodiment. In addition, environment 211 can include a control panel 202, a primary flight display 204, a navigation display 206, a navigation display 208, a primary flight display 210, an electronic flight bag display 212 and electronic flight bag display 214 each can be an HDD or part of an HDD in one embodiment. In one embodiment displays 204, 206, and 212 are provided on a single large panel HDD or a pair of HDDs. Primary flight display 210, a navigation display 208, and electronic flight bag display 214 can be redundant systems provided for a co-pilot, as shown in
In operation, when the pilot's view 294 through combiner 230 is toward display 206, computer 26 causes image source 28 to provide information to combiner 230 that augments or replaces the information on display 206. The information can point to or highlight warnings on display 206 or off display 206 in one embodiment. In one embodiment, the information can replace the navigation display information on navigation display 206 when display 206 fails. In one embodiment, the information can fill in dead spaces near display 206 or between displays 204 and 206. A HUD computer 26 can provide the data for the image on source 28 using gaze information from view tracker 36 in one embodiment.
Pilot 220 can turn or rotate head position to view information on combiner 230 associated with primary flight display 204 according to view 292. Display 212 can provide electronic flight bag information. Pilot 220 can turn or rotate head position to view information on combiner 230 associated with display 212 according to view 290. Combiner 230 can augment or replace information on displays 212 and 204 in a similar manner to the augmentation and replacement described above with respect to display 206.
Although only three displays 212, 204, and 206 for a pilot are shown in
With reference to
System 300 is employed in an aircraft environment 211 or a cockpit including a window 254 and a window 256 in one embodiment. In addition, environment 211 can include a control panel 202, a primary flight display 204, a navigation display 206, a navigation display 208, a primary flight display 210, an electronic flight bag display 212 and electronic flight bag display 214, each can be an HDD or part of an HDD in one embodiment. In one embodiment displays 204, 206, and 212 are provided on a single large panel HDD or a pair of HDDs. Primary flight display 210, a navigation display 208, and electronic flight bag display 214 can be redundant systems provided for a co-pilot, as shown in
In operation, when the pilot's view 392 through combiner 330 is toward display 204, computer 26 causes image source 28 to provide information to combiner 330 that augments or replaces the information on display 204. The information can point to or highlight warnings on display 204 or off display 204 in one embodiment. In one embodiment, the information can replace the primary flight display information on primary flight display 204 when display 204 fails. In one embodiment, the information can fill in dead spaces near display 204 or between displays 206 and 204 or displays 212 and 204. HWD computer 26 can provide the data for the image on source 28 using gaze information from view tracker 36 in one embodiment.
Pilot 220 can turn or rotate head position to view information on combiner 330 associated with navigation display 206 according to view 394. Display 212 can provide electronic flight bag information. Pilot 220 can turn or rotate head position to view information on combiner 330 associated with display 212 according to view 390. Combiner 330 can augment or replace information on displays 212 and 206 in a similar manner to the augmentation and replacement described above with respect to display 204. Although only three pilot displays 212, 204, and 206 are shown in
With reference to
With reference to
In an operation 520, the status of a HDD is determined. If a head down display is malfunctioning, an image associated with the malfunctioning display can be provided at a virtual location associated with the malfunctioning display. In one embodiment, a malfunction is determined by a camera or other device which determines if a HDD (source 12) is black indicating it is non-functional. In one embodiment, the camera is part of view tracker 36. Alternatively, at an operation 524, the image associated with the malfunctioning display can be provided at another location.
At an operation 530, the presence of warnings on HDDs can be determined. If warnings are present on a HDD, symbols can be provided virtually to draw attention to the warning on the HDD at an operation 534. If a warning is provided outside a cockpit or off of a display HDD at an operation 532, an indication of the warning location can be virtually provided at an operation 536. The head position and eye position received at operation 502 can be used to determine the relative location of the warnings to provide an appropriate pointing indicator.
Although exemplary embodiments are described with respect to cockpit environments, the display technology described herein can be utilized in other environments including tiled display or panel display environments outside of the cockpit. For example, the systems 10, 200, 300 and 400 can be utilized to provide panoramic views in tile displays. For example, systems 10, 200, 300 and 400 can be utilized to provide large seamless map displays and redundant displays in other applications without departing from the scope of the claims. Systems 10, 200, 300 and 400 can be utilized to provide a large airport map panoramically covering several displays and providing information between scenes between the displays.
While the detailed drawings, specific examples, and particular configurations given describe preferred and exemplary embodiments, they serve the purpose of illustration only. The inventions disclosed are not limited to the specific forms shown. For example, the methods may be performed in any of a variety of sequence of steps or according to any of a variety of mathematical formulas. The hardware and software configurations shown and described may differ depending on the chosen performance characteristics and physical characteristics of the communications devices. For example, the type of system components and their interconnections may differ. The systems and methods depicted and described are not limited to the precise details and conditions disclosed. The figures show preferred exemplary operations only. The specific data types and operations are shown in a non-limiting fashion. Furthermore, other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the exemplary embodiments without departing from the scope of the invention as expressed in the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 14/225,062 entitled “Near Eye Display System and Method For Display Enhancement or Redundancy,” filed on Mar. 25, 2014, now U.S. Pat. No. 9,244,280, which is incorporated by reference in its entirety and for all purposes. The present application is related to U.S. patent application Ser. No. 14/038,400 entitled “Display System and Method Using a Detached Combiner,” filed on Sep. 26, 2013, now U.S. Pat. No. 9,244,281, U.S. patent application Ser. No. 14/152,756, entitled, “Near Eye Display System and Method With Fixed Combiner,” filed on Jan. 10, 2014, U.S. patent application Ser. No. 12/700,557, entitled, “Worn Display System and Method Without Requiring Real Time Tracking For BoreSight Precision,” filed on Feb. 4, 2010, now U.S. Pat. No. 8,659,826, incorporated herein by reference in its entirety, and assigned to the assignee of the present application, U.S. patent application Ser. No. 13/250,621, entitled, “System For and Method of Catadioptric Collimation In a Compact Head Up Display (HUD),” filed on Sep. 30, 2011, now U.S. Pat. No. 8,634,139, incorporated herein by reference in its entirety and assigned to the assignee of the present application, U.S. patent application Ser. No. 13/250,940, entitled, “Head Up Display (HUD) Utilizing Diffractive Gratings Having Graded Efficiency,” filed on Sep. 30, 2011, now abandoned, incorporated herein by reference in its entirety, and assigned to the assignee of the present application; U.S. patent application Ser. No. 13/250,858, entitled, “Ultra-Compact HUD Utilizing Waveguide Pupil Expander With Surface Relief Gratings In High Refractive Index Materials,” filed on Sep. 30, 2011, incorporated herein by reference in its entirety, and assigned to the assignee of the present application; U.S. patent application Ser. No. 13/251,087, entitled, “System for and Method of Extending Vertical Field of View in Head Up Display Utilizing a Waveguide Combiner,” filed on Sep. 30, 2011, now U.S. Pat. No. 8,903,207, incorporated herein by reference in its entirety, and assigned to the assignee of the present application; U.S. patent application Ser. No. 13/250,970, entitled, “System For and Method of Stowing HUD Combiners,” filed on Sep. 30, 2011, now U.S. Pat. No. 8,937,772, and assigned to the assignee of the present application, incorporated herein by reference in its entirety; and U.S. patent application Ser. No. 13/250,994, entitled, “Compact Head Up Display (HUD) for Cockpits with Constrained Space Envelopes,” filed on Sep. 30, 2011, now U.S. Pat. No. 8,749,890, incorporated herein by reference herein in its entirety and assigned to the assignee of the present application.
Number | Name | Date | Kind |
---|---|---|---|
2141884 | Sonnefeld | Dec 1938 | A |
3620601 | Waghorn | Nov 1971 | A |
3851303 | Muller | Nov 1974 | A |
3885095 | Wolfson et al. | May 1975 | A |
3940204 | Withrington | Feb 1976 | A |
4082432 | Kirschner | Apr 1978 | A |
4099841 | Ellis | Jul 1978 | A |
4178074 | Heller | Dec 1979 | A |
4218111 | Withrington et al. | Aug 1980 | A |
4232943 | Rogers | Nov 1980 | A |
4309070 | St. Leger Searle | Jan 1982 | A |
4647967 | Kirschner et al. | Mar 1987 | A |
4711512 | Upatnieks | Dec 1987 | A |
4714320 | Banbury | Dec 1987 | A |
4743083 | Schimpe | May 1988 | A |
4749256 | Bell et al. | Jun 1988 | A |
4775218 | Wood et al. | Oct 1988 | A |
4799765 | Ferrer | Jan 1989 | A |
4854688 | Hayford et al. | Aug 1989 | A |
4928301 | Smoot | May 1990 | A |
4946245 | Chamberlin et al. | Aug 1990 | A |
5007711 | Wood et al. | Apr 1991 | A |
5035734 | Honkanen et al. | Jul 1991 | A |
5076664 | Migozzi | Dec 1991 | A |
5079416 | Filipovich | Jan 1992 | A |
5117285 | Nelson et al. | May 1992 | A |
5124821 | Antier et al. | Jun 1992 | A |
5148302 | Nagano et al. | Sep 1992 | A |
5151958 | Honkanen | Sep 1992 | A |
5153751 | Ishikawa et al. | Oct 1992 | A |
5159445 | Gitlin et al. | Oct 1992 | A |
5160523 | Honkanen et al. | Nov 1992 | A |
5183545 | Branca et al. | Feb 1993 | A |
5187597 | Kato et al. | Feb 1993 | A |
5210624 | Matsumoto et al. | May 1993 | A |
5218360 | Goetz et al. | Jun 1993 | A |
5243413 | Gitlin et al. | Sep 1993 | A |
5289315 | Makita et al. | Feb 1994 | A |
5295208 | Caulfield et al. | Mar 1994 | A |
5303085 | Rallison | Apr 1994 | A |
5317405 | Kuriki et al. | May 1994 | A |
5341230 | Smith | Aug 1994 | A |
5351151 | Levy | Sep 1994 | A |
5359362 | Lewis et al. | Oct 1994 | A |
5363220 | Kuwayama et al. | Nov 1994 | A |
5369511 | Amos | Nov 1994 | A |
5400069 | Braun et al. | Mar 1995 | A |
5408346 | Trissel et al. | Apr 1995 | A |
5418584 | Larson | May 1995 | A |
5438357 | McNelley | Aug 1995 | A |
5455693 | Wreede et al. | Oct 1995 | A |
5471326 | Hall et al. | Nov 1995 | A |
5473222 | Thoeny et al. | Dec 1995 | A |
5496621 | Makita et al. | Mar 1996 | A |
5500671 | Andersson et al. | Mar 1996 | A |
5510913 | Hashimoto et al. | Apr 1996 | A |
5515184 | Caulfield et al. | May 1996 | A |
5524272 | Podowski et al. | Jun 1996 | A |
5532736 | Kuriki et al. | Jul 1996 | A |
5537232 | Biles | Jul 1996 | A |
5572248 | Allen et al. | Nov 1996 | A |
5579026 | Tabata | Nov 1996 | A |
5583795 | Smyth | Dec 1996 | A |
5604611 | Saburi et al. | Feb 1997 | A |
5606433 | Yin et al. | Feb 1997 | A |
5612733 | Flohr | Mar 1997 | A |
5612734 | Nelson et al. | Mar 1997 | A |
5619254 | McNelley | Apr 1997 | A |
5629259 | Akada et al. | May 1997 | A |
5631107 | Tarumi et al. | May 1997 | A |
5633100 | Mickish et al. | May 1997 | A |
5646785 | Gilboa et al. | Jul 1997 | A |
5648857 | Ando et al. | Jul 1997 | A |
5661577 | Jenkins et al. | Aug 1997 | A |
5661603 | Hanano et al. | Aug 1997 | A |
5665494 | Kawabata et al. | Sep 1997 | A |
5668907 | Veligdan | Sep 1997 | A |
5682255 | Friesem et al. | Oct 1997 | A |
5694230 | Welch | Dec 1997 | A |
5701132 | Kollin et al. | Dec 1997 | A |
5706108 | Ando et al. | Jan 1998 | A |
5707925 | Akada et al. | Jan 1998 | A |
5724189 | Ferrante | Mar 1998 | A |
5726782 | Kato et al. | Mar 1998 | A |
5727098 | Jacobson | Mar 1998 | A |
5729242 | Margerum et al. | Mar 1998 | A |
5731060 | Hirukawa et al. | Mar 1998 | A |
5731853 | Taketomi et al. | Mar 1998 | A |
5742262 | Tabata et al. | Apr 1998 | A |
5751452 | Tanaka et al. | May 1998 | A |
5760931 | Saburi et al. | Jun 1998 | A |
5764414 | King et al. | Jun 1998 | A |
5790288 | Jager et al. | Aug 1998 | A |
5812608 | Valimaki et al. | Sep 1998 | A |
5822127 | Chen et al. | Oct 1998 | A |
5841507 | Barnes | Nov 1998 | A |
5856842 | Tedesco | Jan 1999 | A |
5868951 | Schuck et al. | Feb 1999 | A |
5892598 | Asakawa et al. | Apr 1999 | A |
5898511 | Mizutani et al. | Apr 1999 | A |
5903395 | Rallison et al. | May 1999 | A |
5907416 | Hegg et al. | May 1999 | A |
5907436 | Perry et al. | May 1999 | A |
5917459 | Son et al. | Jun 1999 | A |
5926147 | Sehm et al. | Jul 1999 | A |
5929946 | Sharp et al. | Jul 1999 | A |
5937115 | Domash | Aug 1999 | A |
5942157 | Sutherland et al. | Aug 1999 | A |
5945893 | Plessky et al. | Aug 1999 | A |
5949302 | Sarkka | Sep 1999 | A |
5966223 | Friesem et al. | Oct 1999 | A |
5985422 | Krauter | Nov 1999 | A |
5991087 | Rallison | Nov 1999 | A |
5999314 | Asakura et al. | Dec 1999 | A |
6042947 | Asakura et al. | Mar 2000 | A |
6043585 | Plessky et al. | Mar 2000 | A |
6075626 | Mizutani et al. | Jun 2000 | A |
6078427 | Fontaine et al. | Jun 2000 | A |
6115152 | Popovich et al. | Sep 2000 | A |
6127066 | Ueda et al. | Oct 2000 | A |
6137630 | Tsou et al. | Oct 2000 | A |
6169613 | Amitai et al. | Jan 2001 | B1 |
6176837 | Foxlin | Jan 2001 | B1 |
6195206 | Yona et al. | Feb 2001 | B1 |
6222675 | Mall et al. | Apr 2001 | B1 |
6222971 | Veligdan et al. | Apr 2001 | B1 |
6249386 | Yona et al. | Jun 2001 | B1 |
6259423 | Tokito et al. | Jul 2001 | B1 |
6259559 | Kobayashi et al. | Jul 2001 | B1 |
6285813 | Schultz et al. | Sep 2001 | B1 |
6317083 | Johnson et al. | Nov 2001 | B1 |
6317227 | Mizutani et al. | Nov 2001 | B1 |
6321069 | Piirainen | Nov 2001 | B1 |
6327089 | Hosaki et al. | Dec 2001 | B1 |
6333819 | Svedenkrans | Dec 2001 | B1 |
6340540 | Ueda et al. | Jan 2002 | B1 |
6351333 | Araki et al. | Feb 2002 | B2 |
6356172 | Koivisto et al. | Mar 2002 | B1 |
6359730 | Tervonen | Mar 2002 | B2 |
6359737 | Stringfellow | Mar 2002 | B1 |
6366378 | Tervonen et al. | Apr 2002 | B1 |
6392812 | Howard | May 2002 | B1 |
6409687 | Foxlin | Jun 2002 | B1 |
6470132 | Nousiainen et al. | Oct 2002 | B1 |
6486997 | Bruzzone et al. | Nov 2002 | B1 |
6504518 | Kuwayama et al. | Jan 2003 | B1 |
6524771 | Maeda et al. | Feb 2003 | B2 |
6545778 | Ono et al. | Apr 2003 | B2 |
6550949 | Bauer et al. | Apr 2003 | B1 |
6557413 | Nieminen et al. | May 2003 | B2 |
6563648 | Gleckman et al. | May 2003 | B2 |
6580529 | Amitai et al. | Jun 2003 | B1 |
6583873 | Goncharov et al. | Jun 2003 | B1 |
6587619 | Kinoshita | Jul 2003 | B1 |
6598987 | Parikka | Jul 2003 | B1 |
6608720 | Freeman | Aug 2003 | B1 |
6611253 | Cohen | Aug 2003 | B1 |
6646810 | Harter et al. | Nov 2003 | B2 |
6661578 | Hedrick | Dec 2003 | B2 |
6674578 | Sugiyama et al. | Jan 2004 | B2 |
6686815 | Mirshekarl-Syahkal et al. | Feb 2004 | B1 |
6690516 | Aritake et al. | Feb 2004 | B2 |
6721096 | Bruzzone et al. | Apr 2004 | B2 |
6741189 | Gibbons, II et al. | May 2004 | B1 |
6744478 | Asakura et al. | Jun 2004 | B1 |
6748342 | Dickhaus | Jun 2004 | B1 |
6750941 | Satoh et al. | Jun 2004 | B2 |
6750995 | Dickson | Jun 2004 | B2 |
6757105 | Niv et al. | Jun 2004 | B2 |
6771403 | Endo et al. | Aug 2004 | B1 |
6776339 | Piikivi | Aug 2004 | B2 |
6781701 | Sweetser et al. | Aug 2004 | B1 |
6805490 | Levola | Oct 2004 | B2 |
6825987 | Repetto et al. | Nov 2004 | B2 |
6829095 | Amitai | Dec 2004 | B2 |
6833955 | Niv | Dec 2004 | B2 |
6836369 | Fujikawa et al. | Dec 2004 | B2 |
6844212 | Bond et al. | Jan 2005 | B2 |
6844980 | He et al. | Jan 2005 | B2 |
6847274 | Salmela et al. | Jan 2005 | B2 |
6847488 | Travis | Jan 2005 | B2 |
6853491 | Ruhle et al. | Feb 2005 | B1 |
6864861 | Schehrer et al. | Mar 2005 | B2 |
6864927 | Cathey | Mar 2005 | B1 |
6885483 | Takada | Apr 2005 | B2 |
6903872 | Schrader | Jun 2005 | B2 |
6909345 | Salmela et al. | Jun 2005 | B1 |
6917375 | Akada et al. | Jul 2005 | B2 |
6922267 | Endo et al. | Jul 2005 | B2 |
6926429 | Barlow et al. | Aug 2005 | B2 |
6940361 | Jokio et al. | Sep 2005 | B1 |
6950173 | Sutherland et al. | Sep 2005 | B1 |
6950227 | Schrader | Sep 2005 | B2 |
6951393 | Koide | Oct 2005 | B2 |
6952312 | Weber et al. | Oct 2005 | B2 |
6958662 | Salmela et al. | Oct 2005 | B1 |
6987908 | Bond et al. | Jan 2006 | B2 |
7003187 | Frick et al. | Feb 2006 | B2 |
7018744 | Otaki et al. | Mar 2006 | B2 |
7021777 | Amitai | Apr 2006 | B2 |
7026892 | Kajiya | Apr 2006 | B2 |
7027671 | Huck et al. | Apr 2006 | B2 |
7034748 | Kajiya | Apr 2006 | B2 |
7053735 | Salmela et al. | May 2006 | B2 |
7058434 | Wang et al. | Jun 2006 | B2 |
7095562 | Peng et al. | Aug 2006 | B1 |
7101048 | Travis | Sep 2006 | B2 |
7110184 | Yona et al. | Sep 2006 | B1 |
7123418 | Weber et al. | Oct 2006 | B2 |
7126418 | Hunton et al. | Oct 2006 | B2 |
7126583 | Breed | Oct 2006 | B1 |
7132200 | Ueda et al. | Nov 2006 | B1 |
7149385 | Parikka et al. | Dec 2006 | B2 |
7151246 | Fein et al. | Dec 2006 | B2 |
7158095 | Jenson et al. | Jan 2007 | B2 |
7181105 | Teramura et al. | Feb 2007 | B2 |
7181108 | Levola | Feb 2007 | B2 |
7184615 | Levola | Feb 2007 | B2 |
7190849 | Katase | Mar 2007 | B2 |
7199934 | Yamasaki | Apr 2007 | B2 |
7205960 | David | Apr 2007 | B2 |
7205964 | Yokoyama et al. | Apr 2007 | B1 |
7206107 | Levola | Apr 2007 | B2 |
7230767 | Walck et al. | Jun 2007 | B2 |
7242527 | Spitzer et al. | Jul 2007 | B2 |
7248128 | Mattila et al. | Jul 2007 | B2 |
7259906 | Islam | Aug 2007 | B1 |
7268946 | Wang | Sep 2007 | B2 |
7285903 | Cull et al. | Oct 2007 | B2 |
7286272 | Mukawa | Oct 2007 | B2 |
7289069 | Ranta | Oct 2007 | B2 |
7299983 | Piikivi | Nov 2007 | B2 |
7313291 | Okhotnikov et al. | Dec 2007 | B2 |
7319573 | Nishiyama | Jan 2008 | B2 |
7320534 | Sugikawa et al. | Jan 2008 | B2 |
7323275 | Otaki et al. | Jan 2008 | B2 |
7336271 | Ozeki et al. | Feb 2008 | B2 |
7339737 | Urey et al. | Mar 2008 | B2 |
7339742 | Amitai et al. | Mar 2008 | B2 |
7375870 | Schorpp | May 2008 | B2 |
7391573 | Amitai | Jun 2008 | B2 |
7394865 | Borran et al. | Jul 2008 | B2 |
7395181 | Foxlin | Jul 2008 | B2 |
7397606 | Peng et al. | Jul 2008 | B1 |
7401920 | Kranz et al. | Jul 2008 | B1 |
7404644 | Evans et al. | Jul 2008 | B2 |
7410286 | Travis | Aug 2008 | B2 |
7411637 | Weiss | Aug 2008 | B2 |
7415173 | Kassamakov et al. | Aug 2008 | B2 |
7418170 | Mukawa et al. | Aug 2008 | B2 |
7433116 | Islam | Oct 2008 | B1 |
7436568 | Kuykendall, Jr. | Oct 2008 | B1 |
7454103 | Parriaux | Nov 2008 | B2 |
7457040 | Amitai | Nov 2008 | B2 |
7466994 | Pihlaja et al. | Dec 2008 | B2 |
7479354 | Ueda et al. | Jan 2009 | B2 |
7480215 | Makela et al. | Jan 2009 | B2 |
7482996 | Larson et al. | Jan 2009 | B2 |
7483604 | Levola | Jan 2009 | B2 |
7492512 | Niv et al. | Feb 2009 | B2 |
7496293 | Shamir et al. | Feb 2009 | B2 |
7500104 | Goland | Mar 2009 | B2 |
7528385 | Volodin et al. | May 2009 | B2 |
7545429 | Travis | Jun 2009 | B2 |
7550234 | Otaki et al. | Jun 2009 | B2 |
7567372 | Schorpp | Jul 2009 | B2 |
7570429 | Maliah et al. | Aug 2009 | B2 |
7572555 | Takizawa et al. | Aug 2009 | B2 |
7573640 | Nivon et al. | Aug 2009 | B2 |
7576916 | Amitai | Aug 2009 | B2 |
7577326 | Amitai | Aug 2009 | B2 |
7579119 | Ueda et al. | Aug 2009 | B2 |
7588863 | Takizawa et al. | Sep 2009 | B2 |
7589900 | Powell | Sep 2009 | B1 |
7589901 | DeJong et al. | Sep 2009 | B2 |
7592988 | Katase | Sep 2009 | B2 |
7593575 | Houle et al. | Sep 2009 | B2 |
7597447 | Larson et al. | Oct 2009 | B2 |
7599012 | Nakamura et al. | Oct 2009 | B2 |
7600893 | Laino et al. | Oct 2009 | B2 |
7602552 | Blumenfeld | Oct 2009 | B1 |
7616270 | Hirabayashi et al. | Nov 2009 | B2 |
7618750 | Ueda et al. | Nov 2009 | B2 |
7629086 | Otaki et al. | Dec 2009 | B2 |
7639911 | Lee et al. | Dec 2009 | B2 |
7643214 | Amitai | Jan 2010 | B2 |
7656585 | Powell et al. | Feb 2010 | B1 |
7660047 | Travis et al. | Feb 2010 | B1 |
7672055 | Amitai | Mar 2010 | B2 |
7710654 | Ashkenazi et al. | May 2010 | B2 |
7724441 | Amitai | May 2010 | B2 |
7724442 | Amitai | May 2010 | B2 |
7724443 | Amitai | May 2010 | B2 |
7733572 | Brown et al. | Jun 2010 | B1 |
7747113 | Mukawa et al. | Jun 2010 | B2 |
7751122 | Amitai | Jul 2010 | B2 |
7764413 | Levola | Jul 2010 | B2 |
7777819 | Simmonds | Aug 2010 | B2 |
7778305 | Parriaux et al. | Aug 2010 | B2 |
7778508 | Hirayama | Aug 2010 | B2 |
7847235 | Krupkin et al. | Dec 2010 | B2 |
7864427 | Korenaga et al. | Jan 2011 | B2 |
7865080 | Hecker et al. | Jan 2011 | B2 |
7872804 | Moon et al. | Jan 2011 | B2 |
7884985 | Amitai et al. | Feb 2011 | B2 |
7887186 | Watanabe | Feb 2011 | B2 |
7903921 | Ostergard | Mar 2011 | B2 |
7907342 | Simmonds et al. | Mar 2011 | B2 |
7920787 | Gentner et al. | Apr 2011 | B2 |
7944428 | Travis | May 2011 | B2 |
7969644 | Tilleman et al. | Jun 2011 | B2 |
7970246 | Travis et al. | Jun 2011 | B2 |
7976208 | Travis | Jul 2011 | B2 |
7999982 | Endo et al. | Aug 2011 | B2 |
8000491 | Brodkin et al. | Aug 2011 | B2 |
8004765 | Amitai | Aug 2011 | B2 |
8016475 | Travis | Sep 2011 | B2 |
8022942 | Bathiche et al. | Sep 2011 | B2 |
RE42992 | David | Dec 2011 | E |
8079713 | Ashkenazi | Dec 2011 | B2 |
8082222 | Rangarajan et al. | Dec 2011 | B2 |
8086030 | Gordon et al. | Dec 2011 | B2 |
8089568 | Brown et al. | Jan 2012 | B1 |
8107023 | Simmonds et al. | Jan 2012 | B2 |
8107780 | Simmonds | Jan 2012 | B2 |
8132948 | Owen et al. | Mar 2012 | B2 |
8132976 | Odell et al. | Mar 2012 | B2 |
8136690 | Fang et al. | Mar 2012 | B2 |
8137981 | Andrew et al. | Mar 2012 | B2 |
8149086 | Klein et al. | Apr 2012 | B2 |
8152315 | Travis et al. | Apr 2012 | B2 |
8155489 | Saarikko et al. | Apr 2012 | B2 |
8159752 | Wertheim et al. | Apr 2012 | B2 |
8160409 | Large | Apr 2012 | B2 |
8160411 | Levola et al. | Apr 2012 | B2 |
8186874 | Sinbar et al. | May 2012 | B2 |
8188925 | Dejean | May 2012 | B2 |
8189263 | Wang et al. | May 2012 | B1 |
8189973 | Travis et al. | May 2012 | B2 |
8199803 | Hauske et al. | Jun 2012 | B2 |
8213065 | Mukawa | Jul 2012 | B2 |
8233204 | Robbins et al. | Jul 2012 | B1 |
8253914 | Kajiya et al. | Aug 2012 | B2 |
8254031 | Levola | Aug 2012 | B2 |
8295710 | Marcus | Oct 2012 | B2 |
8301031 | Gentner et al. | Oct 2012 | B2 |
8305577 | Kivioja et al. | Nov 2012 | B2 |
8306423 | Gottwald et al. | Nov 2012 | B2 |
8314819 | Kimmel et al. | Nov 2012 | B2 |
8321810 | Heintze | Nov 2012 | B2 |
8335040 | Mukawa et al. | Dec 2012 | B2 |
8351744 | Travis et al. | Jan 2013 | B2 |
8354806 | Travis et al. | Jan 2013 | B2 |
8355610 | Simmonds | Jan 2013 | B2 |
8369019 | Baker et al. | Feb 2013 | B2 |
8384694 | Powell et al. | Feb 2013 | B2 |
8398242 | Yamamoto et al. | Mar 2013 | B2 |
8403490 | Sugiyama et al. | Mar 2013 | B2 |
8422840 | Large | Apr 2013 | B2 |
8427439 | Larsen et al. | Apr 2013 | B2 |
8432363 | Saarikko et al. | Apr 2013 | B2 |
8432372 | Butler et al. | Apr 2013 | B2 |
8447365 | Imanuel | May 2013 | B1 |
8472119 | Kelly | Jun 2013 | B1 |
8477261 | Travis et al. | Jul 2013 | B2 |
8491121 | Tilleman et al. | Jul 2013 | B2 |
8491136 | Travis et al. | Jul 2013 | B2 |
8493366 | Bathiche et al. | Jul 2013 | B2 |
8493662 | Noui | Jul 2013 | B2 |
8508848 | Saarikko | Aug 2013 | B2 |
8547638 | Levola | Oct 2013 | B2 |
8578038 | Kaikuranta et al. | Nov 2013 | B2 |
8581831 | Travis | Nov 2013 | B2 |
8582206 | Travis | Nov 2013 | B2 |
8593734 | Laakkonen | Nov 2013 | B2 |
8611014 | Valera et al. | Dec 2013 | B2 |
8619062 | Powell et al. | Dec 2013 | B2 |
8633786 | Ermolov et al. | Jan 2014 | B2 |
8639072 | Popovich et al. | Jan 2014 | B2 |
8643691 | Rosenfeld et al. | Feb 2014 | B2 |
8649099 | Schultz et al. | Feb 2014 | B2 |
8654420 | Simmonds | Feb 2014 | B2 |
8659826 | Brown et al. | Feb 2014 | B1 |
8670029 | McEldowney | Mar 2014 | B2 |
8693087 | Nowatzyk et al. | Apr 2014 | B2 |
8736802 | Kajiya et al. | May 2014 | B2 |
8736963 | Robbins et al. | May 2014 | B2 |
8749886 | Gupta | Jun 2014 | B2 |
8767294 | Chen et al. | Jul 2014 | B2 |
8810600 | Bohn et al. | Aug 2014 | B2 |
8814691 | Haddick et al. | Aug 2014 | B2 |
8830584 | Saarikko et al. | Sep 2014 | B2 |
8830588 | Brown et al. | Sep 2014 | B1 |
8913324 | Schrader | Dec 2014 | B2 |
8938141 | Magnusson | Jan 2015 | B2 |
8964298 | Haddick | Feb 2015 | B2 |
9097890 | Miller et al. | Aug 2015 | B2 |
9244280 | Tiana | Jan 2016 | B1 |
9456744 | Popovich et al. | Oct 2016 | B2 |
20020012064 | Yamaguchi | Jan 2002 | A1 |
20020021461 | Ono et al. | Feb 2002 | A1 |
20020131175 | Yagi et al. | Sep 2002 | A1 |
20030030912 | Gleckman et al. | Feb 2003 | A1 |
20030039442 | Bond et al. | Feb 2003 | A1 |
20030063042 | Friesem et al. | Apr 2003 | A1 |
20030149346 | Arnone et al. | Aug 2003 | A1 |
20030228019 | Eichler et al. | Dec 2003 | A1 |
20040089842 | Sutherland et al. | May 2004 | A1 |
20040130797 | Leigh Travis | Jul 2004 | A1 |
20040188617 | Devitt et al. | Sep 2004 | A1 |
20040208446 | Bond et al. | Oct 2004 | A1 |
20040208466 | Mossberg et al. | Oct 2004 | A1 |
20050135747 | Greiner et al. | Jun 2005 | A1 |
20050136260 | Garcia | Jun 2005 | A1 |
20050259302 | Metz et al. | Nov 2005 | A9 |
20050269481 | David et al. | Dec 2005 | A1 |
20060093793 | Miyakawa et al. | May 2006 | A1 |
20060114564 | Sutherland et al. | Jun 2006 | A1 |
20060119916 | Sutherland et al. | Jun 2006 | A1 |
20060132914 | Weiss et al. | Jun 2006 | A1 |
20060215244 | Yosha et al. | Sep 2006 | A1 |
20060221448 | Nivon et al. | Oct 2006 | A1 |
20060228073 | Mukawa et al. | Oct 2006 | A1 |
20060279662 | Kapellner et al. | Dec 2006 | A1 |
20060291021 | Mukawa | Dec 2006 | A1 |
20070019152 | Caputo et al. | Jan 2007 | A1 |
20070019297 | Stewart et al. | Jan 2007 | A1 |
20070041684 | Popovich et al. | Feb 2007 | A1 |
20070045596 | King et al. | Mar 2007 | A1 |
20070089625 | Grinberg et al. | Apr 2007 | A1 |
20070133920 | Lee et al. | Jun 2007 | A1 |
20070133983 | Traff | Jun 2007 | A1 |
20070188837 | Shimizu et al. | Aug 2007 | A1 |
20070211164 | Olsen et al. | Sep 2007 | A1 |
20080043334 | Itzkovitch et al. | Feb 2008 | A1 |
20080106775 | Amitai et al. | May 2008 | A1 |
20080136923 | Inbar et al. | Jun 2008 | A1 |
20080151379 | Amitai | Jun 2008 | A1 |
20080186604 | Amitai | Aug 2008 | A1 |
20080198471 | Amitai | Aug 2008 | A1 |
20080278812 | Amitai | Nov 2008 | A1 |
20080285140 | Amitai | Nov 2008 | A1 |
20080309586 | Vitale | Dec 2008 | A1 |
20090017424 | Yoeli et al. | Jan 2009 | A1 |
20090019222 | Verma et al. | Jan 2009 | A1 |
20090052046 | Amitai | Feb 2009 | A1 |
20090052047 | Amitai | Feb 2009 | A1 |
20090067774 | Magnusson | Mar 2009 | A1 |
20090097122 | Niv | Apr 2009 | A1 |
20090097127 | Amitai | Apr 2009 | A1 |
20090121301 | Chang | May 2009 | A1 |
20090122413 | Hoffman et al. | May 2009 | A1 |
20090122414 | Amitai | May 2009 | A1 |
20090128902 | Niv et al. | May 2009 | A1 |
20090128911 | Itzkovitch et al. | May 2009 | A1 |
20090153437 | Aharoni | Jun 2009 | A1 |
20090190222 | Simmonds et al. | Jul 2009 | A1 |
20090213208 | Glatt | Aug 2009 | A1 |
20090237804 | Amitai et al. | Sep 2009 | A1 |
20090303599 | Levola | Dec 2009 | A1 |
20090316246 | Asai et al. | Dec 2009 | A1 |
20100039796 | Mukawa | Feb 2010 | A1 |
20100060551 | Sugiyama et al. | Mar 2010 | A1 |
20100060990 | Wertheim et al. | Mar 2010 | A1 |
20100079865 | Saarikko et al. | Apr 2010 | A1 |
20100092124 | Magnusson et al. | Apr 2010 | A1 |
20100096562 | Klunder et al. | Apr 2010 | A1 |
20100103078 | Mukawa et al. | Apr 2010 | A1 |
20100136319 | Imai et al. | Jun 2010 | A1 |
20100141555 | Rorberg et al. | Jun 2010 | A1 |
20100165465 | Levola | Jul 2010 | A1 |
20100171680 | Lapidot et al. | Jul 2010 | A1 |
20100177388 | Cohen et al. | Jul 2010 | A1 |
20100214659 | Levola | Aug 2010 | A1 |
20100231693 | Levola | Sep 2010 | A1 |
20100231705 | Yahav et al. | Sep 2010 | A1 |
20100232003 | Baldy et al. | Sep 2010 | A1 |
20100246004 | Simmonds | Sep 2010 | A1 |
20100246993 | Rieger et al. | Sep 2010 | A1 |
20100265117 | Weiss | Oct 2010 | A1 |
20100277803 | Pockett et al. | Nov 2010 | A1 |
20100284085 | Laakkonen | Nov 2010 | A1 |
20100296163 | Saarikko | Nov 2010 | A1 |
20100315719 | Saarikko et al. | Dec 2010 | A1 |
20100321781 | Levola et al. | Dec 2010 | A1 |
20110013423 | Selbrede et al. | Jan 2011 | A1 |
20110019250 | Aiki et al. | Jan 2011 | A1 |
20110019874 | Jarvenpaa et al. | Jan 2011 | A1 |
20110026128 | Baker et al. | Feb 2011 | A1 |
20110026774 | Flohr et al. | Feb 2011 | A1 |
20110038024 | Wang et al. | Feb 2011 | A1 |
20110050548 | Blumenfeld et al. | Mar 2011 | A1 |
20110096401 | Levola | Apr 2011 | A1 |
20110157707 | Tilleman et al. | Jun 2011 | A1 |
20110164221 | Tilleman et al. | Jul 2011 | A1 |
20110211239 | Mukawa et al. | Sep 2011 | A1 |
20110235179 | Simmonds | Sep 2011 | A1 |
20110235365 | McCollum et al. | Sep 2011 | A1 |
20110238399 | Ophir et al. | Sep 2011 | A1 |
20110242349 | Izuha et al. | Oct 2011 | A1 |
20110242661 | Simmonds | Oct 2011 | A1 |
20110242670 | Simmonds | Oct 2011 | A1 |
20110310356 | Vallius | Dec 2011 | A1 |
20120007979 | Schneider et al. | Jan 2012 | A1 |
20120033306 | Valera et al. | Feb 2012 | A1 |
20120044572 | Simmonds et al. | Feb 2012 | A1 |
20120044573 | Simmonds et al. | Feb 2012 | A1 |
20120062850 | Travis | Mar 2012 | A1 |
20120099203 | Boubis et al. | Apr 2012 | A1 |
20120105634 | Meidan et al. | May 2012 | A1 |
20120120493 | Simmonds et al. | May 2012 | A1 |
20120127577 | Desserouer | May 2012 | A1 |
20120224062 | Lacoste et al. | Sep 2012 | A1 |
20120235884 | Miller et al. | Sep 2012 | A1 |
20120235900 | Border et al. | Sep 2012 | A1 |
20120242661 | Takagi et al. | Sep 2012 | A1 |
20120280956 | Yamamoto et al. | Nov 2012 | A1 |
20120300311 | Simmonds et al. | Nov 2012 | A1 |
20120320460 | Levola | Dec 2012 | A1 |
20130069850 | Mukawa et al. | Mar 2013 | A1 |
20130093893 | Schofield et al. | Apr 2013 | A1 |
20130101253 | Popovich et al. | Apr 2013 | A1 |
20130138275 | Nauman et al. | May 2013 | A1 |
20130141937 | Katsuta et al. | Jun 2013 | A1 |
20130170031 | Bohn et al. | Jul 2013 | A1 |
20130184904 | Gadzinski | Jul 2013 | A1 |
20130200710 | Robbins | Aug 2013 | A1 |
20130249895 | Westerinen et al. | Sep 2013 | A1 |
20130250207 | Bohn | Sep 2013 | A1 |
20130257848 | Westerinen et al. | Oct 2013 | A1 |
20130258701 | Westerinen et al. | Oct 2013 | A1 |
20130314793 | Robbins et al. | Nov 2013 | A1 |
20130322810 | Robbins | Dec 2013 | A1 |
20130328948 | Kunkel et al. | Dec 2013 | A1 |
20140043689 | Mason | Feb 2014 | A1 |
20140104665 | Popovich et al. | Apr 2014 | A1 |
20140104685 | Bohn et al. | Apr 2014 | A1 |
20140140653 | Brown et al. | May 2014 | A1 |
20140140654 | Brown et al. | May 2014 | A1 |
20140146394 | Tout et al. | May 2014 | A1 |
20140152778 | Ihlenburg et al. | Jun 2014 | A1 |
20140168055 | Smith | Jun 2014 | A1 |
20140168260 | O'Brien et al. | Jun 2014 | A1 |
20140168735 | Yuan et al. | Jun 2014 | A1 |
20140172296 | Shtukater | Jun 2014 | A1 |
20140176528 | Robbins | Jun 2014 | A1 |
20140204455 | Popovich et al. | Jul 2014 | A1 |
20140211322 | Bohn et al. | Jul 2014 | A1 |
20140218801 | Simmonds et al. | Aug 2014 | A1 |
20140300966 | Travers et al. | Oct 2014 | A1 |
20150010265 | Popovich et al. | Jan 2015 | A1 |
20150167868 | Boncha | Jun 2015 | A1 |
20150177688 | Popovich et al. | Jun 2015 | A1 |
20150277375 | Large et al. | Oct 2015 | A1 |
20150289762 | Popovich et al. | Oct 2015 | A1 |
20150316768 | Simmonds | Nov 2015 | A1 |
20160209657 | Popovich et al. | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
200944140 | Sep 2007 | CN |
101881936 | Nov 2010 | CN |
10 2006 003 785 | Jul 2007 | DE |
0 822 441 | Feb 1998 | EP |
2 110 701 | Oct 2009 | EP |
2 225 592 | Sep 2010 | EP |
2 381 290 | Oct 2011 | EP |
2 733 517 | May 2014 | EP |
2677463 | Dec 1992 | FR |
2 115 178 | Sep 1983 | GB |
2004-157245 | Jun 2004 | JP |
2006-350129 | Dec 2006 | JP |
2007-219106 | Aug 2007 | JP |
WO-9952002 | Oct 1999 | WO |
WO-03081320 | Oct 2003 | WO |
WO-2006002870 | Jan 2006 | WO |
WO-2007130130 | Nov 2007 | WO |
WO-2007130130 | Nov 2007 | WO |
WO-2009013597 | Jan 2009 | WO |
WO-2009077802 | Jun 2009 | WO |
WO-2010067114 | Jun 2010 | WO |
WO-2010067117 | Jun 2010 | WO |
WO-2010125337 | Nov 2010 | WO |
WO-2010125337 | Nov 2010 | WO |
WO-2011012825 | Feb 2011 | WO |
WO-2011051660 | May 2011 | WO |
WO-2011055109 | May 2011 | WO |
WO-2011107831 | Sep 2011 | WO |
WO-2013027006 | Feb 2013 | WO |
WO-2013033274 | Mar 2013 | WO |
WO-2013163347 | Oct 2013 | WO |
WO-2014091200 | Jun 2014 | WO |
Entry |
---|
Non-Final Office Action on U.S. Appl. No. 14/152,756, dated Apr. 26, 2016, 17 pages. |
Non-Final Office Action on U.S. Appl. No. 13/250,858, dated Mar. 18, 2016, 20 pages. |
Amendment and Reply for U.S. Appl. No. 12/571,262, mail date Dec. 16, 2011, 7 pages. |
Amitai, Y., et al. “Visor-display design based on planar holographic optics,” Applied Optics, vol. 34, No. 8, Mar. 10, 1995, pp. 1352-1356. |
Ayras et al., Exit Pupil Expander with a Large Field of View Based on Diffractive Optics, Journal of the SID, 2009, 6 pages. |
Ayras, et al., “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the Society for Information Display, 17/8, 2009, pp. 659-664. |
Cameron, A., The Application of Holograhpic Optical Waveguide Technology to Q-Sight Family of Helmet Mounted Displays, Proc. of SPIE, vol. 7326, 7326OH-1, 2009, 11 pages. |
Caputo, R. et al., Policryps Switchable Holographic Grating: A Promising Grating Electro-Optical Pixel for High Resolution Display Application; Journal of Display Technology, vol. 2, No. 1, Mar. 2006, pp. 38-51, 14 pages. |
Crawford, “Switchable Bragg Gratings”, Optics & Photonics News, Apr. 2003, pp. 54-59. |
Extended European Search Report for EP Application No. 13192383, dated Apr. 2, 2014, 7 pages. |
Final Office Action in U.S. Appl. No. 13/864,991, dated Apr. 2, 2015, 16 pages. |
Final Office Action on U.S. Appl. No. 13/869,866 Dated Oct. 3, 2014, 17 pages. |
Final Office Action on U.S. Appl. No. 13/250,858 Dated Feb. 4, 2015, 18 pages. |
Final Office Action on U.S. Appl. No. 13/250,940 Dated Oct. 17, 2014, 15 pages. |
Final Office Action on U.S. Appl. No. 13/892,026 Dated Apr. 3, 2015, 17 pages. |
Final Office Action on U.S. Appl. No. 13/892,057 Dated Mar. 5, 2015, 21 pages. |
Final Office Action on U.S. Appl. No. 14/038,400 Dated Aug. 10, 2015, 32 pages. |
First office action received in Chinese patent application No. 201380001530.1, dated Jun. 30, 2015, 9 pages with English translation. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/038070, dated Oct. 28, 2014, 6 pages. |
International Search Report and Written Opinion regarding PCT/US2013/038070, mail date Aug. 14, 2013, 14 pages. |
Irie, Masahiro, Photochromic diarylethenes for photonic devices, Pure and Applied Chemistry, 1996, pp. 1367-1371, vol. 68, No. 7, IUPAC. |
Levola, et al., “Replicated slanted gratings with a high refractive index material for in and outcoupling of light” Optics Express, vol. 15, Issue 5, pp. 2067-2074 (2007). |
Moffitt, “Head-Mounted Display Image Configurations”, retrieved from the internet at http://www.kirkmoffitt.com/hmd—image—configurations.pdf on Dec. 19, 2014, dated May 2008, 25 pages. |
Non-Final Office Action on U.S. Appl. No. 13/869,866 Dated Jul. 22, 2015, 28 pages. |
Non-Final Office Action on U.S. Appl. No. 13/892,026 Dated Aug. 6, 2015, 22 pages. |
Non-Final Office Action on U.S. Appl. No. 13/892,057 dated Jul. 30, 2015, 29 pages. |
Non-Final Office Action on U.S. Appl. No. 13/250,858 dated Jun. 12, 2015, 20 pages. |
Non-Final Office Action on U.S. Appl. No. 13/250,858 Dated Sep. 15, 2014, 16 pages. |
Non-Final Office Action on U.S. Appl. No. 13/250,940 Dated Mar. 18, 2015, 17 pages. |
Non-Final Office Action on U.S. Appl. No. 13/432,662 Dated May 27, 2015, 15 pages. |
Non-Final Office Action on U.S. Appl. No. 13/844,456 Apr. 1, 2015, 16 Pages. |
Non-Final Office Action on U.S. Appl. No. 13/864,991 Dated Oct. 22, 2014, 16 pages. |
Non-Final Office Action on U.S. Appl. No. 13/869,866 Dated May 28, 2014, 16 pages. |
Non-Final Office Action on U.S. Appl. No. 14/038,400 Dated Feb. 5, 2015, 18 pages. |
Non-Final Office Action on U.S. Appl. No. 14/044,676 Dated Apr. 9, 2015, 13 pages. |
Non-Final Office Action on U.S. Appl. No. 14/109,551 Dated Jul. 14, 2015, 32 pages. |
Non-Final Office Action on U.S. Appl. No. 14/152,756, mail date Aug. 25, 2015, 39 pages. |
Non-Final Office Action on U.S. Appl. No. 14/168,173 Dated Jun. 22, 2015, 14 pages. |
Non-Final Office Action on U.S. Appl. No. 14/225,062 Dated May 21, 2015, 11 pages. |
Nordin, G., et al., “Diffraction properties of stratified volume holographic optical elements,” Journal of the Optical Society of America A., vol. 9, No. 12, Dec. 1992, pp. 2206-2217, 12 pages. |
Notice of Allowance for U.S. Appl. No. 12/700,557, mail date Oct. 22, 2013, 9 pages. |
Notice of Allowance on U.S. Appl. No. 13/250,970 dated Sep. 16, 2014, 7 pages. |
Notice of Allowance on U.S. Appl. No. 13/251,087 Dated Jul. 17, 2014, 8 pages. |
Notice of Allowance on U.S. Appl. No. 13/355,360 Dated Apr. 10, 2014, 7 pages. |
Notice of Allowance on U.S. Appl. No. 14/038,400, dated Oct. 30, 2015, 9 pages. |
Notice of Allowance on U.S. Appl. No. 14/225,062, dated Dec. 2, 2015, 10 pages. |
Office Action for U.S. Appl. No. 12/571,262, mail date Sep. 28, 2011, 5 pages. |
Office Action for U.S. Appl. No. 12/700,557, mail date Aug. 9, 2013, 12 pages. |
Office Action for U.S. Appl. No. 12/700,557, mail date Feb. 4, 2013, 11 pages. |
Office Action for U.S. Appl. No. 13/250,621, mail date May 21, 2013, 10 pages. |
Office Action for U.S. Appl. No. 13/250,858 Dated Feb. 19, 2014, 13 pages. |
Office Action for U.S. Appl. No. 13/250,858 mail date Feb. 19, 2014, 13 pages. |
Office Action for U.S. Appl. No. 13/250,858, mail date Oct. 28, 2013, 9 pages. |
Office Action for U.S. Appl. No. 13/250,940, mail date Aug. 28, 2013, 15 pages. |
Office Action for U.S. Appl. No. 13/250,940, mail date Mar. 12, 2013, 11 pages. |
Office Action for U.S. Appl. No. 13/250,970, mail date Jul. 30, 2013, 4 pages. |
Office Action for U.S. Appl. No. 13/250,994, mail date Sep. 16, 2013, 11 pages. |
Office Action for U.S. Appl. No. 13/355,360, mail date Sep. 12, 2013, 7 pages. |
Office Action on U.S. Appl. No. 13/250,940 Dated Mar. 25, 2014, 12 pages. |
Office Action on U.S. Appl. No. 13/251,087 Dated Mar. 28, 2014, 12 pages. |
Office Action on U.S. Appl. No. 13/892,026 Dated Dec. 8, 2014, 19 pages. |
Office Action on U.S. Appl. No. 13/892,057 Dated Nov. 28, 2014, 17 pages. |
Office Action, USPTO, U.S. Appl. No. 10/696,507, mailed on Nov. 13, 2008, 15 pages. |
Plastic has replaced glass in photochromic lens, www.plastemart.com, 2003, 1 page. |
Press Release, “USAF Awards SBG Labs an SBIR Contract for Wide Field of View HUD”, SBG Labs—DigiLens, Apr. 2013, 1 page. |
Press Release: “Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2, retrieved from the internat at http://www.digilens.com/pr10-2012.2.php. 2 pages. |
Press Release: “Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2, retrieved from the internet at http://www.digilens.com/pr10-2012.2.php. 2 pages. |
Requirement for Restriction/Election on U.S. Appl. No. 13/844,456 Dated Sep. 12, 2014, 23 pages. |
Restriction Requirement for U.S. Appl. No. 12/700,557, mail date Oct. 17, 2012, 5 pages. |
Schechter, et al., “Compact beam expander with linear gratings”, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, pp. 1236-1240. |
Urey, “Diffractive exit pupil expander for display applications” Applied Optics, vol. 40, Issue 32, pp. 5840-5851 (2001). |
Webster's Third New International Dictionary 433 (1986), 3 pages. |
Wisely, P.L., Head up and head mounted display performance improvements through advanced techniques in the manipulation of light, Proc. of SPIE vol. 7327, 732706-1, 2009, 10 pages. |
Chinese Office Action issued in corresponding application No. 201310557623, dated Jan. 17, 2017, 10 pages. |
Final Office Action on U.S. Appl. No. 14/152,756, dated Oct. 12, 2016, 18 pages. |
Non-Final Office Action on U.S. Appl. No. 13/844,456, dated Dec. 29, 2016, 24 pages. |
Non-Final Office Action on U.S. Appl. No. 13/844,456, with English translation, dated Dec. 29, 2016, 24 pages. |
Non-Final Office Action on U.S. Appl. No. 14/044,676, dated Dec. 29, 2016, 26 pages. |
Notice of Allowance on U.S. Appl. No. 13/892,057, dated Nov. 8, 2016, 10 pages. |
Notice of Reasons for Rejection for Japanese Application No. 2015-509120, dated Nov. 1, 2016, 4 pages. |
Notice of Allowance on U.S. Appl. No. 14/820,237, dated Jan. 23, 2017, 10 pages. |
U.S. Appl. No. 14/814,020, filed Jul. 30, 2015, Brown et al. |
Extended European Search Report for European Application No. 13765610.4 dated Feb. 16, 2016, 6 pages. |
Final Office Action on U.S. Appl. No. 13/250,858, dated Jul. 11, 2016, 21 pages. |
Final Office Action on U.S. Appl. No. 13/864,991, dated Jun. 27, 2016, 16 pages. |
Final Office Action on U.S. Appl. No. 14/044,676, dated Aug. 12, 2016, 23 pages. |
Final Office Action on U.S. Appl. No. 14/168,173, dated Nov. 4, 2015, 10 pages. |
Final Office Action on U.S. Appl. No. 14/260,943, dated Jul. 19, 2016, 23 pages. |
Non-final Office Action on U.S. Appl. No. 13/250,858, dated Nov. 14, 2016, 18 pages. |
Non-Final Office Action on U.S. Appl. No. 13/844,456, dated Aug. 16, 2016, 18 pages. |
Non-Final Office Action on U.S. Appl. No. 13/844,456, dated Jan. 15, 2016, 16 Pages. |
Non-Final Office Action on U.S. Appl. No. 13/864,991 dated Nov. 30, 2015, 18 pages. |
Non-Final Office Action on U.S. Appl. No. 13/892,026 dated Mar. 22, 2016, 16 pages. |
Non-Final Office Action on U.S. Appl. No. 13/892,057, dated May 16, 2016, 23 pages. |
Non-Final Office Action on U.S. Appl. No. 14/044,676, dated Jan. 20, 2016, 21 pages. |
Non-Final Office Action on U.S. Appl. No. 14/168,173 dated Mar. 10, 2016, 9 pages. |
Non-Final Office Action on U.S. Appl. No. 14/260,943 dated Feb. 3, 2016, 19 pages. |
Non-Final Office Action on U.S. Appl. No. 14/465,763, dated Sep. 29, 2016, 4 pages. |
Non-Final Office Action on U.S. Appl. No. 14/497,280, dated Sep. 22, 2016, 15 pages. |
Non-Final Office Action on U.S. Appl. No. 14/820,237, dated Aug. 5, 2016, 14 pages. |
Notice of Allowance on U.S. Appl. No. 13/432,662, dated Feb. 18, 2016, 10 pages. |
Notice of Allowance on U.S. Appl. No. 13/892,026, dated Jul. 18, 2016, 10 pages. |
Notice of Allowance on U.S. Appl. No. 14/814,020, dated Aug. 12, 2016, 15 pages. |
Final Office Action on U.S. Appl. No. 14/152,756, dated Jun. 7, 2017, 16 pages. |
Non-Final Office Action on U.S. Appl. No. 14/754,368, dated May 8, 2017, 12 pages. |
Non-Final Office Action on U.S. Appl. No. 15/136,841, 12 pages, dated Jul. 13, 2017. |
Number | Date | Country | |
---|---|---|---|
Parent | 14225062 | Mar 2014 | US |
Child | 15005507 | US |